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Abstract

This study focuses on determining the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total
graph and subdivision graph of the fuzzy cycle C,,. These results are obtained by using fuzzy colors based on the strength of
edges incident on a vertex. Additionally, some key properties regarding the fuzzy coloring of the fuzzy graphs have been given.
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1. Introduction

Fuzzy graph coloring is an effective technique for solving many complex real-world problems. Since many
practical situations can be represented as coloring problems, this area has become one of the most widely
studied in graph theory. In particular, coloring fuzzy graphs plays a key role in resolving challenges in
network systems [1]. Through the years, researchers have explored various approaches to coloring fuzzy
graphs. The idea was first introduced by Susana Munoz et al. [2], who defined the chromatic number of a
fuzzy graph as a fuzzy subset of its vertex set. Later, Eslahchi and Onagh [3] proposed a coloring method
based on strong adjacency between vertices. After that, Sovan Samanta et al. [4] introduced a new approach
that uses fuzzy colors determined by the strength of edges connected to each vertex.

Furthermore, we found the chromatic number of certain families of fuzzy graphs using fuzzy coloring [5]

and is defined as follows:

(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors(if
necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to
different basic color.

(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color.

The minimum number of colors (basic or fuzzy) needed for a proper fuzzy coloring of G is called the
chromatic number of G, is denoted by x(G). We also derived some key properties related to this type of
coloring. In this paper, we extend our study by determining the chromatic number of the middle graph,
splitting graph, shadow graph, line graph, total graph and subdivision graph of fuzzy cycle Cy,. These results
are obtained using fuzzy colors based on the strength of edges incident to each vertex and we also proved
important properties of these coloring methods.

The structure of this article is as follows : In Section 1, introduction to the fuzzy coloring of a fuzzy graph is
given. In Section 2, some basic concepts in fuzzy coloring of fuzzy graphs that aid in the research have been
reviewed. In Section 3, we determine the chromatic number of the middle graph, splitting graph, shadow
graph, line graph, total graph and the subdivision graph of the fuzzy cycle C,,. Section 4 presents the final
conclusions of this study.
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2. Preliminaries
This section begins with a review of some definitions from fuzzy graph theory and fuzzy coloring, which help in
determining the chromatic numbers of some related graphs of the fuzzy cycle.

Definition 2.1. (fuzzy graph [6]) A fuzzy graph G = (V, g, ) is a pair of functions (o, 1), where o :
V — [0,1] is a fuzzy subset of a non-empty set V, and p: ¥V — [0, 1] is a symmetric fuzzy relation on
g, such that the relation u(v;, vj) < o(v;) A a(v;) is satistied for all v, v; € Vand (v;,vj) EE C
VxV.

Here, 0 (v;) denote the degree of membership of the vertex v;, and u(v;, v;) denotes the degree of membership

of the edge relation ;; = (v;,v;) onV X V.
Note : In this paper, we denote a(v;) A a(v;) = min{o(v;),0(v;)}, and o(v;) Vo(v;) =
max{o(v;),o(vj)}.

Definition 2.2. (fuzzy path [7]) Let G = (V,0,1) be a fuzzy graph with underlying crisp graph G*. A
fuzzy path B, in G is a sequence of distinct vertices Vg, Vq,..., VU, such that p(v;_1,v;) > 0,1 <i <
n. Here n > 1 is called the length of the path P,.

Definition 2.3. (fuzzy cycle [7]) A fuzzy path P, in which vy = v, and n = 3, then P, is called a fuzzy
cycle C,, of length n.

Definition 2.4. (strong edge, weak edge [3]) Let G = (V, g, i) be a fuzzy graph and an edge e = (vi, vj) €
G is called strong if%{a(vi) N o(vj)} < u(v;,vj) and it is called weak otherwise.

Definition 2.5. (strength of an edge [3]) Let G = (V, 0, 1) be a fuzzy graph and the strength of an edge
(vi, vj) € G is denoted by,

(i, vy)

10en) = Sy hatoy

Definition 2.6. (strong fuzzy graph [8]) A fuzzy graph G = (V, g, ) is called a strong fuzzy graph if each
edge in G is a strong edge.

