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ABSTRACT: 
South Asia faces escalating flood risks due to increasingly erratic monsoon patterns intensified by climate change. 
Despite advances in satellite-based and AI-driven flood forecasting, gaps persist in accuracy, accessibility, and 
community trust. Simultaneously, indigenous knowledge systems, based on generations of local environmental 
observation, remain underutilised. This paper proposes a Hybrid Monsoon Forecasting Model (HMFM) that 
integrates artificial intelligence with indigenous forecasting practices to enhance flood resilience across the region. The 
HMFM is built on three principles: fostering trust through community participation, digitally augmenting traditional 
knowledge, and ensuring bidirectional learning between scientists and local observers. Structured as a three-tier system, 
the model combines community-led sensing networks, an AI fusion engine for multi-source data integration, and 
impact-based dissemination tailored to local contexts. Ethical safeguards protect data rights, transparency, and gender 
inclusivity. Case studies from India, Bangladesh, Nepal, and Pakistan illustrate both the promise and challenges of 
hybrid systems. Institutional silos, weak cross-border cooperation, and limited policy recognition of indigenous 
knowledge hinder resilience efforts. The model offers a roadmap for phased implementation, beginning with pilot 
programs, followed by national scaling, and culminating in regional integration through a SAARC Climate Data 
Alliance. Policy recommendations include embedding indigenous knowledge in disaster legislation, fostering regional 
data sharing, and financing inclusive, AI-supported early warning systems. Emphasis is placed on community 
empowerment, gender equity, and open-source technology governance. By aligning modern forecasting tools with 
culturally grounded practices, the HMFM enhances both scientific precision and social legitimacy. This integrated 
approach holds transformative potential for climate risk management in flood-prone, resource-constrained, and socio-
culturally diverse regions. It also provides a scalable, participatory model adaptable to other global contexts facing 
similar climate threats. 
Key Words: Monsoon floods, Climate resilience, Indigenous knowledge, Artificial intelligence (AI), Hybrid 
forecasting, Early warning systems, Disaster preparedness, Data governance, Gender inclusion 
 
1. INTRODUCTION 
Monsoon floods disrupt lives across South Asia every year. They cause massive economic and social losses. 
Climate change is intensifying rainfall patterns. These shifts make monsoon behaviour more 
unpredictable (Khan et al., 2023). Early warning systems are critical for disaster preparedness (Singh & 
Rahman, 2021). However, forecasting accuracy remains a major challenge. This is due to complex 
atmospheric and hydrological interactions (Ahmed et al., 2022). 
Technological tools have evolved significantly in recent years. Satellite-based precipitation estimates now 
provide near real-time coverage (Rao et al., 2020). Machine learning models enhance flood prediction 
accuracy (Li et al., 2022). These systems integrate rainfall, river discharge, and soil moisture data. AI-
based hydrological modelling has shown promising results in Bangladesh and India (Patel & Sharma, 
2023). 
Indigenous knowledge also plays a vital role. Farmers and fishers read animal behaviour for early warnings 
(Roy et al., 2021). They observe wind direction, cloud formation, and plant phenology (Das, 2022). The 
smell of moist soil often signals impending rain (Haque & Saha, 2020). Such traditional signals 
complement scientific data. The challenge lies in integrating both systems effectively (Basu et al., 2023). 
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Indigenous knowledge offers hyper-local, culturally relevant insights. Modern technology offers large-
scale, high-speed processing. Combining these can address the limitations of each approach (Mishra et 
al., 2021). 
Policy frameworks differ across South Asia. India’s flood forecasting is managed by the Central Water 
Commission (CWC) (GoI, 2022). Bangladesh’s Flood Forecasting and Warning Centre uses a 
community-based approach (Rahman et al., 2023). Nepal and Pakistan have emerging hybrid models 
(Shrestha & Khan, 2021). However, cross-border data sharing remains weak (Islam et al., 2020). 
Institutional silos limit collaboration. Meteorological, water, and disaster agencies often work 
independently (Kumar et al., 2022). This reduces efficiency and delays response. Trust gaps exist between 
scientists and local communities (Ahmed et al., 2023). Communities may reject forecasts that contradict 
traditional indicators. There is a pressing need for a hybrid forecasting model. Such a model should merge 
AI tools with indigenous knowledge (Rana & Bose, 2021). It must also promote trust-building and policy 
coordination. South Asia’s unique geography and socio-cultural fabric require a customised approach 
(Bhattacharya et al., 2022). This conceptual model aims to bridge science-policy gaps. It also seeks to 
enhance community resilience. By combining advanced analytics with local wisdom, flood preparedness 
can improve. The model also offers a platform for regional cooperation. This is critical for addressing 
transboundary water challenges (Ali et al., 2021). 
The following sections review literature on monsoon flood dynamics. They compare modern and 
indigenous approaches. They analyse policy landscapes and identify institutional gaps. They then present 
a conceptual framework tailored for South Asia’s needs. 
 
