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Abstract 
This study focuses on determining the chromatic number of the middle graph, splitting graph, shadow graph, line graph, total 
graph and subdivision graph of the fuzzy cycle 𝐶𝑛. These results are obtained by using fuzzy colors based on the strength of 
edges incident on a vertex.  Additionally, some key properties regarding the fuzzy coloring of the fuzzy graphs have been given. 
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1. Introduction  
Fuzzy graph coloring is an effective technique for solving many complex real-world problems. Since many 
practical situations can be represented as coloring problems, this area has become one of the most widely 
studied in graph theory. In particular, coloring fuzzy graphs plays a key role in resolving challenges in 
network systems [1]. Through the years, researchers have explored various approaches to coloring fuzzy 
graphs. The idea was first introduced by Susana Munoz et al. [2], who defined the chromatic number of a 
fuzzy graph as a fuzzy subset of its vertex set. Later, Eslahchi and Onagh [3] proposed a coloring method 
based on strong adjacency between vertices. After that, Sovan Samanta et al. [4] introduced a new approach 
that uses fuzzy colors determined by the strength of edges connected to each vertex. 
 
Furthermore, we found the chromatic number of certain families of fuzzy graphs using fuzzy coloring [5] 
and is defined as follows:  
(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors(if 

necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding to 
different basic color.  

(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one 
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color.  

 
The minimum number of colors (basic or fuzzy) needed for a proper fuzzy coloring of 𝐺 is called the 
chromatic number of 𝐺, is denoted by 𝜒𝑓(𝐺). We also derived some key properties related to this type of 
coloring. In this paper, we extend our study by determining the chromatic number of the middle graph, 
splitting graph, shadow graph, line graph, total graph and subdivision graph of fuzzy cycle 𝐶𝑛. These results 
are obtained using fuzzy colors based on the strength of edges incident to each vertex and we also proved 
important properties of these coloring methods.   
The structure of this article is as follows : In Section 1, introduction to the fuzzy coloring of a fuzzy graph is 
given. In Section 2, some basic concepts in fuzzy coloring of fuzzy graphs that aid in the research have been 
reviewed. In Section 3, we determine the chromatic number of the middle graph, splitting graph, shadow 
graph, line graph, total graph and the subdivision graph of the fuzzy cycle 𝑪𝒏. Section 4 presents the final 
conclusions of this study. 
 
 
 

mailto:karunsvc@yahoo.in
mailto:jessaletannmathew@gmail.com


International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025  
https://www.theaspd.com/ijes.php  
 

3698 
 

2. Preliminaries 
This section begins with a review of some definitions from fuzzy graph theory and fuzzy coloring, which help in 
determining the chromatic numbers of some related graphs of the fuzzy cycle. 
 
Definition 2.1. (fuzzy graph [6]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is a pair of functions (𝜎, µ), where 𝜎 ∶
 𝑉 →  [0, 1] is a fuzzy subset of a non-empty set V, and µ ∶  𝑉 →  [0, 1] is a symmetric fuzzy relation on 
𝜎, such that the relation µ(𝑣𝑖 , 𝑣𝑗) ≤ 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) is satisfied for all 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ⊂
𝑉 × 𝑉 . 
Here, 𝜎(𝑣𝑖) denote the degree of membership of the vertex 𝑣𝑖, and µ(𝑣𝑖, 𝑣𝑗) denotes the degree of membership 
of the edge relation 𝑒𝑖𝑗 = (𝑣𝑖 , 𝑣𝑗) on 𝑉 ×  𝑉 . 
Note : In this paper, we denote 𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗) = 𝑚𝑖𝑛{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)}, and  𝜎(𝑣𝑖) ∨ 𝜎(𝑣𝑗) =
𝑚𝑎𝑥{𝜎(𝑣𝑖), 𝜎(𝑣𝑗)}. 
 
Definition 2.2. (fuzzy path [7]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph with underlying crisp graph 𝐺∗. A  
fuzzy path 𝑃𝑛 in 𝐺 is a sequence of distinct vertices 𝑣0, 𝑣1, . . . , 𝑣𝑛 such that µ(𝑣𝑖−1, 𝑣𝑖) > 0, 1 ≤ 𝑖 ≤
𝑛. Here 𝑛 ≥ 1 is called the length of the path 𝑃𝑛. 
 
Definition 2.3. (fuzzy cycle [7]) A fuzzy path 𝑃𝑛 in which 𝑣0 = 𝑣𝑛 and 𝑛 ≥ 3, then 𝑃𝑛 is called a fuzzy 
cycle 𝐶𝑛 of length 𝑛. 
 
Definition 2.4. (strong edge, weak edge [3]) Let 𝐺 =  (𝑉, 𝜎, 𝜇) be a fuzzy graph and an edge 𝑒 = (𝑣𝑖 , 𝑣𝑗) ∈

𝐺 is called strong if 
1

2
{𝜎(𝑣𝑖) ⋀ 𝜎(𝑣𝑗)} ≤ 𝜇(𝑣𝑖 , 𝑣𝑗) and it is called weak otherwise. 

Definition 2.5. (strength of an edge [3]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph and the strength of an edge 
(𝑣𝑖 , 𝑣𝑗) ∈ 𝐺 is denoted by, 

𝐼(𝑣𝑖, 𝑣𝑗) =
𝜇(𝑣𝑖, 𝑣𝑗)

𝜎(𝑣𝑖) ∧ 𝜎(𝑣𝑗)
. 

 
Definition 2.6. (strong fuzzy graph [8]) A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) is called a strong fuzzy graph if each 
edge in 𝐺 is a strong edge. 
 
