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Abstract: 
This study presents an AI-driven approach to optimize recycled aggregate concrete (RAC) mixes reinforced with glass 
fibers (GF). A suite of machine learning (ML) models – including a Keras Recurrent Neural Network (kRN), 
Multilayer Perceptron (MLP), Back Propagation Neural Network (BPNN), Residual Neural Network (ResNet), and 
stacked Long Short-Term Memory (LSTM) – was developed to predict the 28-day compressive strength of RAC and 
identify optimal mix proportions. A comprehensive dataset of RAC mix designs (incorporating up to 100% recycled 
coarse aggregate replacement and various GF dosages) was compiled from literature and experimental results. Data 
were preprocessed (normalized and analyzed for correlations), and model hyperparameters were tuned via Bayesian 
optimization to maximize predictive performance. The best model (kRN) achieved near-perfect accuracy, with an R² 
≈ 1.0 on compressive strength prediction. Results confirm an inverse relationship between recycled aggregate content 
and compressive strength (e.g. 50% RCA caused ~8.9% strength reduction), while the inclusion of GF significantly 
improved mechanical performance. A small GF addition (0.5% by volume) enhanced compressive strength (e.g. from 
35.9 MPa to 37.9 MPa in 0% RCA mixes) and recovered much of the strength lost to RCA, whereas excessive fiber 
content (>2% GF) led to diminished returns. The optimized ML-guided mix – using 50% recycled aggregate and 0.5–
1.0% GF – achieves comparable strength to natural aggregate concrete, with a ~22% boost in tensile strength at 2% 
GF . These findings demonstrate that ML optimization can effectively balance performance and sustainability in 
concrete design, enabling high predictive accuracy in compressive strength and guiding the development of greener, 
fiber-reinforced RAC mixtures.  
Keywords: ai, predictive modeling, concrete, compressive strength, recycled aggregates, performance evaluation, cost 
savings 
 