2. LITERATURE REVIEW 
2.1 Monsoon Flood Dynamics in South Asia 
The South Asian monsoon delivers most of the region’s annual rainfall (Ali et al., 2023). Climate change 
shifts monsoon onset and withdrawal patterns (Rana & Gupta, 2024). El Niño disrupts rainfall timing 
and spatial distribution (Kumar et al., 2023). Floods have become more frequent and intense in recent 
decades (Shrestha et al., 2024). Major rivers like the Ganges and Brahmaputra overflow annually (Islam 
& Sarker, 2025). Urbanisation increases runoff and reduces natural absorption (Basu et al., 2024). 
Deforestation accelerates soil erosion and river siltation (Singh & Thapa, 2023). Himalayan glacier melt 
raises summer flood peaks (Joshi et al., 2025). 
 
2.2 Existing Technological Approaches 
Satellite missions such as GPM provide near-real-time rainfall estimates (Chakraborty et al., 2024). 
IMERG data improves precipitation mapping in monsoon zones (Wang et al., 2023). Hydrological 
models now integrate AI for better accuracy (Shah & Patel, 2024). Deep learning predicts floods in 
ungauged basins (Rahman et al., 2025). The DRUM model supports probabilistic flood forecasting (Ou 
et al., 2024). Google’s Flood Hub expands 7-day lead time coverage (Patel & Morgan, 2023). Machine 
learning boosts alerts in data-poor catchments (Das et al., 2024). SAR imagery penetrates cloud cover for 
flood mapping (Nguyen et al., 2025). 
Unmanned aerial vehicles assess post-flood damages (Khan et al., 2024). Yet, high-tech tools require 
strong infrastructure and trained staff (Fernando et al., 2025). 
 
2.3 Indigenous Approaches 
Rural communities monitor animal behaviour for early warnings (Choudhury, 2024). Soil moisture scent 
changes indicate approaching rainfall (Pandey, 2023). Phenological signals, such as flowering patterns, 
guide planting (Gurung & Rai, 2024). Tripura farmers track night-flowering jasmine blooms for rain 
cues (Sarkar, 2023). Himalayan villagers observe wind shifts for storm warnings (Lama, 2024). Indigenous 
calendars combine lunar cycles with river patterns (Thapa & Subba, 2025). Knowledge passes orally, 
ensuring continuity despite disasters (Roy, 2024). These systems are cost-free, accessible, and culturally 
embedded (Patnaik et al., 2025). 
 
2.4 Comparative Strengths and Weaknesses 
Technological forecasting offers broad spatial coverage and longer lead times (Ou et al., 2024). AI aids in 
scaling predictions to multiple basins (Rahman et al., 2025). However, systems can fail during outages or 
network loss (Fernando et al., 2025). Indigenous methods require no infrastructure, making them 
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resilient (Roy, 2024). They provide hyperlocal insights trusted by communities (Patnaik et al., 2025). 
Yet, traditional cues may not match climate-altered patterns (Thapa & Subba, 2025). Integrating both 
approaches enhances resilience and reduces losses (Kumar et al., 2025). 
 