Definition 2.7. (middle graph [9]) The middle graph M¢(G)(Viy, Oum, ty ) of a fuzzy graph G(V, g, u) is a fuzzy
graph with underlying crisp graph M(G)(Vy, En), with the vertex set Vyy = V U V;j where V = {v; | v; €V}
and V;; = {v;; V (vi, vj) € E}and v(Mf(G)) =n+ 1+ n=2n+ 1 and the edge set

B = {(vij,vi), (vij,vj) Vland],
M (vij, vrs) if the edges (vi, vj) and (v, v5) are adjacent in G.
Then, O'M('Ui) = O'(Ul') lf v; € V,0< i< n,
O'M(Uij) = u(vi,vj) if (vi,vj) €EEV iand]j,
Unm (vij, vrs) = u(vi, vj) A u(vy., vg) if the edges (vi, vj) and (v, vs) are adjacent in G,
and MM(vi'vij) = MM(U]', vij) = ,u(vl-, U]) Viand }

Definition 2.8. (splitting graph [9]) The splitting graph S¢(G)(Vs, g5, ts) of a fuzzy graph G(V, 0,1 ) is a fuzzy
graph with underlying crisp graph S(G)(Vs, Es), with the vertexset Vo = V UV’ where V = {v; | v; € V} and
V' = {v; V v; € V}and the edge set
E - (vi, vj) ifv; and v; are adjacent in G,
s (v v)) if vi € V'and v; € V that are adjacent tov; € V.
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Then, a5(v;) = a5(v)) = a(v;) forv; €V and v, € V',
us (i, vj) = u(vy, vj) if v; and v; are adjacent in'V,
and ps(v{,v;) = os(v}) Aos(v;) if vi € V'and v; € V that are adjacent to v; € V.

Definition 2.9. (shadow graph [9]) The shadow graph D, P (G)(VDZ, Op, ”Dz) of a fuzzy graph G(V, o, 1) is
a fuzzy graph with underlying crisp graph D, (G)(Vp,, Ep,) is obtained by taking two copies of G namely G
and G" with the vertex set Vp, = V' U V" where V' = {v] V v; € V}and V" = {v;’' V v; € V} and the edge
set
£ {(vi’,v;), (v{',vj") if v; and vj are adjacent in G,

D

2 |\ (vi,y)' if vi € V'and vj’ € V"that are adjacent tov;' € V"

Then, op, ') = 0p,(v") = c(W)forveV,v' eV',v" e V",

r. ! mn__r ! ! 12} n
tp, Wivj) = up, ;' vj") = u(vvy), for v, v; € V', v, vj € V", v, v €V,

up,(iv]") = a(v)) Aa(v]") if v € V'and vj' € V"' that are adjacent to v;' € V"'

Definition 2.10. (line graph [9]) The line graph Ly (G)(Vy, 0y, ) of a fuzzy graph G (V, g, u) is a fuzzy graph
with underlying crisp graph L(G)(Vy, EL), where the vertex set V; = {v;;V (vi,vj) € E} and edge set
E; {(vij, vrs) the edges (v;, v;) and (v, vs) are adjacent in G}. Then, o, (v;;) = u(v;, v;) if v; €V,
and up, (vij, vrs) = u(vy, vj) A u(vr, v5) if the edges (v, vj) and (v, v5) are adjacent in G.

Definition 2.11. (total graph [9]) The total graph T¢(G)(Vr, o, ) of a fuzzy graph G(V, 0, 1) is a fuzzy
graph with underlying crisp graph T (G) (Vr, E7), with the vertex set Vi = V U V;j, where V = {v; | v; € V}
and V;; = {v;; vV (vi, vj) € E} and the edge set

(vi,v)) if v; and v; are adjacent in G,
ET = (vij,vl-), (Vij'vj) \Y iandj,
Vi,V if the edges (v;,v;)and (v,, vs)are adjacent in G.
( 9] TS) f g ( 2 j) Vs ]

Then, or(v;) = a(vy) if v; €V,

O'T(Uij) = ,u(vi, vj)if (vi,vj) EEViandj,

ur (v, vj) = u(v, vj) if v; and v; are adjacent in G,

ur (Vij, vrs) = (v, vj) A u(vr, vg) if the edges (v, vj) and (v, vs) are adjacent in G,
and uT(vi,vU) = uT(vj,vU) = y(vi,vj)v iandj.