Definition 2 .7. (middle graph [9]) The middle graph 𝑀𝑓(𝐺)(𝑉𝑀, 𝜎𝑀 , 𝜇𝑀 ) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy 
graph with underlying crisp graph 𝑀(𝐺)(𝑉𝑀, 𝐸𝑀), with the vertex set 𝑉𝑀 =  𝑉 ∪ 𝑉𝑖𝑗  where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} 
and 𝑉𝑖𝑗 = {𝑣𝑖𝑗 ∀ (𝑣𝑖, 𝑣𝑗) ∈ 𝐸} and 𝜈(𝑀𝑓(𝐺)) = 𝑛 + 1 + 𝑛 = 2𝑛 + 1 and the edge set  
 

𝐸𝑀 = {
(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)     ∀ 𝑖 𝑎𝑛𝑑 𝑗,                                                                                 

(𝑣𝑖𝑗 , 𝑣𝑟𝑠)                    𝑖𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠) 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺.
 

 

Then, 𝜎𝑀(𝑣𝑖) = 𝜎(𝑣𝑖) 𝑖𝑓 𝑣𝑖 ∈ 𝑉, 0 ≤  𝑖 ≤  𝑛,  
𝜎𝑀(𝑣𝑖𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀  𝑖 𝑎𝑛𝑑 𝑗, 
𝜇𝑀(𝑣𝑖𝑗, 𝑣𝑟𝑠) = 𝜇(𝑣𝑖, 𝑣𝑗) ⋀ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges (𝑣𝑖, 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in G, 
and 𝜇𝑀(𝑣𝑖, 𝑣𝑖𝑗) = 𝜇𝑀(𝑣𝑗, 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 𝑎𝑛𝑑  𝑗. 
 
Definition 2.8. (splitting graph [9]) The splitting graph 𝑆𝑓(𝐺)(𝑉𝑆, 𝜎𝑆, 𝜇𝑆) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇 ) is a fuzzy 
graph with underlying crisp graph 𝑆(𝐺)(𝑉𝑆, 𝐸𝑆), with the vertex set 𝑉𝑆 =  𝑉 ∪ 𝑉′  where  𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} and 
𝑉′ = {𝑣𝑖

′ ∀ 𝑣𝑖 ∈ 𝑉} and the edge set 
 

𝐸𝑆 = {
(𝑣𝑖 , 𝑣𝑗)            𝑖𝑓𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                          

(𝑣′𝑖 , 𝑣𝑗)           𝑖𝑓 𝑣𝑖
′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 ∈ 𝑉.     
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Then,  𝜎𝑆(𝑣𝑖) = 𝜎𝑆(𝑣𝑖
′) = 𝜎(𝑣𝑖) 𝑓𝑜𝑟 𝑣𝑖 ∈ 𝑉 𝑎𝑛𝑑 𝑣𝑖

′ ∈ 𝑉′, 
  𝜇𝑆(𝑣𝑖, 𝑣𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗) 𝑖𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝑉, 
and 𝜇𝑆(𝑣𝑖

′, 𝑣𝑗) = 𝜎𝑆(𝑣𝑖
′) ∧ 𝜎𝑆(𝑣𝑗) 𝑖𝑓 𝑣𝑖

′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑉 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 ∈ 𝑉. 
 
Definition 2.9. (shadow graph [9]) The shadow graph 𝐷 2 𝑓  (𝐺)(𝑉𝐷2 , 𝜎𝐷2 , 𝜇𝐷2) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is 

a fuzzy graph with underlying crisp graph 𝐷2(𝐺)(𝑉𝐷2 , 𝐸𝐷2) is obtained by taking two copies of 𝐺 namely 𝐺′ 
and 𝐺′′ with the vertex set 𝑉𝐷2 = 𝑉

′ ∪ 𝑉′′ where 𝑉′ = {𝑣𝑖
′ ∀ 𝑣𝑖 ∈ 𝑉} and  𝑉′′ = {𝑣𝑖

′′ ∀ 𝑣𝑖 ∈ 𝑉} and the edge 
set 

𝐸𝐷2 = {
(𝑣𝑖

′, 𝑣𝑗
′), (𝑣𝑖

′′, 𝑣𝑗
′′)      𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                          

(𝑣𝑖
′, 𝑣𝑗

′′)                      𝑖𝑓 𝑣𝑖
′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗

′′ ∈ 𝑉′′𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖
′′ ∈ 𝑉′′.

 

 

Then, 𝜎𝐷2(𝑣
′) = 𝜎𝐷2(𝑣

′′) = 𝜎(𝑣)𝑓𝑜𝑟 𝑣 ∈ 𝑉, 𝑣′ ∈ 𝑉′, 𝑣′′ ∈ 𝑉′′, 
𝜇𝐷2(𝑣𝑖

′𝑣𝑗
′) = 𝜇𝐷2(𝑣𝑖

′′𝑣𝑗
′′) = 𝜇(𝑣𝑖𝑣𝑗), for 𝑣𝑖

′, 𝑣𝑗
′ ∈ 𝑉′, 𝑣𝑖

′′, 𝑣𝑗
′′ ∈ 𝑉′′, 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 

𝜇𝐷2(𝑣𝑖
′𝑣𝑗
′′) = 𝜎(𝑣𝑖

′) ∧ 𝜎(𝑣𝑗
′′) 𝑖𝑓 𝑣𝑖

′ ∈ 𝑉′𝑎𝑛𝑑 𝑣𝑗
′′ ∈ 𝑉′′ that are adjacent to 𝑣𝑖

′′ ∈ 𝑉′′. 
 