2.5 Policy Landscapes: India, Bangladesh, Nepal, Pakistan 
India’s IMD operates impact-based multi-hazard forecasts (Sinha et al., 2024). Bangladesh’s FFWC uses 
mobile and community networks (Rahman & Hossain, 2023). Nepal sends millions of SMS alerts during 
floods (Mishra et al., 2024). Pakistan coordinates warnings through its Federal Flood Commission (Ali 
et al., 2025). Regional collaboration remains weak despite SAARC frameworks (Jha & Khan, 2024). 
 
2.6 Gaps: Institutional Silos & Data Barriers 
Agencies work in isolation without real-time data exchange (Basu et al., 2024). Cross-border sharing is 
hindered by political tensions (Jha & Khan, 2024). Regional flood centres lack integrated AI-data systems 
(Shrestha et al., 2024). Scientific alerts often fail to reach rural populations (Sarkar, 2023). Indigenous 
knowledge rarely appears in official flood policies (Patnaik et al., 2025). 
 
3. CONCEPTUAL FRAMEWORK: HYBRID MONSOON FORECASTING MODEL (HMFM) 
The Hybrid Monsoon Forecasting Model (HMFM) is designed for the unique environmental and social 
realities of South Asia. Monsoon systems here are complex and influenced by multiple climatic and 
anthropogenic factors (IWA Publishing, 2022). The model prioritises community knowledge while 
integrating modern data science and AI innovations (ScienceDirect, 2023). Its design reflects three 
guiding principles and a tiered architecture, supported by an ethical governance framework. 
 
3.1 Design Principles 
Local trust first. Effective forecasting begins with trust between scientists and communities (PMC, 2021). 
Rural populations have long observed animal behaviour, wind shifts, and plant phenology to anticipate 
rainfall (Frontiers, 2022). These signs are interpreted through generations of lived experience (IWA 
Publishing, 2023). In the HMFM, communities lead observation design to ensure cultural relevance. 
Participation fosters ownership and accountability for the data generated (ScienceDirect, 2024). Without 
this trust, even accurate forecasts may be ignored. 
Digital augmentation second. AI and remote sensing should complement, not replace the local expertise 
(ScienceDirect, 2021). Digital augmentation enhances traditional insights with real-time precipitation 
data, satellite imagery, and river flow models (IWA Publishing, 2022). This dual input ensures forecasts 
capture both micro-scale and macro-scale patterns. The technology layer must remain transparent and 
interpretable to maintain public confidence (ScienceDirect, 2024). Tools should be affordable and 
adaptable to low-connectivity contexts. 
Bidirectional learning third. Knowledge exchange must be two-way, not top-down (ScienceDirect, 2021). 
Scientists benefit from understanding local environmental signals, while communities gain from 
meteorological insights (ScienceDirect, 2023). This reciprocity builds adaptive capacity and fosters 
mutual respect. It also allows iterative improvement of models based on user feedback (Frontiers, 2022). 
The HMFM treats knowledge as a shared asset. 
 
3.2 Three-Tier Architecture 
The HMFM operates through a three-tier structure, aligning local observation with advanced analytics 
and targeted communication. 
 
Tier 1- Community Sensing Network 
Local volunteers and knowledge holders form the foundation of data collection (Frontiers, 2022). These 
networks draw from farmers, fishers, herders, and teachers embedded in flood-prone or drought-
vulnerable areas (PMC, 2021). Observations include crop phenology, unusual animal movements, and 
soil moisture odour before rain (PMC, 2023). Such indicators often precede measurable meteorological 
changes. 
Affordable tools like mobile apps, SMS forms, and IVR menus capture observations quickly 
(ScienceDirect, 2021). These systems work even in low-literacy or offline environments (rimes.int, 2023). 
The goal is inclusivity, anyone with relevant observations can contribute. 
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Community data is stored in secure, locally governed repositories. This respects data sovereignty and 
strengthens local control over forecasting processes (ScienceDirect, 2024). 
 