Definition 2.12. (subdivision graph [9]) The subdivision graph sdf(G)(Vsq, 0sq, Usq) of a fuzzy graph
G(V,0,u) is a fuzzy graph with underlying crisp graph sd(G)(Vsq, Esq), with the vertex set Vg =V UV
where V ={v; | v; €V}and V;; = {v;; V (vi,vj) €E} and Esq = {(vl-j,vl-), (vl-j,vj)v i & j}. Then,
osa(vip) = p(v,vp) if (v, v;) €EEVi& jand  psq(vi,vij) = tsa (v, vi;) = n(vi,vj) Vi & .

Definition 2.13. (fuzzy coloring, proper fuzzy coloring [2]) Let G = (V, g, W) be a fuzzy graph. Fuzzy coloring

is an assignment of basic or fuzzy colors to the vertices of a fuzzy graph G and it is proper,

(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors(if
necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding
to different basic color.

(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color.
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Definition 2.14. (perfect fuzzy coloring [2]) Let G = (V, 0, 1) be a fuzzy graph. Perfect fuzzy coloring
(optimal fuzzy coloring) is an assighment of minimum number of colors (basic or fuzzy) for a proper
fuzzy coloring of G.

Definition 2.15. (chromatic number [2]) Let G = (V, 0, 1) be a fuzzy graph. The minimum number of colors
(basic or fuzzy) needed for a proper fuzzy coloring of G is called the chromatic number of G and is denoted

by x 7 (G).

Lemma 2.1. [2] Let P, be a fuzzy path of length n. If all edges are weak in Py, then x r(Pn) = 1.
Lemma 2.2. (2] Let P, be a fuzzy path of lengthn. If all the edges are strong in Py, then xr(Pp)= 2.
Theorem 2.1. [2] Let P, be a fuzzy path of length n. If atleast one edge is strong in Py, then x s (P,) = 2.
Lemma 2.3. [2] Let C;, be a fuzzy cycle of length n. If all edges are weak in Cy, then x r(Cp) = 1.

Lemma 2.4. (2] Let C), be a fuzzy cycle of length n. If all the edges are strong in C,,, then

_ (2 if niseven,
X (Cn) = {3 if nisodd.

Theorem 2.2. [2] Let C,, be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence
in Cy,, then
3 if % number of strong and weak edges are alternatively

xr(Cn) = distributed in C,, where n(= 6)is even,
2 otherwise.

Theorem 2.3.[9] x£(G) = max {x7(G;) : 1 < i < k},whereG =G, UG, U ..UGrandG;, 1 <i <
k are fuzzy graphs.

Corollary 2.3.1.[9] xf(G) = max {x7(G;) : 1 <i <k}, where G =G, D G, D ... D Gy and G;,1 <
i < k are edge disjoint fuzzy graphs.

Theorem 2.4. [11] The complete graph K,, has Hamiltonian decomposition for all n.
Note.[2]. ie., Krpy1 =P nCyrpyq and Kyyy = Copy @ nPy, where @ denotes edge disjoint union.
3. The Chromatic Number of Some Related Graphs of Fuzzy Cycle

In this section, we determine the chromatic number of the middle graph M¢(Cy), splitting graph S¢(Cy),
shadow graph D, (Cy,), line graph L¢(Cy), total graph T (Cy,) and the subdivision graph sd¢(Cy) of the fuzzy
cycle Cy,.

In our previous work [2], Theorem 2.2 is stated as : Let C,, be a fuzzy cycle of length n. If weak and strong
edges are distributed in any sequence in Cy,, then
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3 if % number of strong and weak edges are alternatively

Xr(Cr) = distributed in C,, where n(= 6)is even,
2 otherwise.

Upon further analysis and computational verification, it was found that this theorem holds under a more
precise condition. Accordingly, we present the refined version below.

Theorem 3.1. Let C,, be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence
in C,,, then
3 if % number of strong and weak edges are alternatively

Xf(Cn) = distributed in C,,, where n = 6,n = 2 (mod 4),
2 otherwise.

Proof. Proof is similar as Theorem 2.2. (refer [2]).

3.1. The Chromatic Number of M;(C;,)

Remark 3.1.1. Let Gy, : v1 V; ... v V1 be a fuzzy cycle of length n. Then M¢(Cy,) = C, @ Cyp,
(by Theorem 2.4), where C,, is oriented as Cy, : Vq V5 ... Uy V1 and Cy,, is oriented as

Con V1 V12 V3 Va3 ... Uy Vpg V1.

Lemma 3.1.1. Let Gy, be a fuzzy cycle of length n. Then M¢(Cy,) is a strong fuzzy graph.