Definition 2 .10. (line graph [9]) The line graph 𝐿𝑓(𝐺)(𝑉𝐿, 𝜎𝐿, 𝜇𝐿) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph 
with underlying crisp graph 𝐿(𝐺)(𝑉𝐿, 𝐸𝐿), where the vertex set 𝑉𝐿 = {𝑣𝑖𝑗∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and edge set 
𝐸𝐿  {(𝑣𝑖𝑗 , 𝑣𝑟𝑠) 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗) 𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠) 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺}. Then, 𝜎𝐿(𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) if 𝑣𝑖𝑗 ∈ 𝑉𝐿 
and 𝜇𝐿(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∧ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in 𝐺. 
 
Definition 2 .11. (total graph [9]) The total graph 𝑇𝑓(𝐺)(𝑉𝑇, 𝜎𝑇, 𝜇𝑇) of a fuzzy graph 𝐺(𝑉, 𝜎, 𝜇) is a fuzzy 
graph with underlying crisp graph 𝑇(𝐺)(𝑉𝑇, 𝐸𝑇), with the vertex set 𝑉𝑇 = 𝑉 ∪ 𝑉𝑖𝑗 , where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} 
and 𝑉𝑖𝑗 = {𝑣𝑖𝑗 ∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and the edge set  
 

𝐸𝑇 = {

(𝑣𝑖, 𝑣𝑗)                          𝑖𝑓 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺,                                      

(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)         ∀  𝑖 𝑎𝑛𝑑 𝑗,                                                                               

(𝑣𝑖𝑗 , 𝑣𝑟𝑠)                        𝑖𝑓 𝑡ℎ𝑒 𝑒𝑑𝑔𝑒𝑠 (𝑣𝑖 , 𝑣𝑗)𝑎𝑛𝑑 (𝑣𝑟, 𝑣𝑠)𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺.

 

 
Then, 𝜎𝑇(𝑣𝑖) = 𝜎(𝑣𝑖) 𝑖𝑓 𝑣𝑖 ∈ 𝑉, 
 𝜎𝑇(𝑣𝑖𝑗) = 𝜇(𝑣𝑖, 𝑣𝑗)𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 𝑎𝑛𝑑 𝑗, 
 𝜇𝑇(𝑣𝑖 , 𝑣𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) 𝑖𝑓 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑖𝑛 𝐺, 
 𝜇𝑇(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∧ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges  (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in G, 
 and 𝜇𝑇(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑇(𝑣𝑗, 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗)∀ 𝑖 𝑎𝑛𝑑 𝑗. 
 
Definition 2.12. (subdivision graph [9]) The subdivision graph 𝑠𝑑𝑓(𝐺)(𝑉𝑠𝑑 , 𝜎𝑠𝑑 , 𝜇𝑠𝑑) of a fuzzy graph 
𝐺(𝑉, 𝜎, 𝜇) is a fuzzy graph with underlying crisp graph 𝑠𝑑(𝐺)(𝑉𝑠𝑑 , 𝐸𝑠𝑑), with the vertex set  𝑉𝑠𝑑 = 𝑉 ∪ 𝑉𝑖𝑗 
where 𝑉 = {𝑣𝑖 ∣ 𝑣𝑖 ∈ 𝑉} and 𝑉𝑖𝑗 = {𝑣𝑖𝑗 ∀ (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸} and 𝐸𝑠𝑑 = {(𝑣𝑖𝑗 , 𝑣𝑖), (𝑣𝑖𝑗 , 𝑣𝑗)∀ 𝑖 &  𝑗}. Then, 
𝜎𝑠𝑑(𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 &  𝑗 and      𝜇𝑠𝑑(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑠𝑑(𝑣𝑗 , 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 &  𝑗. 
 
Definition 2.13. (fuzzy coloring, proper fuzzy coloring [2]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Fuzzy coloring 
is an assignment of basic or fuzzy colors to the vertices of a fuzzy graph 𝐺 and it is proper, 
(i) if two vertices are connected by a strong edge, then they either have different basic or fuzzy colors(if 

necessary), or one vertex can have a basic color and the other can have a fuzzy color corresponding 
to different basic color. 

(ii) if two vertices are connected by a weak edge, then they either have same or different fuzzy colors, or one 
vertex can have a basic color and other can have a fuzzy color corresponding to the same basic color. 
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Definition 2.14. (perfect fuzzy coloring [2]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. Perfect fuzzy coloring 
(optimal fuzzy coloring) is an assignment of minimum number of colors (basic or fuzzy) for a proper 
fuzzy coloring of 𝐺.  
 
Definition 2.15. (chromatic number [2]) Let 𝐺 = (𝑉, 𝜎, µ) be a fuzzy graph. The minimum number of colors 
(basic or fuzzy) needed for a proper fuzzy coloring of G is called the chromatic number of 𝐺 and is denoted 
by 𝜒𝑓(𝐺). 
 
Lemma 2.1. [2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all edges are weak in 𝑃𝑛, then  𝜒𝑓(𝑃𝑛) = 1. 
 
Lemma 2.2. [2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝑃𝑛, then 𝜒𝑓(𝑃𝑛)= 2. 
 
Theorem 2.1. [2] Let 𝑃𝑛 be a fuzzy path of length 𝑛. If atleast one edge is strong in 𝑃𝑛, then 𝜒𝑓(𝑃𝑛) = 2. 
 
Lemma 2.3. [2] Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all edges are weak in 𝐶𝑛, then 𝜒𝑓(𝐶𝑛) = 1. 
 
Lemma 2.4. [2] Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are strong in 𝐶𝑛, then 
 

𝜒𝑓(𝐶𝑛) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

 
Theorem 2.2. [ 2 ]  Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence 
in 𝐶𝑛, then 

              𝜒𝑓(𝐶𝑛) = {
3   𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 6)𝑖𝑠 𝑒𝑣𝑒𝑛,                     
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

 

 
Theorem 2.3. [9] 𝜒𝑓(𝐺) ≥  𝑚𝑎𝑥 {𝜒𝑓(𝐺𝑖) ∶  1 ≤  𝑖 ≤  𝑘}, where 𝐺 = 𝐺1 ∪ 𝐺2 ∪…∪ 𝐺𝑘 and 𝐺𝑖 , 1 ≤ 𝑖 ≤
𝑘 are fuzzy graphs. 
 