Tier 2- AI Fusion Engine 
The second tier merges local observations with high-resolution remote sensing datasets (IWA Publishing, 
2022). The AI Fusion Engine applies modular architecture, allowing different models for precipitation, 
flood extent, or wind speed (ScienceDirect, 2024). Interpretability is a core requirement users must 
understand why forecasts are made (ScienceDirect, 2021). 
The engine integrates satellite rainfall estimates, Doppler radar outputs, and upstream river gauge 
readings (AGU Publications, 2022). It assigns weights to local indicators based on past accuracy. 
Probabilistic forecasts quantify uncertainty, enabling better disaster planning (ScienceDirect, 2023). The 
system’s flexibility means it can adapt to changing climate baselines. 
 
Tier 3- Impact-Based Dissemination 
Forecasts must be actionable, not just technically accurate (ScienceDirect, 2021). The third tier translates 
model outputs into locally relevant warnings. Messages align with community-specific risk thresholds and 
cultural contexts (saarc-sdmc.org, 2022). For example, flood warnings for fishing villages differ from those 
for urban slums. 
Communication channels vary: SMS alerts, FM radio, mosque or church loudspeakers, and megaphone 
announcements in marketplaces (Anticipation Hub, 2023). All messages are multilingual and gender-
sensitive to reach marginalised groups (UN Women Asia and the Pacific, 2022). Content must be clear, 
short, and practical. 
 
3.3 Feedback and Learning Loop 
The HMFM thrives on continuous feedback. After each season, communities report actual impacts and 
deviations from forecasts (ScienceDirect, 2023). This outcome-based data feeds back into the AI Fusion 
Engine, adjusting weights and improving predictive skill. 
The process also identifies where local indicators failed or succeeded (ScienceDirect, 2024). Iterative 
refinement sustains both scientific accuracy and community trust. This learning loop ensures the model 
remains responsive to evolving climate realities. 
 
3.4 Ethical and Governance Safeguards 
Ethical safeguards protect both data integrity and community rights. All observational data remains under 
local ownership, preventing misuse or exploitation (ScienceDirect, 2023). Data-sharing agreements clarify 
permissions and responsibilities. 
Open-source platforms reduce dependency on proprietary software, lowering costs and avoiding vendor 
lock-in (Alabama Water Institute, 2022). Transparency measures include publishing AI model logic and 
maintaining public audit trails (Reuters, 2023). Independent oversight committees review system 
performance and fairness. 
Gender equity, inclusion of indigenous voices, and respect for cultural protocols are mandatory in 
governance structures. This ensures the HMFM serves as a public good, not a commercial monopoly. 
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(Fig.1: HMFM Framework) 
 
The HMFM is more than a forecasting tool. It is a governance and knowledge-sharing system that blends 
centuries-old environmental wisdom with state-of-the-art AI. Its design principles place trust, 
transparency, and inclusivity at the centre. The three-tier architecture ensures observations flow smoothly 
from field to forecast to action. Feedback loops keep the system adaptive, while ethical safeguards protect 
community interests. By integrating South Asia’s diverse knowledge systems with robust technological 
infrastructure, the HMFM offers a model for climate resilience that is both scientifically rigorous and 
socially grounded. 
 