Proof. Let C,, : V1 V5 ...V, V1 be a fuzzy cycle of length n. By the definition of middle graph, we have
o) =c)ifv,eV,1<i<n,

O'M(Uij) = u(vi,vj)if (vi,vj) EEVi& ],
U (vl-j, vrs) = ,u(vi, vj) A (v, vg) if the edges (v, v;) and (v, V) are adjacent in G,

and ‘LLM(UL',UL']') = ,LlM('Uj,'Uij) = ,u(vi,vj) Vi& ]

Then each edges of M¢(Cy,) satisfies the condition of a strong edge (by definition 2.4). Therefore, M¢(Cy,)
is a strong fuzzy graph.

Theorem 3.1.1. If My (Cy,) is a strong fuzzy graph, then xr(Ms(Cy)) = 3.

Proof. Let Cp, : vq V5 ...V, V1 be a fuzzy cycle of length n. Then M¢(Cy,) = C, @ C3p, (by Remark 3.1.1)
and by Lemma 3.1.1, M¢(Cy,) is a strong fuzzy graph.

Case 1:In Cp, if n is even.
Then by Lemma 2.4 we have, x7(Cy,) = xr(C2,) = 2. Then by Corollary 2.3.1,
X5 (Mp(Cr)) = max{xs(Cn), x5 (C2n)} + 1
= max{2,2}+1
= 3.

Case 2 : In Cp, if n is odd.
Then by Lemma 2.4 we have, xr(C,) =3 and xz(Cz,)=2. Then by Corollary 2.3.1,
X5 (Mp(Cr)) = max{xs(Cn), xr(C2n)}
= max{3,2}
= 3.
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3.2. The Chromatic Number of S¢(C)

Remark 3.2.1. Let Cy : V1 V... v U1 be a fuzzy cycle of length n. Then S¢(Cp) = C,, @ nP, (by
Theorem 2.4), where C,, is oriented as Cp, : v; Uy ...V, V1 and P, is oriented as P, : V;_q V] Viyq, 1 <
i <nwithvy =v, & v = vq.

Lemma 3.2.1. Let C;, : V1 Uy ... U, V; be a fuzzy cycle of length n. If all the edges are weak in C,,, then the edges
of Cy, € S¢(Cy) are weak while the edges of all paths P, € S¢(Cp) are strong.

Proof. Proof follows from the definition of splitting graph and the definition of weak and strong edges.
Theorem 3.2.1. Let C;, be a fuzzy cycle of length n. If all the edges are weak in Cy, then x s (Sp(Cp)) = 2.

Proof. Let Cy, : V1 V3 ...V U1 be a fuzzy cycle of length n. Then S¢(Cy,) = C, @ nP, (by Remark 3.2.1)
and by Lemma 3.2.1, the edges of C;, € S¢(C,) are weak while the edges of all paths P, € S¢(Cy) are
strong. Then by Lemma 2.3 we have, xf(C,) = 1 and by Lemma 2.2 we have, xf(P,) = 2. Therefore by
Corollary 2.3.1,
Xr(Sr(Cr)) = max{xr(Cn), xr(P2)}
= max{1,2}
= 2.

Lemma 3.2.2. Let Gy, be a fuzzy cycle of length n. If all the edges are strong in Cp, then Sg(Cy) is a strong fuzzy
graph.

Proof. Proof follows from the definition of splitting graph and the definition of strong edge.

Theorem 3.2.2. If S¢(Cy,) is a strong fuzzy graph, then

2 if nis even,
Xf(sf(c")) - {3 if nisodd.

Proof. Let Cp : v V3 ...V V1 be a fuzzy cycle of length n. Then S¢(Cy,) = €, @ nP, (by Remark 3.2.1)
and by Lemma 3.2.2, S5¢(Cy,) is a strong fuzzy graph.

Case 1: In Cp,, if n is even.

Then by Lemma 2.4 we have, x7(Cy,) = 2 and by Lemma 2.2 we have, ys(P;) = 2.
Therefore by Corollary 2.3.1,
Xr(Sr(Cr)) = max{xr(Cn), xr(P2)}
= max{2,2}
= 2.

Case 2 : In Cp, if n is odd.

Then by Lemma 2.4 we have, x¢(Cy,) = 3 and by Lemma 2.2 we have, xs(P;) = 2.
Therefore by Corollary 2.3.1, x£(Sf(Cy)) = 3.