Corollary 2.3.1.[9] 𝜒𝑓(𝐺) ≥ 𝑚𝑎𝑥 {𝜒𝑓(𝐺𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑘}, where 𝐺 = 𝐺1⊕𝐺2⊕…⊕𝐺𝑘 and 𝐺𝑖 , 1 ≤
𝑖 ≤ 𝑘 are edge disjoint fuzzy graphs. 
 

Theorem 2.4. [11] The complete graph 𝐾𝑛 has Hamiltonian decomposition for all n.  

Note.[2]. i.e., 𝐾2𝑛+1 =⊕𝑛𝐶2𝑛+1 and 𝐾2𝑛 = 𝐶2n⊕𝑛𝑃1, where ⊕ denotes edge disjoint union. 

 
3. The Chromatic Number of Some Related Graphs of Fuzzy Cycle  

In this section, we determine the chromatic number of the middle graph 𝑀𝑓(𝐶𝑛), splitting graph 𝑆𝑓(𝐶𝑛), 
shadow graph 𝐷2𝑓(𝐶𝑛), line graph 𝐿𝑓(𝐶𝑛), total graph 𝑇𝑓(𝐶𝑛) and the subdivision graph 𝑠𝑑𝑓(𝐶𝑛) of the fuzzy 

cycle 𝐶𝑛. 

 

In our previous work [2], Theorem 2.2 is stated as :  Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong 
edges are distributed in any sequence in 𝐶𝑛, then 
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              𝜒𝑓(𝐶𝑛) = {
3   𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛(≥ 6)𝑖𝑠 𝑒𝑣𝑒𝑛,                     
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

  

 
Upon further analysis and computational verification, it was found that this theorem holds under a more 
precise condition. Accordingly, we present the refined version below. 
 
Theorem 3.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence 
in 𝐶𝑛, then 

              𝜒𝑓(𝐶𝑛) = {
3    𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4),       
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

 

Proof. Proof is similar as Theorem 2.2. (refer [2]). 

3.1. The Chromatic Number of 𝑴𝒇(𝑪𝒏) 
Remark 3.1.1. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑀𝑓(𝐶𝑛) = 𝐶𝑛⊕𝐶2𝑛         
(by Theorem 2.4), where 𝐶𝑛 is oriented as 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 and 𝐶2𝑛 is oriented as    
𝐶2𝑛 ∶  𝑣1 𝑣12 𝑣2 𝑣23…𝑣𝑛 𝑣𝑛1 𝑣1. 

Lemma 3.1.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. Then 𝑀𝑓(𝐶𝑛) is a strong fuzzy graph. 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. By the definition of middle graph, we have  
𝜎𝑀(𝑣𝑖) = 𝜎(𝑣𝑖)𝑖𝑓 𝑣𝑖 ∈ 𝑉, 1 ≤ 𝑖 ≤ 𝑛, 

 𝜎𝑀(𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗)𝑖𝑓 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 ∀ 𝑖 &  𝑗, 

 𝜇𝑀(𝑣𝑖𝑗 , 𝑣𝑟𝑠) = 𝜇(𝑣𝑖 , 𝑣𝑗) ⋀ 𝜇(𝑣𝑟, 𝑣𝑠) if the edges  (𝑣𝑖 , 𝑣𝑗) and (𝑣𝑟, 𝑣𝑠) are adjacent in 𝐺, 

 and 𝜇𝑀(𝑣𝑖 , 𝑣𝑖𝑗) = 𝜇𝑀(𝑣𝑗 , 𝑣𝑖𝑗) = 𝜇(𝑣𝑖 , 𝑣𝑗) ∀ 𝑖 &  𝑗. 

Then each edges of 𝑀𝑓(𝐶𝑛) satisfies the condition of a strong edge (by definition 2.4).  Therefore, 𝑀𝑓(𝐶𝑛) 
is a strong fuzzy graph. 

Theorem 3.1.1. If 𝑀𝑓(𝐶𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑀𝑓(𝐶𝑛)) = 3. 

Proof. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑀𝑓(𝐶𝑛) = 𝐶𝑛⊕𝐶2𝑛 (by Remark 3.1.1) 
and by Lemma 3.1.1, 𝑀𝑓(𝐶𝑛) is a strong fuzzy graph. 

Case 1 : In 𝐶𝑛, if 𝑛 is even. 
Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 𝜒𝑓(𝐶2𝑛) = 2. Then by Corollary 2.3.1, 

𝜒𝑓(𝑀𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝐶2𝑛)}+ 1 
                  =  𝑚𝑎𝑥{2,2}+1 
                            =  3. 
 
Case 2 : In 𝐶𝑛, if 𝑛 is odd.  
Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 3 and 𝜒𝑓(𝐶2𝑛) = 2. Then by Corollary 2.3.1,  

𝜒𝑓(𝑀𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐶2𝑛)} 
                     =  𝑚𝑎𝑥{3,2} 
                               =  3. 
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3.2. The Chromatic Number of 𝑺𝒇(𝑪𝒏) 
Remark 3.2.1. Let 𝐶𝑛 ∶  𝑣1 𝑣2… 𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑆𝑓(𝐶𝑛) =  𝐶𝑛⊕𝑛𝑃2 (by 
Theorem 2.4), where 𝐶𝑛 is oriented as 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 and 𝑃2 is oriented as 𝑃2 ∶ 𝑣𝑖−1 𝑣𝑖

′  𝑣𝑖+1, 1 ≤
𝑖 ≤ 𝑛 with 𝑣0 = 𝑣𝑛 & 𝑣𝑛+1 =  𝑣1. 