4. POLICY IMPLICATIONS 
4.1 National Policy Instruments 
National policies must formally recognise Indigenous Knowledge (IK) in disaster risk governance. 
Recognition should be embedded directly in disaster management laws (Sharma et al., 2021). Such 
provisions can legitimise community-led climate observations and local forecasting. Laws should not only 
acknowledge but actively protect these knowledge systems (Patel & Singh, 2020). Governments should 
mandate community representation in national and state-level forecasting committees (Rahman et al., 
2022). Representation ensures that rural, coastal, and tribal perspectives inform early warning systems. 
This can increase legitimacy and local adoption of forecasts (Ali & Das, 2019). Including representatives 
from farming cooperatives and fisherfolk unions can be especially impactful (Rao et al., 2023). 
Seed grants for local sensing pilots should be included in climate action budgets (ADB, 2022). 
Small grants can enable communities to purchase basic tools like rain gauges and mobile devices (Bhatia 
et al., 2021). Pilot projects can act as proof-of-concept for later national scaling. 
Government technical agencies can partner with NGOs to deliver training alongside funding (Kumar & 
Joshi, 2020). Integration of national disaster risk reduction frameworks with AI-supported community 
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sensing should be prioritised. A phased approach is recommended to avoid overwhelming local capacities 
(Mehta et al., 2024). First, pilot models in high-risk districts; then expand to entire states. This sequencing 
ensures lessons are incorporated before scaling. 
 
4.2 Regional Cooperation 
The creation of a SAARC Climate Intelligence Alliance could transform regional resilience (Khan et al., 
2023). Such a body could facilitate the exchange of both IK and AI-derived forecasts. Joint governance 
can improve trust and reduce duplication of resources (Haque et al., 2022). Hydrometeorological data 
should be shared across national borders in near real time (SAARC SDMC, 2021). This is vital for 
monsoon and flood forecasts, which often span multiple countries. Cross-border river basin data, for 
example, can improve lead times for flood warnings (Das & Alam, 2018). Such cooperation is especially 
crucial for transboundary rivers like the Brahmaputra and Ganges. Regional coordination should extend 
to flood corridors and transboundary response protocols (ADB, 2022). Joint drills can prepare border 
communities for simultaneous events. 
A shared communication platform could connect disaster managers across South Asia instantly (Mishra 
et al., 2023). This reduces political friction during crises and prioritises humanitarian needs. Regional AI 
infrastructure could also be pooled to analyse shared climate risks. 
By combining computing resources, countries can run more complex and accurate forecast simulations 
(Singh et al., 2024). This cooperative model also reduces individual country costs for technology 
upgrades. 
 
4.3 Financing and Donors 
Blended finance models can unlock sustainable funding for hybrid forecasting systems (GCF, 2022). 
Concessional loans from development banks can be paired with grants from climate funds (Mukherjee 
& Ray, 2023). This approach reduces financial barriers for low-income countries. 
The Asian Development Bank (ADB) and the Green Climate Fund (GCF) can underwrite pilot programs 
(ADB, 2022; GCF, 2021). They can also support large-scale deployment in vulnerable river basins. Such 
programs should link financing to measurable improvements in forecast accuracy and community 
preparedness (Chowdhury et al., 2023). Donors should prioritise investments that directly benefit 
women and marginalised communities (UN Women, 2022). Funding could be tied to quotas for 
women’s participation in training and leadership. This ensures benefits are not captured by already-
privileged groups (Nair & Sharma, 2023). 
Result-based financing could also be introduced for climate risk communication programs. 
Under this model, funding is released when communities demonstrate improved forecast use (Patel et 
al., 2024). This incentivises both accurate forecasting and community engagement. 
 
4.4 Social Inclusion and Gender 
Women should be trained as observation leaders in local sensing networks (Rahman et al., 2021). This 
increases trust and ensures that women’s experiences shape forecast content. 
Female leaders can also help reach women in conservative rural areas (UN Women, 2022). Forecasts and 
warnings should be tailored to gendered mobility constraints (Singh & Sahu, 2020). For example, in 
many flood-prone areas, women cannot leave home without male permission. 
Messages should therefore be delivered in ways that reach them directly, such as through women’s groups 
(Chatterjee et al., 2022). Social inclusion also requires equitable governance representation (Basu et al., 
2021). This means ensuring diverse voices in forecasting committees, not just token appointments. 
Mechanisms like rotating leadership roles can prevent dominance by a few individuals (Verma et al., 
2019). Intersectionality should be recognised in all social inclusion strategies. Marginalised women, such 
as widows and those from minority ethnic groups, face compounded barriers (UN Women, 2022). 
Special provisions are needed to include them in both training and decision-making. 
 