Lemma 3.2.3. Let Cp, : V1 V5 ...V, V1 be a fuzzy cycle of length n. If weak and strong edges are distributed in any
sequence in Cy, then the edges of Cy € Sp(Cy) are also weak and strong, which are distributed in any sequence in
S¢(Cp), while the edges of all paths P, € Sg(Cy) are strong. (The proof will be similar as above lemma).

Theorem 3.2.3. Let C,, be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence in Cy,,
then
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n
3 if > number of strong and weak edges are alternatively
Xf(sf(cn)) = distributed in C,,wheren = 6,n = 2 (mod 4),of S;(Cy),
2 otherwise.
Proof. Let Cp : V4 V3 ...y ¥4 be a fuzzy cycle of length n. Then S¢(Cy,) = C,, @ n P, (by Remark 3.2.1)

and by Lemma 3.2.3, the edges of €, € Sf(Cp) are weak and strong, which are distributed in any sequence
in S¢(Cy), while the edges of all paths P, € S¢(Cy,) are strong.

Case 1 : Suppose % number of strong and weak edges are alternatively distributed in C,;, where n =
6,n = 2 (mod 4), of S¢(Cy,). Then by Theorem 3.1 we have, x(C,) = 3 and by Lemma 2.4 we have,

Xr(P) = 2. Therefore by Corollary 2.3.1,
Xr(Sr(Cr)) = max{xr(Cn), xr(P2)}
= max{3,2}
= 3.

Case 2 : Suppose g number of strong and weak edges are alternatively distributed in C,,, where n =
8,n =0 (mod 4),of S (Cy).

Then by Theorem 3.1 we have, xf(Cy) = 2 and by Lemma 2.4 we have, x7(P;) = 2. Therefore by
Corollary 2.3.1, x£ (S (Cr)) = 2.

Case 3 : Suppose EJ number of strong and weak edges are alternatively distributed in C,;, n (= 3) is odd
of S¢(Cp).

Then by Theorem 3.1 we have, x7(C,) = 2 and by Lemma 2.4 we have, xf(P;) = 2. Therefore by
Corollary 2.3.1, xr(5¢(C)) = 2.

Case 4 : Suppose weak and strong edges are distributed in any sequence (except alternative distribution) in
Cp of S¢(Cp).

Then by Theorem 3.1 we have, xf(C,) = 2 and by Lemma 2.4 we have, x(P,) = 2. Therefore by
Corollary 2.3.1, x¢(S¢(Cr)) = 2.

3.3. The Chromatic Number of D, . (C)

Remark 3.3.1. Let C,, : V1 V5 ...V, V1 be a fuzzy cycle of length n. Then sz(Cn) =@ 2C,, @ nP, (by
Theorem 2.4), where the cycles C,, are oriented as C,: V1 V5 ...V, V1 & Cp : V7' V5 ... vy v{ and P, is
oriented as P, : vj_; v;' v{;1,1 < i <n.

Lemma 3.3.1. Let Cp, : v Uy ... Uy, V1 be a fuzzy cycle of length n. If all the edges are weak in Cy,, then the edges
W, viy1),1<i<nand (v{,v}31),1 <i<n are weak in D, ,(Cy), while the edges of all paths P, €

sz(Cn) are strong.
Proof. Proof follows from the definition of shadow graph and the definition of weak and strong edges.
Theorem 3.3.1. Let Cy, be a fuzzy cycle of length n. If all the edges are weak in Cy, then x ¢ (sz c)) =2

Proof. Let C,, : V1 V5 ...V, V1 be a fuzzy cycle of length n. Then sz(Cn) =@ 2C,, ® nP, (by Remark

3.3.1) and by Lemma 3.3.1, the edges (v{,v{;1),1<i<n and (v{,v;}1),1 <i<n are weak in
D, ,(Cy), while the edges of all paths P, € D;,(Cy) are strong. Then by Lemma 2.3 we have, ¢ (C,) = 1

and by Lemma 2.2 we have, x¢(P,) = 2. Therefore by Corollary 2.3.1, x(D,(Cn)) = 2.
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Lemma 3.3.2. Let C, be a fuzzy cycle of length n. If all the edges are strong in Cy,, then sz(Cn) is a strong fuzzy
graph.