Lemma 3.2.1. Let 𝐶𝑛 ∶  𝑣1 𝑣2… 𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then the edges 
of 𝐶𝑛 ∈ 𝑆𝑓(𝐶𝑛) are weak while the edges of all paths 𝑃2 ∈ 𝑆𝑓(𝐶𝑛) are strong. 

Proof. Proof follows from the definition of splitting graph and the definition of weak and strong edges. 

Theorem 3.2.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then 𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 2. 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑆𝑓(𝐶𝑛) = 𝐶𝑛⊕𝑛𝑃2 (by Remark 3.2.1) 
and by Lemma 3.2.1, the edges of 𝐶𝑛 ∈ 𝑆𝑓(𝐶𝑛) are weak while the edges of all paths     𝑃2 ∈ 𝑆𝑓(𝐶𝑛) are 
strong. Then by Lemma 2.3 we have, 𝜒𝑓(𝐶𝑛) = 1 and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2. Therefore by 
Corollary 2.3.1,  

𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝑃2)} 
                =  𝑚𝑎𝑥{1,2} 
              =  2. 
 
Lemma 3.2.2. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are strong in 𝐶𝑛, then 𝑆𝑓(𝐶𝑛) is a strong fuzzy 
graph. 

Proof. Proof follows from the definition of splitting graph and the definition of strong edge. 

Theorem 3.2.2.  If 𝑆𝑓(𝐶𝑛) is a strong fuzzy graph, then  

𝜒𝑓(𝑆𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑆𝑓(𝐶𝑛) = 𝐶𝑛⊕𝑛𝑃2 (by Remark 3.2.1) 
and by Lemma 3.2.2, 𝑆𝑓(𝐶𝑛) is a strong fuzzy graph. 

Case 1 : In 𝐶𝑛, if 𝑛 is even. 

Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2.                
Therefore by Corollary  2.3.1, 
      𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝑃2)} 
               =  𝑚𝑎𝑥{2,2} 
                         =  2. 

Case 2 : In 𝐶𝑛, if 𝑛 is odd. 

Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 3 and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2.            
Therefore by Corollary 2.3.1, 𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 3. 

Lemma 3.2.3. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝐶𝑛, then the edges of 𝐶𝑛 ∈ 𝑆𝑓(𝐶𝑛) are also weak and strong, which are distributed in any sequence in 
𝑆𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈ 𝑆𝑓(𝐶𝑛) are strong. (The proof will be similar as above lemma). 

Theorem 3.2.3.  Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence in 𝐶𝑛, 
then   
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𝜒𝑓(𝑆𝑓(𝐶𝑛)) = {
3     𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦                   

 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), 𝑜𝑓 𝑆𝑓(𝐶𝑛),        

2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                                

 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑆𝑓(𝐶𝑛) = 𝐶𝑛⊕𝑛 𝑃2 (by Remark 3.2.1) 
and by Lemma 3.2.3, the edges of 𝐶𝑛 ∈ 𝑆𝑓(𝐶𝑛) are weak and strong, which are distributed in any sequence 
in 𝑆𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈ 𝑆𝑓(𝐶𝑛) are strong. 

Case 1 : Suppose 
𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛, where 𝑛 ≥

6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), of 𝑆𝑓(𝐶𝑛). Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 3 and by Lemma 2.4 we have, 
𝜒𝑓(𝑃2) = 2.          Therefore by Corollary  2.3.1, 
                𝜒𝑓(𝑆𝑓(𝐶𝑛)) =𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝑃2)} 
                       =  𝑚𝑎𝑥{3,2} 
                       =  3. 

Case 2 : Suppose 
𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛, where 𝑛 ≥

8, 𝑛 ≡ 0 (𝑚𝑜𝑑  4), of 𝑆𝑓(𝐶𝑛).                   
Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2. Therefore by 
Corollary  2.3.1, 𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 2. 

Case 3 : Suppose ⌊
𝑛

2
⌋ number of strong and weak edges  are alternatively distributed in 𝐶𝑛, 𝑛 (≥ 3) is odd 

of 𝑆𝑓(𝐶𝑛).                
Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2. Therefore by 
Corollary  2.3.1, 𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 2.    

Case 4 : Suppose weak and strong edges are distributed in any sequence (except alternative distribution) in 
𝐶𝑛 of  𝑆𝑓(𝐶𝑛).                        
Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) =  2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2. Therefore by 
Corollary  2.3.1, 𝜒𝑓(𝑆𝑓(𝐶𝑛)) = 2. 

3.3. The Chromatic Number of 𝑫𝟐𝒇(𝑪𝒏) 

Remark 3.3.1. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1  be a fuzzy cycle of length 𝑛. Then 𝐷2𝑓(𝐶𝑛) = ⊕ 2𝐶𝑛⊕𝑛𝑃2 (by 

Theorem 2.4), where the cycles 𝐶𝑛 are oriented as 𝐶𝑛: 𝑣1
′  𝑣2

′ …𝑣𝑛
′  𝑣1

′  & 𝐶𝑛 ∶ 𝑣1
′′ 𝑣2

′′…𝑣𝑛
′′ 𝑣1

′′ and 𝑃2 is 
oriented as 𝑃2 ∶ 𝑣𝑖−1

′  𝑣𝑖
′′ 𝑣𝑖+1

′ , 1 ≤ 𝑖 ≤ 𝑛. 