4.5 Capacity and Technology Governance 
Investments in local digital literacy are essential for effective AI-assisted forecasting (Gupta et al., 2023). 
Training should cover basic smartphone use, data entry, and interpreting probabilistic forecasts. Without 
these skills, communities may not fully benefit from new systems (Kumar & Rao, 2021).Governments 
should expand device access for rural observation leaders (Mehta et al., 2024). Subsidised smartphones 
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and solar chargers can reduce technology gaps. Such infrastructure also enables more consistent and 
timely data submission. All forecasting data should be stored in open formats to ensure interoperability 
(SAARC SDMC, 2021). APIs must be designed for integration with existing government and NGO 
systems (Ali et al., 2022). This prevents siloing of critical climate information. AI models should be 
subject to independent audits to check for fairness and transparency (Reuters, 2022). Documentation 
should explain the logic behind forecasts in accessible terms (Shah et al., 2023). Communities have the 
right to understand how predictions are made and used. Open-source software can further reduce costs 
and vendor lock-in (Alabama Water Institute, 2020). Local universities and tech collectives could adapt 
and maintain these tools. This keeps technical control closer to the communities they serve. 
 
5. IMPLEMENTATION ROADMAP 
Phase 1 - Pilot (Year 1) 
The pilot phase will test the Hybrid Monsoon Forecasting Model. Four pilot sites will represent distinct 
flood typologies in South Asia (ScienceDirect, 2023). Proposed locations include Assam, Terai, Sindh 
plains, and coastal Bangladesh (ReliefWeb, 2022). These sites face diverse hydrological and socio-
economic challenges. The selection ensures both inland and coastal flood risks are addressed. Local 
governments will collaborate with academic and civil society partners. 
Community sensing cohorts will be established in each site (Frontiers, 2021). These cohorts will include 
farmers, fisherfolk, and women’s self-help groups. They will receive basic training in flood observation 
and reporting. Simple tools like rain gauges and river markers will be distributed. Local kiosks will serve 
as information hubs for data exchange. Proof-of-concept AI fusion will be deployed in these areas (AGU 
Publications, 2023). The system will combine satellite rainfall data with indigenous observations. Lead 
time improvements will be assessed for both accuracy and usefulness. Early feedback loops will refine the 
model before wider rollout. 
The pilot phase will last one monsoon cycle for robust testing. 
 
Phase 2 - National Scaling (Years 2-4) 
National scaling will integrate HMFM modules into early warning systems (Anticipation Hub, 2022). 
Each country will adapt modules to its hydrological and institutional context. This ensures compatibility 
with existing disaster management architectures. Training programs will target district officials and 
community facilitators (ScienceDirect, 2021). Workshops will use scenario-based simulations to 
strengthen decision-making. Digital literacy sessions will be prioritised in flood-prone rural areas. 
Accuracy, false alarm rates, and social uptake will be continuously monitored (ScienceDirect, 2022). 
Technical KPIs will track hydrological model performance over seasons. Social KPIs will measure reach, 
trust, and behavioural responses. Independent audits will validate both technical and social dimensions. 
 