1. INTRODUCTION 
Construction and demolition waste have spurred interest in recycled aggregate concrete (RAC) as a 
sustainable alternative to conventional concrete. In Iraq and elsewhere, large stocks of discarded concrete 
blocks can be crushed into recycled concrete aggregate (RCA) for new concrete production [1-3]. Reusing 
RCA reduces landfill waste and preserves natural aggregates, but often at the cost of reduced mechanical 
properties. Studies have shown that RAC tends to have lower compressive strength than natural aggregate 
concrete (e.g. full replacement of coarse aggregate can reduce strength by ~23%) [4-6]. Even at 50% 
replacement, compressive strength may drop around 14%. This strength deficit is attributed to old 
adhered mortar on RCA, higher porosity, and weaker interfacial zones. However, the sustainability 
benefits of RAC – such as lower CO₂ footprint, conservation of raw materials, and cost savings – often 
justify moderate use of RCA if performance can be maintained [7,8]. To improve RAC performance, 
fiber reinforcements like steel or glass fibers have been explored. Glass fiber (GF) in particular is an 
attractive additive to enhance tensile/flexural behavior and mitigate the brittleness of RAC. Prior research 
indicates that adding small fractions of GF (≤1%) can improve concrete’s tensile and flexural strength by 
bridging micro-cracks. For example, steel fibers have been reported to raise RAC compressive strength by 
8–12% and tensile strength by 35–44% [9-11]. Glass fibers similarly can compensate for strength loss: 
Babar Ali et al. (2020) found that 0.5% GF mitigated the drop in compressive strength for 50% RCA 
concrete, improving tensile strength by >16% and flexural strength by >26% [14]. However, fiber benefits 
are non-linear – higher fiber volumes (>1–2%) can lead to fiber clumping, increased voids, and reduced 
workability, ultimately diminishing compressive strength at excessive dosages [15]. Thus, an optimal fiber 
content exists that maximizes strength gain before negative effects set in. 
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2. LITERATURE REVIEW 
This paper discusses recent developments in the field of recycled concrete (RAC) and the application of 
artificial intelligence (AI) methods to estimate its properties. It also discusses the impact of recycled 
aggregates on concrete performance, as well as improving concrete mix design to improve its strength and 
durability, its environmental impacts and cost, and the addition of glass fiber (GF) to improve its 
mechanical properties. It also discusses the introduction of AI models, such as artificial neural networks 
(ANNs), adaptive neuro-fuzzy inference systems (ANFIS), and other machine learning algorithms. 
2.1. The Past Record of Recycled Aggregate Concrete 
RAC began to be used in the post-World War II period as a means of recycling the rubble of destroyed 
cities. Initial research indicated that GFRC exhibited lower water absorption, compressive strength, and 
freeze-thaw resistance compared to natural concrete. The recent addition of GF has improved the 
durability of GFRC in terms of cracking resistance, ductility, and overall mechanical performance. The 
reinforcing capacity of GFs in GFRC is significantly influenced by fiber length, diameter, aspect ratio, 
and dispersion methods. 
2.2. Previous Studies 
Various researchers have studied RAC and its mechanical properties: 
• Bravo et al. (2015) [16]: Examined durability variations based on recycled aggregate sources. 
• Kishore and Gupta (2019) [17]: Highlighted environmental benefits and challenges of increasing 
recycled content. 
• Ali and Qureshi (2019) [18]: Explored combining GFs with recycled aggregates to improve durability. 
• Paluri et al. (2020) [19]: Compared strengths and weaknesses of recycled vs. natural aggregates. 
• Mahakavi et al. (2020) [20]: Investigated fly ash and GF influence on lightweight concrete properties. 
• Ali et al. (2020) [21]: Studied combined effects of fly ash and GFs on recycled concrete. 
• Lavado et al. (2020) [22]: Assessed workability changes when replacing natural coarse aggregate with 
recycled materials. 
• Małek et al. (2021) [23]: Investigated the effect of GFs on cement mortar. 
• Liang et al. (2021) [24]: Analyzed RAC's compressive and shear strength over time. 
• Thomas et al. (2020) [25]: Explored multi-aggregate RAC using microtomography. 
• Rashid et al. (2020) [26]: Used decision-making techniques to assess RAC's sustainability and 
mechanical properties. 
2.3. AI and Recycled Aggregate Concrete 
AI's role in RAC property prediction has grown significantly: 
• Behnood et al. (2015) [27]: Used the M5 algorithm to improve prediction accuracy. 
• Khademi et al. (2016) [28]: Compared ANNs, ANFIS, and regression for strength prediction. 
• Duan et al. (2020) [29]: Developed a hybrid algorithm combining gradient boosting and imperialist 
competitive algorithm. 
• Nunez et al. (2020) [30]: Applied Gaussian processes, deep learning, and gradient boosting regression 
trees. 
• Chen et al. (2020) [31]: Predicted compressive strength based on water-cement ratio and replacement 
levels. 
• Zhu et al. (2022) [32]: Used ML algorithms to predict tensile strength with superior accuracy. 
• Yuan et al. (2022) [33]: Compared random forest and gradient boosting models for RAC quality 
assessment. 
The research demonstrates significant advances in understanding and improving RAC properties using 
GF models. AI methods, such as artificial neural networks (ANNs), ANFIS, and ensemble models, 
demonstrate better accuracy than traditional regression analysis methods. Further research into the 
predictive power of AI and ways to improve it is needed to promote its sustainable use in RAC 
development. 
3. EXPERIENTIAL WORKS 
This article discusses the process of developing an AI model for optimizing recycled concrete (RAC) mixes 
using machine learning (ML). This includes selecting AI algorithms, data preprocessing, hyperparameter 
tuning, and model building using the Keras library. Recurrent neural network (RNN), multilayer 
perceptron (MLP), backpropagation neural network (BPNN), residual neural network (ResNet), and 
stacked long short-term memory (StackedLSTM) techniques were used. 
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3.1. Hybrid DL-ML Model for Optimizing RAC Mixture 
Machine learning (ML) has transformed numerous disciplines, such as concrete optimization. The three 
categories of ML algorithms are supervised learning (regression problems), unsupervised learning 
(clustering data), and reinforcement learning (optimal solutions based on feedback) [34-37]. Five strong 
models were created that could be used for the prediction of compressive strength of RAC: 
1. Keras Recurrent Neural Network (kRN): Excels in analyzing sequential data. 
2. Multilayer Perceptron (MLP): Handles large datasets with non-linear transformations. 
3. Back Propagation Neural Network (BPNN): Utilizes gradient descent for error minimization. 
4. Residual Neural Network (ResNet): Addresses the vanishing gradient problem with skip connections. 
5. StackedLSTM: Captures long-term dependencies in hierarchical patterns. 
These models leverage unique capabilities for data analysis, enabling precise compressive strength 
predictions for RAC. 
3.1.1. Recurrent Neural Networks (RNNs) 
Deep learning algorithms like RNNs are widely applied in domains such as image recognition and civil 
engineering for tasks like structural monitoring [38-40]. RNNs feature internal memory loops that process 
sequential data, but they face challenges such as vanishing gradients. To mitigate this, Long Short-Term 
Memory (LSTM) and Gated Recurrent Units (GRU) introduce gated mechanisms to improve older data 
retention [41-42]. 
Keras and RNNs: 
Keras simplifies RNN implementation with layers like Simple RNN, LSTM, and GRU, suitable for tasks 
involving time series and other sequential data [41, 43]. 
3.1.2. Alternative AI Models 
• Multilayer Perceptron (MLP): Composed of input, hidden, and output layers, MLPs use 
backpropagation to minimize errors through gradient adjustments [45, 46]. 
• Back Propagation Neural Network (BPNN): An ANN variant that uses gradient descent and 
automatic differentiation for error correction [44-46]. 
• Residual Neural Network (ResNet): Simplifies deep network training by bypassing certain layers, 
enhancing gradient flow and performance [47]. 
• StackedLSTM: Extends LSTM architecture with hierarchical memory layers, enabling complex pattern 
recognition [48-49]. 
3.2. Data Collection and Preprocessing 
The dataset, derived from 42 peer-reviewed publications, includes 799 examples of RAC mixture designs, 
ensuring diversity and robustness (Table 3). It consists of nine input parameters—water-cement ratio, 
quantities of water, cement, sand, gravel, RCA, superplasticizer, specimen type, and age—and one output 
parameter, compressive strength [50]. 
Data Preprocessing: 
Data cleaning involved removing outliers, normalizing values, and calculating correlations. These steps 
prepared the data for ML analysis, ensuring accurate predictions of RAC properties. 
 