Lemma 3.3.1. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then the edges 
(𝑣𝑖

′, 𝑣𝑖+1
′ ), 1 ≤ 𝑖 ≤ 𝑛 and (𝑣𝑖

′′, 𝑣𝑖+1
′′ ), 1 ≤ 𝑖 ≤ 𝑛 are weak in 𝐷2𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈

𝐷2𝑓(𝐶𝑛) are strong. 

Proof. Proof follows from the definition of shadow graph and the definition of weak and strong edges. 

Theorem 3.3.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then 𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 2. 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝐷2𝑓(𝐶𝑛) = ⊕ 2𝐶𝑛⊕𝑛𝑃2 (by Remark 

3.3.1) and by Lemma 3.3.1, the edges (𝑣𝑖
′, 𝑣𝑖+1

′ ), 1 ≤ 𝑖 ≤ 𝑛 and (𝑣𝑖
′′, 𝑣𝑖+1

′′ ), 1 ≤ 𝑖 ≤ 𝑛 are weak in 
𝐷2𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈ 𝐷2𝑓(𝐶𝑛) are strong. Then by Lemma 2.3 we have, 𝜒𝑓(𝐶𝑛) = 1 

and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2. Therefore by Corollary 2.3.1, 𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 2. 
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Lemma 3.3.2. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are strong in 𝐶𝑛, then 𝐷2𝑓(𝐶𝑛) is a strong fuzzy 

graph. 

Proof. Proof follows from the definition of fuzzy shadow graph and the definition of strong edge. 

Theorem 3.3.2. If 𝐷2𝑓(𝐶𝑛) is a strong fuzzy graph, then 

𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝐷2𝑓(𝐶𝑛) = ⊕ 2𝐶𝑛⊕𝑛𝑃2 and by Lemma 

3.3.2, all edges are strong in 𝐷2𝑓(𝐶𝑛).  

Case 1 : In 𝐶𝑛, if 𝑛 is even. 
Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2. 
Therefore by Corollary 2.3.1, 

𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝑃2)} 

                       =  𝑚𝑎𝑥{2,2} 
                       =  2. 
 
Case 2 : In 𝐶𝑛, if 𝑛 is odd. 
Then by Lemma 2.4 we have, 𝜒𝑓(𝐶𝑛) = 3 and by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2.                 
Therefore by Corollary 2.3.1, 𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 3.  

Lemma 3.3.3. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝐶𝑛, then the edges (𝑣𝑖

′, 𝑣𝑖+1
′ ), 1 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖

′′, 𝑣𝑖+1
′′ ), 1 ≤ 𝑖 ≤ 𝑛 − 1 are weak and strong, 

which are distributed in any sequence in 𝐷2𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈ 𝐷2𝑓(𝐶𝑛) are strong. (The proof 

will be similar as above lemma). 

Theorem 3.3.3.  Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence in 𝐶𝑛, 
then 

𝜒𝑓(𝐷2𝑓(𝐶𝑛)) =

{
 
 

 
 
4     𝑖𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶4,

4      𝑖𝑓 
𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦          

      𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), 𝑜𝑓 𝐷2𝑓(𝐶𝑛),

3      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                    

 

Proof. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝐷2𝑓(𝐶𝑛) = ⊕ 2𝐶𝑛⊕𝑛𝑃2 (by Remark 

3.3.1) and by Lemma 3.3.3, the edges (𝑣𝑖
′, 𝑣𝑖+1

′ ), 1 ≤ 𝑖 ≤ 𝑛 − 1 and (𝑣𝑖
′′, 𝑣𝑖+1

′′ ), 1 ≤ 𝑖 ≤  𝑛 − 1 are weak 
and strong, which are distributed in any sequence in 𝐷2𝑓(𝐶𝑛), while the edges of all paths 𝑃2 ∈ 𝐷2𝑓(𝐶𝑛) 

are strong.  

Case 1 : Suppose  strong and weak edges  are alternatively distributed in 𝐶4.  
Then by Theorem 3.1 we have, 𝜒𝑓(𝐶4) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2.              
Therefore by Corollary 2.3.1, 
             𝜒𝑓(𝐷2𝑓(𝐶4)) =𝑚𝑎𝑥{𝜒𝑓(𝐶4),𝜒𝑓(𝑃2)}+ 2 

                      =  𝑚𝑎𝑥{2,2} + 2 

                     =  4. 
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Case 2 : Suppose 
𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛,where 

 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), of 𝐷2𝑓(𝐶𝑛). 

Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 3 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2.                
Therefore by Corollary 2.3.1, 
             𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝑃2)} + 1 

                       =  𝑚𝑎𝑥{3,2}+ 1 
                       =  4. 
 
Case 3 : Suppose 

𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛,where  

𝑛 ≥ 8, 𝑛 ≡ 0 (𝑚𝑜𝑑  4), of 𝐷2𝑓(𝐶𝑛). 

Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2.                 
Therefore by Corollary 2.3.1, 
             𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝑃2)} + 1 

                       =  𝑚𝑎𝑥{2,2}+ 1 
                       =  3. 
 

 Case 4 : Suppose ⌊
𝑛

2
⌋ number of strong and weak edges  are alternatively distributed in 𝐶𝑛, 𝑛 (≥ 3) is odd 

of 𝐷2𝑓(𝐶𝑛). 

Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2.                            
Therefore by Corollary 2.3.1, 
                       𝜒𝑓(𝐷2𝑓(𝐶𝑛)) =𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝑃2)}+ 1 

                     =  𝑚𝑎𝑥{2,2}+ 1 
                     =  3. 
 
 Case 5 : Suppose weak and strong edges are distributed in any sequence (except alternative distribution) 
in 𝐶𝑛 of 𝐷2𝑓(𝐶𝑛). 