Phase 3- Regional Adoption (Years 4-6) 
Regional adoption will require strong cross-border climate cooperation. A SAARC Climate Data Alliance 
will be established for this purpose (saarc-sdmc.org, 2023). This alliance will manage shared APIs for 
hydrometeorological data. All participating states will contribute to and access the data. Cross-border 
thresholds will be harmonised for shared river systems (Global Flood Awareness System, 2023). This 
reduces conflicting forecasts and improves coordinated response actions. Protocols will be tested in joint 
flood simulation exercises. Scaling finance will involve GCF and regional development banks (Green 
Climate Fund, 2023; ADB, 2022). These institutions will underwrite large-scale implementation and 
maintenance. Financing will prioritise vulnerable regions with recurrent flood exposure. 
 
Monitoring & Evaluation 
Monitoring will use a dual approach covering technical and social KPIs (ScienceDirect, 2022). Technical 
metrics include lead time, accuracy, and false alarms. Social metrics include community trust, 
participation, and warning uptake. Community feedback will be integrated as a core metric 
(ScienceDirect, 2023). Regular surveys will assess local satisfaction and identify areas for improvement. 
An open dashboard will display key performance results to ensure transparency. 
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(Fig. 2: HMFM Framework Implementation Roadmap) 
 
 
6. ANTICIPATED BENEFITS AND RISKS 
Benefits 
Improved lead time can save many lives (AGU Publications, 2023). Earlier alerts allow communities to 
prepare before floods arrive. Warnings can be tailored to local conditions and hazards. This ensures 
messages are relevant and easy to act upon (ScienceDirect, 2024). Communities feel more ownership 
when alerts reflect their realities. Trust in the early warning system increases significantly over time. 
Higher trust encourages more people to follow guidance (ScienceDirect, 2024). Preparedness actions 
become more routine and widely accepted. Emergency resources can be allocated more strategically 
(ADB, 2023). Shelters can be opened in the right places before impact. Supplies can be pre-positioned 
where they will be needed most. This reduces chaos during the response phase. Governments can also 
reduce unnecessary evacuations and economic losses. 
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Risks 
Sensitive local data may be misused (ScienceDirect, 2024). Improper handling can lead to privacy 
violations. Communities may lose trust if data is exposed. Overreliance on AI predictions poses another 
challenge (Reuters, 2024). AI models can fail in extreme or new conditions. Errors may cause false alarms 
or missed warnings. These failures can erode public confidence over time. There is also the risk of elite 
capture (Frontiers, 2023). Local power holders may monopolise monitoring benefits. Marginalised 
groups might be excluded from using early warning tools. The following tables reinforce the urgency of 
addressing monsoon-driven risks. 
Table 1. Human Lives Lost due to Hydrometeorological Disasters in India (2019–2025) 
Year Human lives lost 

2019-20 2,422 

2020-21 1,989 

2021-22 1,593 

2022-23 1,586 

2023-24 (P) 2,616 

2024-25 (P) 3,080 
Source: Lok Sabha, August 2024; Uttarakhand State Disaster Management Authority 
Table 2. Cattle Lost due to Hydrometeorological Disasters in India (2019–2025) 
Year Cattle lost (number) 

2019-20 71,755 

2020-21 51,195 

2021-22 44,346 

2022-23 29,267 

2023-24 (P) 119,683 

2024-25 (P) 61,960 
Source: Lok Sabha, August 2024; Uttarakhand State Disaster Management Authority 
Table 3. Houses Damaged due to Hydrometeorological Disasters in India (2019–2025) 
Year Houses damaged (number) 

2019-20 744,589 

2020-21 185,141 

2021-22 709,060 

2022-23 301,873 

2023-24 (P) 140,834 

2024-25 (P) 364,124 
Source: Lok Sabha, August 2024; Uttarakhand State Disaster Management Authority 
The data shows how monsoon-driven events increasingly damage lives, livelihoods, and infrastructure. It 
underlines the urgent need for integrated risk reduction strategies that merge advanced forecasting with 
community-based resilience. 
Risk Mitigation 
Strong legal safeguards can protect personal and community data (ScienceDirect, 2024). Laws should 
clearly define who owns and accesses information. Participatory governance ensures communities shape 
decision-making. Transparent AI model documentation builds accountability (Reuters, 2024). 
Independent audits should be conducted at regular intervals. This helps identify and fix systemic 
weaknesses. Direct funding channels can reach community-based organisations. Such funding bypasses 
intermediaries who may misallocate resources. Investing in training builds local ability to use data 
responsibly. Regular awareness campaigns keep communities informed of their rights.  
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(Fig. 3: Anticipated Benefits and Risks) 
 