Table 3 Sources of the Dataset 

No. Reference Samples No. 
1 (Manzi et al., 2013) [51] 10 
2 (Ajdukiewicz & Kliszczewicz, 2007) [52] 4 
3 (Gómez-Soberón, n.d.) [53] 15 
4 (Sheen et al., 2013) [54] 57 
5 (Lin et al., 2004) [55] 48 
6 (Poon et al., 2004) [56] 36 
7 (Ulloa et al., n.d.) [57] 25 
8 (Matias et al., 2013) [58] 11 
9 (Taffese, 2018) [59] 6 
10 (Etxeberria, Marí, et al., 2007) [60] 3 
11 (Andreu & Miren, 2014) [61] 27 
12 (Etxeberria, Vázquez, et al., 2007) [62] 3 
13 (Beltrán, Agrela, et al., 2014) [63] 18 
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14 (Cong Kou et al., n.d.) [64] 90 
15 (Beltrán, Barbudo, et al., 2014) [65] 6 
16 (Poon et al., 2007) [66] 16 
17 (Carneiro et al., 2014) [67] 3 
18 (Dilbas et al., 2014) [68] 3 
19 (Casuccio et al., 2008) [69] 6 
20 (Duan & Poon, 2014) [70] 24 
21 (Kou et al., 2008) [71] 60 
22 (Folino & Xargay, 2014) [72] 3 
23 (Yang et al., 2008) [73] 54 
24 (López Gayarre et al., 2014) [74] 12 
25 (Domingo-Cabo et al., 2009) [75] 6 
26 (Medina et al., 2014) [76] 10 
27 (Corinaldesi, 2010) [77] 10 
28 (Kumutha & Vijai, 2010) [78] 20 
29 (Pepe et al., 2014) [79] 10 
30 (Malešev et al., 2010) [80] 6 
31 (Haitao & Shizhu, 2015) [81] 16 
32 (Fathifazl et al., 2011) [82] 4 
33 (Tam et al., 2015) [83] 16 
34 (Abdel-Hay, 2017) [84] 9 
35 (Somna et al., 2012) [85] 36 
36 (Abd Elhakam et al., 2012) [86] 12 
37 (Nepomuceno et al., 2018) [87] 12 
38 (Butler et al., 2013) [88] 6 
39 (Thomas et al., 2018) [89] 18 
40 (Ismail & Ramli, 2013) [90] 12 
41 (Younis & Pilakoutas, 2013) [91] 32 
42 (Kim et al., 2013) [92] 24 

Data analysis and preprocessing were performed using Python libraries such as pandas, numpy, seaborn, 
matplotlib.pyplot, and scipy.stats [93,94]. These libraries provided efficient tools for data manipulation, 
statistical computations, and visualization. 
The preprocessing involved: 
1. Outlier Removal: Ensured all parameters remained within realistic ranges to avoid distorted statistical 
analyses. 
2. Parameter Ranges: Determined using domain knowledge and industry standards. 
3. Visualization: Box plots were employed to identify outliers and assess data distribution. 
4. Cost Analysis: The cost of each concrete mixture was calculated based on component prices, adding 
an economic dimension to the analysis [95]. 
These steps ensured robust and meaningful insights, aligning the analysis with real-world cost-effectiveness 
considerations. 
Table 3.1 Dataset's statistical attributes 

Input 
Features 

count mean sd min. 
25

100
 

50

100
 

75

100
 max 

w/с 799 0.521 0.101 0.3 0.45 0.5 0.55 0.8 
water 799 193.3 28.25 137.1 175 190 212.1 304 
cement 799 377.2 55.62 250 350 380 404 650 
sand 799 666.7 175.5 0 625 668 730 1315 
gravel 799 374.4 389.3 0 0 319 736.2 1287.7 
ra. 799 699.3 381.1 0 300 750.6 1017 2040 
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sp. 799 1.834 2.874 0 0 0 3.4 20.74 
specimen 799 2.811 1.575 1 1 3 4 5 
age 799 27.58 25.87 1 7 28 28 91 
Output 
Features 

count mean sd min. 
25

100
 

50

100
 

75

100
 max 

strength 799 36.2 16.97 4.8 25 34.7 44.89 108.5 
 Normalization 

Normalization is a method of rescaling data such that its standard deviation is one and mean value is 
zero, was done using the z-score method. Normalization is an important preprocessing step for most 
algorithms in AI since it normalizes all features to be of the same magnitude and therefore avoids 
domination of any feature by virtue of its scale. 
The findings of a correlation analysis were explored to illustrate the relationships between all the varying 
parameters Figure 3.1 It is possible through such analysis to observe dependencies between variables of 
concern for the selection of models and model simplification. Observing such relationships can assist in 
establishing which features play the most critical roles in modelling concrete strength. 