Proof. Proof follows from the definition of fuzzy shadow graph and the definition of strong edge.
Theorem 3.3.2. If sz(Cn) is a strong fuzzy graph, then

2 if nis even,
Xf(sz(C”)) - {3 if nisodd.

Proof. Let Cy, & V4 V5 ... U, V4 be a fuzzy cycle of length n. Then sz(Cn) =@ 2C,, ® nP, and by Lemma
3.3.2, all edges are strong in D,, (Co).

Case 1: In Cp, if n is even.
Then by Lemma 2.4 we have, x7(Cy,) = 2 and by Lemma 2.2 we have, xs(P;) = 2.
Therefore by Corollary 2.3.1,
XrD2,(Cr)) = max{xs(Cn), xr(P2)}
= max{2,2}
= 2.

Case 2 : In C,,, if n is odd.
Then by Lemma 2.4 we have, x7(Cy,) = 3 and by Lemma 2.2 we have, xz(P;) = 2.

Therefore by Corollary 2.3.1, x(D2,.(Cr)) = 3.

Lemma 3.3.3. Let C,, : V1 Uy ... Uy Uy be a fuzzy cycle of length n. If weak and strong edges are distributed in any

14

sequence in Cy, then the edges (V{,v{41),1 <i<n—1and (v{',v41),1 <i<n—1 are weak and strong,
which are distributed in any sequence in D,, (C,), while the edges of all paths P, € D,, (C,) are strong. (The proof

will be similar as above lemma).

Theorem 3.3.3. Let C,; be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence in Cy,,
then

4 if strong and weak edges are alternatively distributed in C,,
n
4 if 5 number of strong and weak edges are alternatively

distributed in C,,where n = 6,n = 2 (mod 4),of sz(Cn),

3 otherwise.

27 (D2, (C)) =

Proof. Let C,, : V1 V5 ...V, V1 be a fuzzy cycle of length n. Then sz(Cn) =@ 2C,, ® nP, (by Remark

3.3.1) and by Lemma 3.3.3, the edges (v, v;41),1 <i<n—1and (v{',v}1),1 <i< n—1 are weak
and strong, which are distributed in any sequence in D, .(Cy,), while the edges of all paths P, € D, (Cy)

are strong.
Case 1 : Suppose strong and weak edges are alternatively distributed in Cj.
Then by Theorem 3.1 we have, xf(C4) = 2 and by Lemma 2.4 we have, xs(P;) = 2.
Therefore by Corollary 2.3.1,
)(f(sz (Cy)) = max{Xf(C4):Xf(P2)} + 2
= max{2,2} + 2

= 4.
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Case 2 : Suppose % number of strong and weak edges are alternatively distributed in C,, where
n=6n=2(mod 4), of sz(Cn).
Then by Theorem 3.1 we have, x7(Cy) = 3 and by Lemma 2.4 we have, xr(P,) = 2.
Therefore by Corollary 2.3.1,
Xr(Dz, (C) = max{Xf(Cn):Xf(Pz)} +1
= max{3,2}+1
= 4.

Case 3 : Suppose % number of strong and weak edges are alternatively distributed in C,, where
n = 8,n =0 (mod 4), of Dz, (Cp).
Then by Theorem 3.1 we have, x7(Cy) = 2 and by Lemma 2.4 we have, xf(P,) = 2.
Therefore by Corollary 2.3.1,
Xf(sz (C) = max{Xf(Cn):Xf(Pz)} +1
= max{2,2}+1
= 3.

Case 4 : Suppose EJ number of strong and weak edges are alternatively distributed in C,,,n (= 3) is odd
of D,, (€.
Then by Theorem 3.1 we have, xs(C,) =2 and by Lemma 2.4 we have, xp(P;)=2.
Therefore by Corollary 2.3.1,
Xf(DZf(Cn)) = max{Xf(Cn)rXf(Pz)} +1
= max{2,2}+ 1
= 3.

Case 5 : Suppose weak and strong edges are distributed in any sequence (except alternative distribution)
in Cp, of sz(Cn).

Then by Theorem 3.1 we have, xf(Cy,) = 2 and by Lemma 2.4 we have, y7(P;) = 2.
Therefore by Corollary 2.3.1, )(f(sz(Cn)) = 3.

3.4. The Chromatic Number of L¢(C,)
Lemma 3.4.1. Let Cy, be a fuzzy cycle of length n. Then L (Cy,), is a strong fuzzy graph.