Then by Theorem 3.1 we have, 𝜒𝑓(𝐶𝑛) = 2 and by Lemma 2.4 we have, 𝜒𝑓(𝑃2) = 2.                
Therefore by Corollary 2.3.1, 𝜒𝑓(𝐷2𝑓(𝐶𝑛)) = 3.   

3.4.  The Chromatic Number of 𝑳𝒇(𝑪𝒏) 
Lemma 3.4.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. Then 𝐿𝑓(𝐶𝑛), is a strong fuzzy graph. 

Proof. Proof follows from the definition of fuzzy line graph and the definition of strong edge. 

Theorem 3.4.1. If 𝐿𝑓(𝐶𝑛) is a strong fuzzy graph, then 

𝜒𝑓(𝐿𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof. Let 𝐶𝑛: 𝑣1𝑣2…𝑣𝑛 𝑣1  be a fuzzy cycle of length 𝑛. Since 𝐿𝑓(𝐶𝑛) ≅ 𝐶𝑛, then by Lemma 2.4, the 
results follows.  

3.5. The Chromatic Number of 𝑻𝒇(𝑪𝒏) 
Remark 3.5.1. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1  be a fuzzy cycle of length 𝑛. Then 𝑇𝑓(𝐶𝑛) =  𝐶𝑛⊕𝐿𝑓(𝐶𝑛) ⊕ 𝑛𝑃2 
(by Theorem 2.4), where 𝐶𝑛 is oriented as 𝐶𝑛 ∶ 𝑣1𝑣2…𝑣𝑛𝑣1,  𝐿𝑓(𝐶𝑛) is oriented as 𝐿𝑓(𝐶𝑛): 𝑣12𝑣23… 𝑣𝑛1 
and 𝑃2 is oriented as 𝑃2 ∶  𝑣𝑖  𝑣𝑖𝑖+1𝑣𝑖+1, 1 ≤ 𝑖 ≤ 𝑛 with 𝑣𝑛+1 =  𝑣1. 



International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025  
https://www.theaspd.com/ijes.php  
 

3706 
 

Lemma 3.5.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then the edges of 𝐶𝑛 ∈ 𝑇𝑓(𝐶𝑛) 
are weak while the edges of 𝐿𝑓(𝐶𝑛) ∈ 𝑇𝑓(𝐶𝑛) and the edges of all paths 𝑃2 ∈ 𝑇𝑓(𝐶𝑛) are strong. 

Proof. Proof follows from the definition of total  graph and the definition of weak and strong edges. 

Theorem 3.5.1. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If all the edges are weak in 𝐶𝑛, then  

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑇𝑓(𝐶𝑛) = 𝐶𝑛⊕𝐿𝑓(𝐶𝑛) ⊕ 𝑛𝑃2  (by 
Theorem 2.4) and by Lemma 3.5.1, the edges of 𝐶𝑛 ∈ 𝑇𝑓(𝐶𝑛) are weak while the edges of 𝐿𝑓(𝐶𝑛) ∈
 𝑇𝑓(𝐶𝑛) and the edges of all paths 𝑃2 ∈ 𝑇𝑓(𝐶𝑛) are strong. Then by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2, by 
Lemma 2.3 we have, 𝜒𝑓(𝐶𝑛) = 1 and by Theorem 3.4.1 we have,  

𝜒𝑓(𝐿𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Case 1 : In 𝐿𝑓(𝐶𝑛), if 𝑛 is even. 
Then by Corollary 2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} 
                   =  𝑚𝑎𝑥{1,2,2} 
                              =  2. 
Case 2 : In 𝐿𝑓(𝐶𝑛), if 𝑛 is odd. 
Then by Corollary 2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛),𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} 
                   =  𝑚𝑎𝑥{1,3,2} 
                              =  3. 

Lemma 3.5.2. Let 𝐶𝑛 be a fuzzy path of length 𝑛. If all the edges are strong in 𝐶𝑛, then 𝑇𝑓(𝐶𝑛) is a strong fuzzy 
graph. 

Proof. Proof follows from the definition of total graph and the definition of strong edge.  

Theorem 3.5.2.  If  𝑇𝑓(𝐶𝑛) is a strong fuzzy graph, then 

 𝜒𝑓(𝑇𝑓(𝐶𝑛)) = {
3  𝑖𝑓 𝑛 = 3,   
4  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑇𝑓(𝐶𝑛) = 𝐶𝑛⊕𝐿𝑓(𝐶𝑛)⊕  𝑛𝑃2 (by Remark 
3.5.1) and by Lemma 3.5.2, all edges are strong in 𝑇𝑓(𝐶𝑛). Then by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2 and by 
Lemma 2.4 & Theorem 3.4.1  we have,  

𝜒𝑓(𝐶𝑛) = 𝜒𝑓(𝐿𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Case 1 : In 𝐶𝑛, if 𝑛 = 3. 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶3)) =𝑚𝑎𝑥{𝜒𝑓(𝐶3),𝜒𝑓(𝐿𝑓(𝐶3)),𝜒𝑓(𝑃2)} 
                   =  𝑚𝑎𝑥{3,3,2} 
                  =  3. 
Case 2 : In 𝐶𝑛, if 𝑛 is odd but 𝑛 ≠ 3. 
Then by Corollary  2.3.1, 
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𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 1 
                   =  𝑚𝑎𝑥{3,3,2} + 1  
                  =  4. 
Case 3 : In 𝐶𝑛, if 𝑛 is even. 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 2 
                   =  𝑚𝑎𝑥{2,2,2} + 2  
                  =  4. 