 
Figure 3.1 Feature Correlation 
Lastly, graphical representation of each function with the use of histograms Figure 3.2 Histograms supply 
an elementary but very useful tool for the interpretation of data distributions, which helps us recognize 
skewness, kurtosis, and other notable features of data. [96] 

 
Figure 3.2 Histogram Analysis 
3.3. Hyperparameter Tuning 
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Hyperparameters significantly influence AI model performance. This study utilized the Keras Tuner 
library and Bayesian Optimization to automate hyperparameter tuning, efficiently exploring various 
configurations to enhance predictive accuracy. 
Key steps involved in hyperparameter tuning comprised 
1. Model Architecture: A single RNN layer with two dense layers was specified with each layer's unit 
count considered as an adjustable hyperparameter. 
2. Search Strategy: The hyperparameter space was set by the HyperModel class in Keras Tuner, with 
Bayesian Optimization iteratively improving it based on performance observations. 
3. Evaluation Measure: The objective function used was the mean absolute error (MAE). 
4. Cross-Validation: Training and test groups of the data split over multiple folds for ensuring robustness 
The optimized model bested the lowest MAE with improved convergence speed as well as generalization. 
Automated hyperparameter tuning with Keras Tuner made it easier for researchers to execute the process. 
3.4. Model Development 
a) Keras in Recurrent Neural Networks (RNNs) 
The developed RNN architecture comprised: 
• Single RNN Layer: Used the SimpleRNN function with 32 hidden neurons and the ReLU activation 
function. 
• Dense Layers: The first dense layer included 8 neurons with ReLU activation, while the final layer had 
1 neuron with linear activation. 

 Hyperparameters: 
• Learning Rate: Tuned from [1e-2, 1e-3, 1e-4] using Bayesian Optimization. 
• Optimizer: Adam, known for combining AdaGrad and RMSProp benefits. 
• Loss Function: Mean Absolute Error (MAE), which minimizes sensitivity to extreme values compared 
to mean squared error (MSE). 

 Evaluation Metrics: 
The model was assessed using metrics such as MAE, MSE, Mean Absolute Percentage Error (MAPE), and 
the R² score (coefficient of determination). R² represents the variance in the dependent variable explained 
by independent variables in regression models. 

 Training and Validation: 
• Early Stopping: Halted training after 20 epochs with no improvement in validation loss. 
• k-Fold Cross-Validation: Used 10 folds, training the model 10 times with 9 folds for training and 1 
for testing, enhancing generalization and minimizing overfitting. 
• Training Duration: Limited to 500 epochs, with batch size determined through Bayesian 
Optimization. 
3.4 Implementation: 
The RNN model was built and fine-tuned using TensorFlow, Keras, and Keras Tuner libraries. 
This comprehensive hyperparameter tuning and model development approach ensured high predictive 
performance, as detailed in Figure 3.3 and Table 3.2. 
 

 
Figure 3.3 Hyperparameters Information for KRN 
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Table 3.2 Hyperparameters Information for KRN 
Hyperparameter Value 
Number of Folds 10 
Random Seed 33 
Model Name kRN 
Early Stopping Patience 20 
Max Trials for Bayesian Opt. 16 
Executions per Trial 2 
Project Name concrete 
Directory for Saving Models kerastuner/kRN 

a) Multilayer Perceptron 
The architecture of the MLP model implemented with the TensorFlow and Keras libraries comprises 
dense layers activated with ReLU activation functions that lead to an output layer for prediction. 
Hyperparameters such as the number of units in each layer and learning rates were optimized using Keras 
Tuner's Bayesian Optimization. The process involved k-fold cross-validation iteration to narrow 
configurations until the lowest value of MAE was obtained. The metrics used for evaluation comprised 
MAE, RMSE, MAPE, and R² that are illustrated in scatter plots of actual versus predicted values of 
strength along with annotated progression graphs. 
b) Backpropagation Neural Network Model 
The BPNN model utilized TensorFlow as well as Keras with dense layers activated by ReLU and batch 
normalization to improve the stability of the training process. The hyperparameters were tuned with 
Bayesian Optimization through Keras Tuner. The model was tested using k-fold cross-validation with 
accurate performance on datasets. The most important metrics like MAE, RMSE, MAPE, and R² were 
utilized in complement with graphical analysis such as prediction error distributions as well as scatter 
plots of the price versus predicted strength. 
c) Residual Neural Network 
The ResNet model incorporated a convolutional layer with 64 filters, kernel size 2, batch normalization, 
and max pooling. Data was preprocessed and split using scikit-learn’s train_test_split function. The 
ResNet architecture was refined through Bayesian Optimization and evaluated via k-fold cross-validation 
to minimize MAE. Visualization included training/validation MAE vs. epoch graphs and scatter plots of 
actual vs. predicted strength values, confirming the model’s efficacy. 
d) Stacked Long Short-Term Memory 
The Stack-LSTM model architecture, specified by the stackedLSTMHyperModel class, contained layers 
that could learn long-range dependencies in sequential data. Data preparation involved scikit-learn's 
train_test_split utility function, along with evaluation metrics like MAE, RMSE, MAPE, and R². 
Visualization involved scatter plots of predicted strength versus actual price along with learning curve 
plots (training/validation MAE versus epoch), which guaranteed high performance and flexibility for 
multiple datasets. 
3.2.1. RCA Mixture Optimization 
The optimization of RCA mixtures was performed using the Particle Swarm Optimization (PSO) 
algorithm to develop cost-efficient RAC designs for various compressive strength grades. PSO simulates 
the collective behavior of organisms, where "particles" iteratively adjust their positions based on individual 
and group best-known solutions. 
• Objective: Minimize the production cost of RAC while meeting strength requirements. 
• Data Source: Material costs were sourced from suppliers in Iraq (Table 3.3), providing flexibility to 
adjust for other locations. 
• Solution Space: Defined by upper and lower bounding vectors to constrain possible solutions. 
The PSO algorithm effectively reduced production costs while optimizing the mixture proportions, 
emphasizing its applicability in developing economically viable and sustainable RAC mixtures. 
 