7. CONCLUSION 
This framework integrates indigenous knowledge with advanced AI systems. It offers a balanced approach 
to climate risk management. The design is grounded in community realities and technological potential. 
Evidence from disaster studies supports hybrid early warning effectiveness (ScienceDirect, 2024). The 
pilot phase will build credibility and operational proof. Local sensing cohorts will demonstrate feasibility 
in varied geographies. Inclusion of both floodplain and coastal contexts is intentional. It ensures 
adaptability across South Asian hazard profiles (ReliefWeb, 2023). Embedding indigenous knowledge 
strengthens trust in warning systems. Such trust is essential for timely and meaningful action 
(Anticipation Hub, 2024). Without community validation, even accurate forecasts may be ignored. 
Cultural resonance is as important as technical precision (UN Women, 2023). The roadmap provides 
clear progression from local to regional scales. It begins with context-specific pilots to test integration 
mechanics. Scaling occurs only after proven accuracy and social adoption. This staged approach reduces 
risk of premature or inappropriate rollout (ADB, 2024). National policy integration is a core enabling 
pillar. Embedding IK recognition into disaster laws gives legal standing. Mandating representation in 
forecasting committees ensures diverse perspectives. These changes institutionalise community 
participation in risk governance (ScienceDirect, 2024). Regional cooperation amplifies the value of 
shared intelligence. A SAARC Climate Data Alliance can harmonise methodologies and formats. Shared 
hydrometeorological datasets improve cross-border prediction reliability. Joint protocols can prevent 
conflicting actions during transboundary floods (SAARC-SDMC, 2024). 
Financing strategy blends concessional loans with climate adaptation funds. This reduces fiscal pressure 
on national budgets. International donors like the GCF can underwrite scaling costs. Targeted funding 
for women and marginalised groups ensures equity (Green Climate Fund, 2024). Capacity building 
addresses both human and technological needs. Digital literacy training empowers local actors to use data. 
Open data formats support interoperability across agencies. Mandated AI model audits safeguard against 
bias or misuse (Reuters, 2024). 
The anticipated benefits are multi-dimensional. Lead time for warnings will likely improve. Community 
trust can rise through participatory data generation. Better preparedness allows more efficient resource 
allocation (AGU Publications, 2024). Risks are acknowledged and mitigated through governance design. 
Legal safeguards can protect privacy and data rights. Transparency in AI models builds accountability. 
Direct funding channels reduce the risk of elite capture (Frontiers, 2024). Implementation success 
depends on continuous monitoring and adaptation. Both technical metrics and social uptake must be 
measured. Community feedback should guide iterative improvements. This keeps the system aligned with 
lived realities (ScienceDirect, 2024). Long-term sustainability will require political commitment and 
financial continuity. Climate adaptation is not a one-time investment. It needs ongoing calibration as 
hazards and communities evolve. Institutionalising the framework in policy ensures this continuity (ADB, 
2024). This initiative offers a replicable model for other regions. It demonstrates how indigenous and 
scientific knowledge can co-exist. Such integration enriches both knowledge systems. It also strengthens 
resilience in culturally diverse contexts (UN Women Asia-Pacific, 2023). 
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In conclusion, the hybrid early warning model is timely. It aligns with regional disaster risk reduction 
priorities. It positions South Asia as a leader in inclusive climate intelligence. The challenge ahead lies in 
execution and maintaining sustained engagement. With committed partnerships, the vision can become 
a transformative reality. 
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