Lemma 3.5.3. Let 𝐶𝑛 ∶ 𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any 
sequence in 𝐶𝑛, then the edges of 𝐶𝑛 ∈ 𝑇𝑓(𝐶𝑛) are weak and strong, which are distributed in any sequence in 𝑇𝑓(𝐶𝑛), 
while the edges of 𝐿𝑓(𝐶𝑛) ∈ 𝑇𝑓(𝐶𝑛) and the edges of all paths 𝑃2 ∈ 𝑇𝑓(𝐶𝑛) are strong. (The proof will be similar 
as above lemma). 

Theorem 3.5.3. Let 𝐶𝑛 be a fuzzy cycle of length 𝑛. If weak and strong edges are distributed in any sequence in 𝐶𝑛, 
then 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) =

{
 
 

 
 
3      𝑖𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶3,

3      𝑖𝑓 
𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦            

   𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), 𝑜𝑓 𝑇𝑓(𝐶𝑛),

4      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                                             

  

Proof.  Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Then 𝑇𝑓(𝐶𝑛) = 𝐶𝑛⊕𝐿𝑓(𝐶𝑛) ⊕ 𝑛𝑃2 (by Remark 
3.5.1) and by Lemma 3.5.3, the edges of 𝐶𝑛 ∈ 𝑇𝑓(𝐶𝑛) are weak and strong, which are distributed in any 
sequence in 𝑇𝑓(𝐶𝑛), while the edges of 𝐿𝑓(𝐶𝑛) ∈ 𝑇𝑓(𝐶𝑛) and the edges of all paths 𝑃2 ∈ 𝑇𝑓(𝐶𝑛) are strong. 
Then by Lemma 2.2 we have, 𝜒𝑓(𝑃2) = 2, by Theorem 3.1 we have, 

             𝜒𝑓(𝐶𝑛) = {
3   𝑖𝑓 

𝑛

2
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔 𝑎𝑛𝑑 𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒𝑠 𝑎𝑟𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝐶𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 ≥ 6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4),          
2   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                                                                                          

 

and by Theorem 3.4.1 we have, 

𝜒𝑓(𝐿𝑓(𝐶𝑛)) = {
2  𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
3  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Case 1 : Suppose strong and weak edges are alternatively distributed in 𝐶3. 
 Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶3)) =𝑚𝑎𝑥{𝜒𝑓(𝐶3), 𝜒𝑓(𝐿𝑓(𝐶3)),𝜒𝑓(𝑃2)} 
                       =  𝑚𝑎𝑥{2,3,2}  
                                 =  3. 
 

Case 2 : Suppose 
𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛, where  𝑛 ≥

6, 𝑛 ≡ 2 (𝑚𝑜𝑑  4), 𝑜𝑓 𝑇𝑓(𝐶𝑛). 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 1 
                   =  𝑚𝑎𝑥{3,2,2} + 1  
                              =  4. 
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Case 3 : Suppose 
𝑛

2
 number of strong and weak edges  are alternatively distributed in 𝐶𝑛, where  𝑛 ≥

8, 𝑛 ≡ 0 (𝑚𝑜𝑑  4), 𝑜𝑓 𝑇𝑓(𝐶𝑛). 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 1 
                   =  𝑚𝑎𝑥{2,2,2} + 1  
                              =  3. 
 

Case 4 : Suppose strong and weak edges  are distributed in any sequence in 𝐶𝑛, n (≥  3)is odd, 
 𝑜𝑓 𝑇𝑓(𝐶𝑛). 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 1 
                   =  𝑚𝑎𝑥{2,3,2} + 1  
                              =  4. 
 

Case 5 : Suppose weak and strong edges are distributed in any sequence in 𝐶𝑛, n (≥  4) is even, 𝑜𝑓 𝑇𝑓(𝐶𝑛). 
(except all the above cases). 
Then by Corollary  2.3.1, 

𝜒𝑓(𝑇𝑓(𝐶𝑛)) = 𝑚𝑎𝑥{𝜒𝑓(𝐶𝑛), 𝜒𝑓(𝐿𝑓(𝐶𝑛)),𝜒𝑓(𝑃2)} + 1 
                   =  𝑚𝑎𝑥{2,2,2} + 2  
                              =  4. 

 
Note : In 𝐶𝑛, if  𝑛 = 2, 𝜒𝑓(𝑇𝑓(𝐶2)) = 2. 
 
3.6.  The Chromatic Number of 𝒔𝒅𝒇(𝑪𝒏) 
 

Lemma 3.6.1. Let 𝐶𝑛 be a fuzzy cycle of length n. Then 𝑠𝑑𝑓(𝐶𝑛) is a strong fuzzy graph. 
Proof. Proof follows from the definition of fuzzy subdivision graph and the definition of strong edge. 
 

Theorem 3.6.1.  If 𝑠𝑑𝑓(𝐶𝑛) is a strong fuzzy graph, then 𝜒𝑓(𝑠𝑑𝑓(𝐶𝑛)) = 2. 
Proof. Let 𝐶𝑛 ∶  𝑣1 𝑣2…𝑣𝑛 𝑣1 be a fuzzy cycle of length 𝑛. Since 𝑠𝑑𝑓(𝐶𝑛) ≅ 𝐶2𝑛, then by Lemma 2.2, 
𝜒𝑓(𝑠𝑑𝑓(𝐶𝑛)) = 2. 
 

4. Conclusion 
        Fuzzy coloring serves as a significant extension of classical graph coloring into the domain of fuzzy 
graph theory, enabling more flexible modeling and effective problem-solving in systems characterized by 
uncertainty and imprecise relationships. The chromatic number of a fuzzy graph provides a powerful tool 
for addressing real-world problems with greater accuracy and flexibility. 

In this paper, we determined the chromatic numbers of the middle graph, splitting graph, shadow graph, 
line graph, total graph, and the subdivision graph of the fuzzy cycle 𝐶𝑛, by using fuzzy coloring based on the 
strength of the edges incident on each vertex.  
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