Table 3.3 Price Data 

Component Price ($/kg) 
water  $ 0.0002703  
Cement   $ 0.0878378  
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Sand  $ 0.0090090  
Gravel  $ 0.0054650  
RCA content  $ 0.0026464  
Superplasticizer  $ 3.2000000  

 
The vectors described in Table 3.4 are meticulously formulated, drawing upon a real-world experimental 
case from the dataset that exhibits a distinct compressive strength, thereby enabling an apt evaluation and 
verification of the algorithm's efficacy. 
 Table 3.4 Bounder vectors for mixture optimization. 

Features   
Water 
2cement 

water cement sand gravel 
recycled 
aggregate 

superplasticizer specimen age 

Mpa Unit - 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 Type Day 

25 
Lower 0.55 201 300 598 0 971 0 1 28 
Upper 0.77 232 410 795 0 1027 13.5 1 28 

30 
Lower 0.47 159.8 300 556 0 497 1.24 1 28 
Upper 0.78 234 340 846 537 1037 13.5 1 28 

35 
Lower 0.45 153 300 556 0 204 0 1 28 
Upper 0.76 247 410 868 1020 1154 9 1 28 

40 
Lower 0.4 140 300 556 0 202 0 1 28 
Upper 0.768 271 537 941.72 886 1400 4.2 1 28 

45 
Lower 0.4 140 300 556 0 204 0 1 28 
Upper 0.683 241 537 948.92 1020 1524 5.2339 1 28 

50 
Lower 0.41 159.8 323.08 556 0 138 0 1 28 
Upper 0.68 220 537 948.92 1020 1075 5.6 1 28 

 
Key concrete components, including sand, cement, and water, were assigned minimum and maximum 
threshold values, fluctuating approximately 20% above and below the base mixture values. To encourage 
the use of RCA materials, the upper and lower limits for RCA were deliberately set high, while gravel 
values were minimized due to associated economic considerations. For superplasticizer, a notable cost 
factor, boundary values were kept at the lowest practicable levels. 
The compressive strength of standard 15 × 15 cm specimens after a 28-day curing period served as the 
benchmark for comparison. The optimized mixture proportions and results are detailed in Table 3.5. 
The Keras Recurrent Neural Network (kRN), identified as the most accurate predictive model, evaluated 
the optimized mixture. These kRN outcomes were then compared against an actual concrete sample from 
the dataset to confirm alignment with predefined compressive strength parameters, as shown in Table 
3.6. 
Table 3.5 Optimized Mixture Proportions 

Optimized Mix Mpa 25 30 35 40 50 

water2cement  N/A 0.68 0.6 0.68 0.493 0.68 
water  kg/m3 205 186 205 148 219.35 
cement  kg/m3 300 310 300 300 323.08 
sand  kg/m3 697 702 697 600 948.92 
gravel  kg/m3 0 531 0 0 771 
recycled 
aggregate 

 kg/m3 1027 501 1075 1400 257.69 

superplasticizer  kg/m3 0 1.24 0 0 0 
specimen  Type 1 1 1 1 1 
age  Day 28 28 28 28 28 

 
The employed AI model, a variant of the Recurrent Neural Network (RNN) integrated with the Particle 
Swarm Optimization (PSO) algorithm and referred to as 'krnn,' was implemented using Python, 
leveraging the TensorFlow and Keras libraries for model construction and training. 
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Key implementation details include: 
• Data Preprocessing: Incorporated necessary steps for cleaning and preparing the data. 
• Determination Coefficient Function: Calculated the R² score. 
• PSO Algorithm Class: Integral for optimization tasks. 
• Cross-Validation: A 10-fold cross-validation technique was used to enhance reliability and stability. 
• Reproducibility: Random seeds were set to constant values. 
The model's training and optimization utilized the Bayesian Optimization method from the Keras 
Tuner API, with the objective of minimizing the MAE (mean absolute error), ensuring alignment between 
forecasted and actual compressive strength values. 
Evaluation Metrics 
The model's proficiency was evaluated using: 
• MAE (mean absolute error) 
• RMSE (root mean square error) 
• MAPE (mean absolute percentage error) 
The model achieving the lowest MAE across all folds was deemed the most effective. 
 
Table 3.6 Comparison of Optimized Mixture with Base Mixture. 