Proof. Proof follows from the definition of fuzzy line graph and the definition of strong edge.
Theorem 3.4.1. If L¢(Cy,) is a strong fuzzy graph, then

2 if nis even,
Xf(Lf(C")) - {3 if nisodd.

Proof. Let Cp: V1V, ... vy 1 be a fuzzy cycle of length n. Since Lf(Cp) = Cy, then by Lemma 2.4, the
results follows.

3.5. The Chromatic Number of T¢(C,)

Remark 3.5.1. Let C, ¢ v3 V5 ...V, V1 be a fuzzy cycle of length n. Then T (Cp,) = Cp, @ Lf(C) D nP,
(by Theorem 2.4), where C,, is oriented as Cy, : V1 V5 ... VpVq, L(Cy) is oriented as Lg(Cy): V12V33 .. Vg
and P, is oriented as P, : V; Vjj41Vi41, 1 S I < nwith vy = V4.
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Lemma 3.5.1. Let C,; be a fuzzy cycle of length n. If all the edges are weak in C,,, then the edges of C,, € Tf(Cn)
are weak while the edges of Ly (Cy) € Tr(Cp) and the edges of all paths P, € T¢(Cy) are strong.

Proof. Proof follows from the definition of total graph and the definition of weak and strong edges.

Theorem 3.5.1. Let C,, be a fuzzy cycle of length n. If all the edges are weak in C,,, then

2 if nis even,
Xf(Tf(C")) - {3 if nisodd.

Proof. Let Cy : 1 U ...V V1 be a fuzzy cycle of length n. Then Tr(Cp) = C,, @ Lf(Cp) D nP, (by
Theorem 2.4) and by Lemma 3.5.1, the edges of C, € Tf(Cy,) are weak while the edges of Lf(Cy) €
T¢(Cy) and the edges of all paths P, € T¢(C,,) are strong. Then by Lemma 2.2 we have, x¢(P;) = 2, by
Lemma 2.3 we have, y7(Cy,) = 1 and by Theorem 3.4.1 we have,

2 if nis even,
x5 (L (€)= {3 if nis odd.

Case 1: In Lf(Cy), if n is even.
Then by Corollary 2.3.1,
Xr(Tr(Cr)) = max{xs(Cn), xr(Ly(Cpn)), xr(P2)}
= max{1,2,2}
= 2.
Case 2 : In L¢(Cy), if n is odd.
Then by Corollary 2.3.1,
Xr(Tr(Cr)) = max{xs(Cn), xr(Ly(Cpn)), xr(P2)}
= max{1,3,2}
= 3.

Lemma 3.5.2. Let Cp, be a fuzzy path of length n. If all the edges are strong in Cy, then Tf(Cy) is a strong fuzzy
graph.

Proof. Proof follows from the definition of total graph and the definition of strong edge.
Theorem 3.5.2. If T;(Cy,) is a strong fuzzy graph, then

3ifn=3,
4 otherwise.

X (Tr (C)) = {

Proof. Let Cp, : 1 v ...V, g be a fuzzy cycle of length n. Then T¢(Cy,) = C, @ Ls(Cy) D nP, (by Remark
3.5.1) and by Lemma 3.5.2, all edges are strong in Tf(Cy). Then by Lemma 2.2 we have, xr(P,) = 2 and by
Lemma 2.4 & Theorem 3.4.1 we have,

2 if niseven,
X7 (Cn) = X7 (L (C)) = { 3 if nis odd.

Case 1:In (G, if n = 3.
Then by Corollary 2.3.1,
Xr(Tr(C3)) = max{xr(C3), xr(Lr(C3)), xr(P2)}
= max{3,3,2}
= 3.
Case 2 : In C,,, if n is odd but n == 3.
Then by Corollary 2.3.1,
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Xr(Tr(Cr)) = max{xs(Cr), xr(Lr(Cp)), xs(P2)} + 1
= max{3,3,2}+1
= 4.
Case 3 : In C,,, if n is even.
Then by Corollary 2.3.1,
Xr(Tr(CR)) = max{xs(Cp), xr(Lr(Cp)), xr (P2} + 2
= max{2,2,2}+ 2
= 4.