Features 
Water/ 
Cemen
t 

Wate
r 

Cemen
t 

San
d 

Gravel 
Recycled 
Aggregate 

Super 
Plasticizer 

Specimen Age Strength Price 

Mp
a 

Unit - 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 
Kg

m3 Type Day Mpa USD 

25 
Base 0.77 232 300 795 0 994 13.5 1 28 27.5317 79.40 
Opt. 0.68 205 300 697 0 1027 0 1 28 29.2645 35.40 

30 
Base 0.47 159.8 340 556 319 767 3.4 1 28 33.0518 49.57 
Opt. 0.6 186 310 702 531 501 1.24 1 28 34.6454 41.80 

35 
Base 0.76 228 300 868 0 985 9 1 28 35.0397 65.63 
Opt. 0.68 205 300 697 0 1075 0 1 28 35.0583 35.53 

40 
Base 0.47 159.8 340 556 319 894 3.4 1 28 43.9453 49.90 
Opt. 0.493 148 300 600 0 1400 0 1 28 44.0740 35.50 

50 
Base 0.45 180 400 708 0 1075 5.6 1 28 52.0540 62.32 

Opt. 0.68 
219.3
5 

323.08 
948.
92 

771 257.69 0 1 28 52.1908 41.88 

 
4. RESULTS AND DISCUSSIONS 
4.1. Mixture Optimization Using AI. 
4.1.1. AI Models Prediction Performance 
The study evaluated five machine learning models: kRN, MLP, BPNN, ResNet, and Stacked LSTM, using 
multiple metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), and R². 

 Keras Recurrent Neural Network (kRN) 
The Keras Recurrent Neural Network (kRN) demonstrated outstanding performance based on multiple 
evaluation metrics, as detailed in Table 4.1: 
 Achieved the best performance across all metrics: 
• MAE: 0.1793 
• RMSE: 0.2473 
• MAPE: 0.77% 
• R²: 99.98% 
  Its precision and reliability make it ideal for forecasting RAC compressive strength. 
 
Table 4.1 Keras Recurrent Neural Network (kRN) Performance 

Keras Recurrent Neural Network (kRN) 
Train Test 
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Random  
Seed 

MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 0.1910 0.2040 0.6410 1.0000 0.1960 0.2400 0.7730 1.0000 
RS=365 0.1900 0.2500 0.7880 1.0000 0.2060 0.2650 0.8460 1.0000 
RS=678 0.2140 0.2800 0.5430 1.0000 0.1900 0.2400 0.4850 1.0000 
RS=2023 0.1380 0.1660 0.6060 1.0000 0.1520 0.2020 0.7550 1.0000 
RS=3084 0.1660 0.2040 0.6830 1.0000 0.1690 0.2360 0.8120 1.0000 
Rs=4042 0.1390 0.1990 0.5290 1.0000 0.1630 0.3010 0.9750 0.9990 
MEAN 0.1730 0.2172 0.6317 1.0000 0.1793 0.2473 0.7743 0.9998 
SD 0.0281 0.0372 0.0878 0.0000 0.0192 0.0302 0.1477 0.0004 

 
Figure 4.1 kRN Training and Validation MAE Versus Epochs 

 
Figure 4.2 kRN Actual Versus Prediction 

 Multilayer Perceptron (MLP) 
The Multilayer Perceptron (MLP) model demonstrates versatility in handling complex patterns but 
underperforms compared to the kRN model for this dataset, as indicated in Table 4.2 Demonstrated 
strong but slightly lower performance than kRN: 
• MAE: 0.2812 
• RMSE: 0.4138 
• MAPE: 1.03% 
• R²: 99.90% 
Table 4.2 Multilayer Perceptron (MLP) Performance 

Multilayer Perceptron (MLP) 
Random  
Seed 

Train Test 
MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 0.1110 0.2090 0.4020 1.0000 0.3010 0.4420 0.9540 0.9990 
RS=365 0.1110 0.1990 0.3700 1.0000 0.2720 0.4050 1.0620 0.9990 
RS=678 0.1090 0.1910 0.3970 1.0000 0.3010 0.4510 1.1030 0.9990 
RS=2023 0.1270 0.2200 0.4550 1.0000 0.2880 0.4280 1.0510 0.9990 
RS=3084 0.1410 0.2400 0.5380 1.0000 0.2720 0.3970 1.0830 0.9990 
Rs=4042 0.1230 0.2250 0.4310 1.0000 0.2530 0.3600 0.9240 0.9990 
MEAN 0.1203 0.2140 0.4322 1.0000 0.2812 0.4138 1.0295 0.9990 
SD 0.0114 0.0164 0.0544 0.0000 0.0173 0.0306 0.0666 0.0000 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

3807 

 

 
Figure 4.3 MLP Training and Validation MAE Versus Epochs 

 
Figure 4.4 MLP Actual Versus Prediction 

 Back Propagation in Neural Network (BPNN) 
The Backpropagation Neural Network (BPNN) model displayed significantly higher prediction errors 
compared to the kRN and MLP models, as outlined in Table 4.3: 
  MAE: 2.1695 
  RMSE: 3.9063 
  MAPE: 8.87% 
  R²: 92.72%. 
 
Table 4.3 Back Propagation in Neural Network (BPNN) Performance 

Back Propagation in Neural Network (BPNN) 
Random  
Seed 

Train Test 
MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 2.1940 4.0280 8.9690 0.9310 2.7610 7.1690 7.6560 0.8230 
RS=365 2.4150 2.9220 8.5310 0.9570 2.5490 3.1400 9.3160 0.9630 
RS=678 1.5910 1.9580 5.6610 0.9790 1.6080 1.9850 5.6590 0.9840 
RS=2023 2.4400 4.1670 13.0010 0.9100 2.7820 5.0350 14.4200 0.8680 
RS=3084 1.9990 3.3280 9.6060 0.9420 1.9340 2.3640 7.3300 0.9750 
Rs=4042 1.2840 3.1560 8.8360 0.9640 1.3830 3.7450 8.8290 0.9500 
MEAN 1.9872 3.2598 9.1007 0.9472 2.1695 3.9063 8.8683 0.9272 
SD 0.4247 0.7345 2.1491 0.0226 0.5565 1.7608 2.7434 0.0601 

 

 
Figure 4.5 BPNN Training and Validation MAE Versus Epochs 
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Figure 4.6 BPNN Actual Versus Prediction 

 Residual Neural Network (ResNet) 
The Residual Neural Network (ResNet) model demonstrated the least optimal performance among all 
models evaluated, as shown in Table 4.4: 
  MAE: 4.1057 
  RMSE: 5.7212 
  MAPE: 13.10% 
  R²: 84.47%. 
Table 4.4 Residual Neural Network (ResNet) Performance 

Residual Neural Network (ResNet) 
Random  
Seed 

Train Test 
MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 2.3320 3.5670 7.6030 0.9520 3.9560 5.3480 12.5860 0.8500 
RS=365 2.5470 3.5770 8.8020 0.9340 4.2630 6.1820 14.3550 0.8390 
RS=678 2.2380 3.4570 7.7410 0.9520 3.8400 5.2840 12.4300 0.8960 
RS=2023 3.1750 4.6980 9.1870 0.9200 4.3080 5.9220 13.3250 0.8130 
RS=3084 2.3320 3.5670 7.6030 0.9520 3.9560 5.3480 12.5860 0.8500 
Rs=4042 2.4190 3.3260 8.2480 0.9540 4.3110 6.2430 13.2960 0.8200 
MEAN 2.5072 3.6987 8.1973 0.9440 4.1057 5.7212 13.0963 0.8447 
SD 0.3134 0.4556 0.6140 0.0127 0.1929 0.4072 0.6635 0.0269 

 
Figure 4.7 ResNet Training and Validation MAE Versus Epochs 

 
Figure 4.8 ResNet Actual Versus Prediction 

 Stacked Long Short-Term Memory Neural Network (StackedLSTM) 
The Stacked Long Short-Term Memory (Stacked LSTM) model exhibited the poorest performance among 
all models evaluated, as shown in Table 4.5: 
  MAE: 6.1137 
  RMSE: 8.8100 
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  MAPE: 20.86% 
  R²: 62.60%.Table 4.5 stackedLSTM Performance 
Stacked Long short-term memory Neural Network (stackedLSTM) 
Random  
seed 

Train Test 
MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 4.8400 8.8610 14.4540 0.7590 4.4750 7.0070 14.5060 0.7610 
RS=365 6.9550 10.5830 24.2020 0.6110 7.5840 10.6850 26.9040 0.4760 
RS=678 4.5310 8.8860 12.2390 0.7760 3.8630 5.9490 11.6650 0.8260 
RS=2023 8.0500 11.5540 27.3240 0.5280 9.5710 12.4540 31.4560 0.3600 
RS=3084 5.6290 9.3200 17.8110 0.7370 6.6170 9.3750 22.2320 0.5900 
Rs=4042 5.6340 9.6450 17.2360 0.7230 4.5720 7.3900 18.3710 0.7430 
MEAN 5.9398 9.8082 18.8777 0.6890 6.1137 8.8100 20.8557 0.6260 
SD 1.2157 0.9713 5.2783 0.0894 2.0206 2.2571 6.8533 0.1666 

 
Figure 4.9 stackedLSTM Training and Validation MAE Versus Epochs 

 
Figure 4.10 stackedLSTM Actual Versus Prediction 
4.1.2. Contrasting with Prior Research 
Table 4.6 compares the performance of various AI models for predicting compressive strength. This 
study’s kRN-PSO model achieved: 
• R²: 1.000 
• RMSE: 0.2087 
These metrics outperformed all prior techniques, including MLP, GB, and ANN. While earlier models 
like ANFIS and traditional regression methods exhibited lower accuracy, the kRN-PSO model 
demonstrated its ability to handle complex datasets effectively, even with fewer samples. 
Table 4.6 Comparison of Metric Outcomes with Prior Research 

AI Learning Technique Testing R2 
Testing 
RMSE 

Total 
Samples 

Reference Year 

ANN 0.998 2.395 
210 [97] 2008 

FL 0.996 3.866 
ANN 0.995 3.6804 168 [98] 2013 
ANN 0.971 - 1178 [99] 2013 
ANN 0.903 - 

257 [100] 2014 MT 0.757 - 
NLRM 0.74 - 
MLR 0.609 9.975 

257 [28] 2016 ANN 0.919 4.446 
ANFIS 0.908 5.045 
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ANN 0.688 - 139 [101] 2018 
MARS - 8.75 

650 [102] 2020 M5MT - 8.25 
LSVR - 7.55 
ANN 0.894 0.066 12,168 [103] 2020 
GB 0.919 5.076 

1134 [30] 2020 
DL 0.868 6.502 
SVM 0.879 - 

81 [104] 2021 
GBM 0.981 - 
ANN 0.96240 - - [105] 2021 
SVR_PSO 0.862 8.198 

721 [106] 2022 XGB_PSO 0.934 5.391 
GB_PSO 0.936 5.56 
ANN 0.975 0.028 

333 [107] 2023 
MLR 0.893 0.178 
kRN_PSO (DL) 1.0000 0.2087 

799 This Study 2023 

kRN (DL) 0.9998 0.2473 
MLP (ML) 0.9990 0.4138 
BPNN (ML) 0.9272 3.9063 
ResNet (DL) 0.8447 5.7212 
stackedLSTM (DL) 0.6260 8.8100 
 