Lemma 3.5.3. Let Cp, : v Uy ...V, V1 be a fuzzy cycle of length n. If weak and strong edges are distributed in any
sequence in Cy, then the edges of C, € Tf(Cy) are weak and strong, which are distributed in any sequence in T (Cy),
while the edges of L¢(Cy,) € Tr(Cp) and the edges of all paths Py € T¢(Cy,) are strong. (The proof will be similar

as above lemma).

Theorem 3.5.3. Let C,, be a fuzzy cycle of length n. If weak and strong edges are distributed in any sequence in Cy,,
then

3 if strong and weak edges are alternatively distributed in Cs,
n
3 if 5 number of strong and weak edges are alternatively

distributed in Cp,,wheren = 6,n = 2 (mod 4),0f Tf(Cy),
4  otherwise.

Xr(Tr(Cr)) =

Proof. Let Cyp, ¢ V4 V5 ... Uy Vg be a fuzzy cycle of length n. Then T¢(Cy) = C,, @ Lf(C,) @ nP, (by Remark
3.5.1) and by Lemma 3.5.3, the edges of C, € T¢(Cy) are weak and strong, which are distributed in any
sequence in T¢(Cy), while the edges of Lg(Cy,) € Tf(Cy) and the edges of all paths P, € Tf(C,) are strong.
Then by Lemma 2.2 we have, s (P,) = 2, by Theorem 3.1 we have,

n
3 if 5 number of strong and weak edges are alternatively

X (Cn) = distributed in C,,wheren = 6,n = 2 (mod 4),

2 otherwise.
and by Theorem 3.4.1 we have,

2 if nis even,
x5 (L (€)= {3 if nis odd.

Case 1 : Suppose strong and weak edges are alternatively distributed in Cs.
Then by Corollary 2.3.1,

Xr(Tr(C3)) = max{Xf(CB);Xf(Lf(C3)):Xf(Pz)}
= max{2,3,2}
= 3.

Case 2 : Suppose % number of strong and weak edges are alternatively distributed in C,, where n >
6,n = 2 (mod 4),of Tf(Cy).
Then by Corollary 2.3.1,
Xr(Tr(Cr)) = max{xs(Cr), xr(Lr(C)), xp(P2)} + 1
= max{3,2,2}+ 1
= 4.
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Case 3 : Suppose g number of strong and weak edges are alternatively distributed in C,, where n >
8,n =0 (mod 4),of Tr(Cy).
Then by Corollary 2.3.1,
Xr(Tr(Cr)) = max{xs(Cr), xr(Lr(Cp)), xs(P2)} + 1
= max{2,2,2}+1
= 3.

Case 4 : Suppose strong and weak edges are distributed in any sequence in C,;, n (= 3)is odd,
Then by Corollary 2.3.1,
X5 (T (C)) = max{xs(Cn), x5 (Lr(Ca)), xr (P2} + 1
= max{2,3,2}+1
= 4,

Case 5 : Suppose weak and strong edges are distributed in any sequence in Cp, n (= 4) is even, of Tr(Cp).
(except all the above cases).

Then by Corollary 2.3.1,

X5 (Tr(Cr)) = max{x;(Cp), x5 (Lr(Ca)), xr(P2)} + 1
max{2,2,2}+ 2
4.

Note: In Cp, if n =2, xs(Tf(C3)) = 2.
3.6. The Chromatic Number of sd;(C;,)

Lemma 3.6.1. Let Gy, be a fuzzy cycle of length n. Then sd¢(Cy,) is a strong fuzzy graph.
Proof. Proof follows from the definition of fuzzy subdivision graph and the definition of strong edge.

Theorem 3.6.1. If sdf(Cy,) is a strong fuzzy graph, then x ¢ (sdf(Cp)) = 2.
Proof. Let Cp: vy v, ...v5 V1 be a fuzzy cycle of length n. Since sdf(Cn) = Cyyp, then by Lemma 2.2,
Xr(sdr(Cr)) = 2.

4. Conclusion

Fuzzy coloring serves as a significant extension of classical graph coloring into the domain of fuzzy
graph theory, enabling more flexible modeling and effective problem-solving in systems characterized by
uncertainty and imprecise relationships. The chromatic number of a fuzzy graph provides a powerful tool
for addressing real-world problems with greater accuracy and flexibility.

In this paper, we determined the chromatic numbers of the middle graph, splitting graph, shadow graph,
line graph, total graph, and the subdivision graph of the fuzzy cycle C,,, by using fuzzy coloring based on the
strength of the edges incident on each vertex.
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