4.1.3. RAC Mixture Proportioning and Optimization 
The Keras Recurrent Neural Network integrated with Particle Swarm Optimization (KRN-PSO) was 
employed to optimize the mixture design process while predicting the compressive strength of concrete 
with recycled concrete aggregate (RCA). The primary goal was to determine cost-effective mixtures that 
met required compressive strength classes while considering material costs. 
Key Outcomes and Insights 
• Superior Performance: The kRN model outperformed all other models, prioritizing reductions in the 
use of costly components such as cement, leading to more economically viable and environmentally 
friendly mixtures with reduced CO₂ emissions. 
• RCA Maximization: High RCA limits ensured its maximum utilization, enhancing sustainability. 
• Cost Savings: As shown in Table 3.6, the KRN-PSO model achieved significant cost reductions, such 
as a 45% cost reduction for the 35 MPa strength class while maintaining similar compressive strength 
levels. 
• Material Redistribution: The water-to-cement ratio (0.68) remained constant between base and 
optimized mixtures; however, the optimized mixture redistributed materials, adjusting quantities of sand 
and RCA for improved performance. 
Optimization Effectiveness 
• Identifying Complex Relationships: The model effectively determined optimal proportions for water-
to-cement ratio, recycled aggregate quantities, and target compressive strength (Table 4.7), demonstrating 
its ability to handle intricate interdependencies within the dataset. 
• Enhanced Properties: Despite reducing cement content, the optimized mixtures met or slightly 
exceeded compressive strength requirements, improving RCA's quality, durability, and strength. 
This validates the effectiveness of KRN-PSO in optimizing RCA mixtures for sustainable construction. 
By balancing economic and environmental considerations, this innovative approach enables the 
development of cost-efficient, high-performance concrete mixtures that contribute to sustainable 
construction practices. 
 
Table 4.7 Keras Recurrent Neural Network & Particle Swarm Optimization 

Random 
Seed 

Train Test 
MAE RMSE MAPE R2 MAE RMSE MAPE R2 

RS=33 0.113 0.155 0.376 1 0.114 0.166 0.339 1 
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RS=365 0.142 0.19 0.523 1 0.165 0.22 0.663 1 
RS=678 0.123 0.175 0.539 1 0.16 0.244 0.593 1 
RS=2023 0.121 0.169 0.416 1 0.139 0.194 0.481 1 
RS=3084 0.141 0.186 0.479 1 0.151 0.211 0.488 1 
Rs=4042 0.144 0.191 0.438 1 0.157 0.217 0.442 1 
MEAN 0.1307 0.1777 0.4618 1 0.1477 0.2087 0.501 1 
SD 0.0121 0.0129 0.0578 0 0.0171 0.0241 0.1041 0 

 
5. Conclusions and Recommendations 
5.2. Conclusions 
The purpose of this work was to assess and contrast the performances of different AI models for predictive 
work with an emphasis on their use in optimizing recycled aggregate concrete (RAC) mixtures. The main 
findings are: 
1. AI Model Performance: 
• The kRN model had the greatest efficiency with the optimal performance metrics it achieved, thus 
making it ideal for datasets of comparable characteristics. 
• Models such as MLP, BPNN, and ResNet also demonstrated considerable performance, making them 
viable options based on setting and dataset characteristics. 
• The Stacked LSTM model performed poorly in this research, emphasizing the need for model 
selection and that highly complex or popular models are not the best for every dataset. 
• Model performance is highly dependent on the nature of the dataset, and the results cannot necessarily 
be translated to datasets with different characteristics. 
2. AI in Concrete Production: 
• AI and deep learning methods provide immense advantage in creating improved concrete mixtures 
with high accuracy in forecasting properties such as compressive strength. 
• The recycling of RAC promotes environmental sustainability through minimizing the use of materials, 
carbon footprint, and expenses. 
Recycling of concrete blocks, particularly in such environments as Iraq, helps in preserving natural 
resources and lowering environmental effects while cutting back on production expenses of protective 
concrete blocks. 
 
5.3. Recommendations 
For AI Models: 
1. Evaluate a range of AI models for predictive tasks, as model selection significantly impacts prediction 
accuracy. 
2. Leverage the kRN model for datasets with similar characteristics, given its superior performance. 
3. Investigate the underperformance of Stacked LSTM in this scenario to uncover potential 
improvements or limitations. 
4. Conduct additional comparative studies across diverse domains and datasets to further generalize 
these findings. 
For Optimizing Concrete Production: 
1. Use AI to optimize RAC production processes, maximizing the value and applications of recycled 
concrete. 
2. Focus future research on practical implementations of optimized processes in real-world scenarios, 
such as recycling protective concrete blocks in Iraq. 
3. Explore the environmental, economic, and practical impacts of AI-optimized RAC production across 
varying contexts and environments. 
This study underscores the transformative potential of AI in sustainable construction, emphasizing both 
economic benefits and environmental responsibility. 
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