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Abstract: Electric vehicles (EVs) significantly depend on lithium-ion batteries with monitoring of the State of Charge 

(SOC) and estimation of the battery life time being crucial to safety, enhancing operating life, and confidence by the 

user. Is the first of its kind to present a joint framework of SOC estimation and battery health and Remaining Useful 

Life (RUL) forecast. The method combines modern deep neural networks, namely Long Short-Term Memory (LSTM), 

Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), and two-dimensional Convolutional Neural 

Networks (CNN2D), which were all optimized along the Bayesian code structure and do not require trial-and-error, 

but perform optimally. Based on these, classical machine learning baselines, Linear Regression, Support Vector 

Machine (SVM), XGBoost are employed in benchmarking. The models are then trained using rich time-series data 

including voltage, current, temperature and engineered features so that the models can capture the short-term dynamics 

and long-term degradation trends. In addition to the SOC estimation, the framework unites capacity fade modeling, 

cycle life and calendar aging studies, helping create precise RUL estimates. Through experimental analysis, Bayesian- 

optimized deep learning models are found to outperform conventional approaches consistently in terms of both SOC 

accuracy and prediction of the lifespan of EV batteries, providing a robust, data-driven addition to the battery 

management system of an EV. This dual functionality contributes not only to efficient energy consumption, but enables 

proactive maintenance methodology, so as to minimize down-time and the costs of operation. 
Keywords: State of Charge (SOC), Lithium-ion Battery, Bayesian Optimization, Deep Learning, LSTM, BiLSTM, 

GRU, CNN2D, Battery Degradation, Capacity Fade, Remaining Useful Life (RUL), Cycle Life prediction, Electric 

 Vehicle (EV), Battery Management System (BMS).  

 

1. INTRODUCTION 

The life blood of contemporary electric vehicles (EVs) lithium-ion batteries have become commonplace 

in small urban vehicles as well as electric super cars. To run safely and effectively, two aspects of battery 

monitoring are vitally important to these vehicles: not only is it essential to know precisely how much is 

left, so-called State of Charge (SOC), it is equally important to know how long before the battery is 

depleted, referred to as Remaining Useful Life (RUL). 

Proper estimation of the SOC can assist the driver to prevent any unexpected loss of power, the most 

favorable charging and discharging pattern, and energy management to improve range. In the same way, 

trustful lifespan prediction enables vehicle owners and fleet managers to schedule maintenance or battery 

replacement prior to the significant drop in performance, thus making it cheap and avoiding failures. 

Nonetheless, the estimation of the SOC and RUL is by no means easy. The behavior of batteries is 

affected by a great number of factors which include: any temperature changes, usage patterns, charging 

rates, and chemical aging. Classical methodologies, including the equivalent circuit model and the 

Kalman filter are subject to the risk of deforming in a controlled environment but failing at the 

complexities of reality. We address these issues in this project through a data-driven approach that merges 

deep learning techniques such as LSTM, BiLSTM, GRU and CNN2D with Bayesian Optimization to 

enable automatic tuning of the hyperparameters. This is combined will allow the models to learn complex 

patterns in time series data that exists in battery data including voltage, current and temperature, but has 

the benefit of circumventing the inefficiency of manual parameter selection. In addition to SOC 

estimation, our system has a battery degradation analysis pipeline that can simulate capacity fade, cycle 

life, and calendar aging, which would be capable of predicting future RUL with considerable levels of 
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confidence. This paper offers a realistic upgraded Battery Management Systems (BMS) in an EV by 

combining the functions of proper SOC tracking and lifespan prediction into one, intelligent device. The 

result is not only higher driving reliability and a battery that is safer, but also smarter maintenance 

planning, longer battery life and the greatest possible returns on investments in electric mobility solutions. 

1.1. Introduction to Electric Vehicles and Battery Management 

Electric vehicles (EVs) are quickly changing our perception of transportation as they represent a greener, 

silent and more efficient vehicle compared to petrol-run cars. The battery will be at the core of any EV, 

the most important power source which will dictate the specifics of how far the car can go, how fast it can 

speed up and how long it will last before requiring a charge or a replacement. There exist various 

technologies of batteries and lithium-ion batteries have been seen to be used as the preferred battery type 

since they have high energy density, are lightweight and slightly have a long life. 

The efficiency and the safety of an EV however relies strongly on the effectiveness of monitoring the 

battery and managing it. In this case the Battery Management System (BMS) comes to play an essential 

role. The BMS is the brain of battery, continuously monitors the parameters such as voltage/current/ 

temperature / State of Charge (SOC) to keep them in ideal condition. It also protects against such 

hazardous circumstances as overcharging, deep discharge or overheating. In addition to monitoring, day- 

to-day battery monitoring is now anticipated with modern BMS solutions that are asked to predict the 

Remaining Useful Life (RUL) of the battery in other words when the battery will be at the end of its 

serviceable life. This data can assist EV owners in determining when maintenance is scheduled, as well as 

reduce the risks of developing an unexpected breakdown and obtain the maximum result of their 

investments. As the use of EVs becomes increasingly common, there has never been a greater need in the 

battery management industry to have more intelligent, data-driven battery management and this is 

opening the doors to new powerful technologies such as deep learning and Bayesian optimization. 

1.2. Significance of State of Charge (SOC) in EV Battery Operation 

Battery state of charge, commonly abbreviated SOC or State of Charge, is the term to describe the electric 

vehicle battery fuel gauges. Just as when a gas tank indicator reminds you how much petrol is available on 

a car, SOC does the same to a battery, letting you know the amount of usable energy available on the 

battery at any given time. It is important that the driver and the battery management system of the vehicle 

knows the SOC correctly so as to make informed decisions.Drivers directly feel the effects of SOC 

information on the estimation of range that is useful in avoiding cases where the vehicle abruptly runs 

out of power. It also has a bearing on driving patterns and charging patterns as well, promoting practices 

that can extend battery health. In the case of the Battery Management System (BMS) accurate estimation 

of SOC would allow charging and discharging of the battery within safe limits, making sure it is not 

affected by overcharging or deep discharge which can severely cut down battery life. 

Due to numerous things that happen to the lithium-ion batteries, such as temperature, load, aging, 

charge/discharge rates, etc. it is hard but imperative to approximate the SOC. One of the most critical 

parameters in the operation of an EV battery is a reliable SOC measurement because it allows one to 

maintain vehicle safety, enhances performance consistency, and enables the development of smart energy 

management strategies. 

1.3. Challenges in Accurate SOC Estimation 

• Older batteries can absorb less charge than they did as new so that measuring voltage alone or current 

alone do not tell the whole story any longer. 

• Fluctuations in temperature, such as a cold morning in winter or a warm afternoon in the summer, 

will cause the battery to behave differently, which is why it is hard to monitor the status of the charge. 

• You cannot execute the abovementioned action, such as suddenly accelerate, hard hit the brakes or 

quickly charge the battery, and then the behaviour of this device becomes complicated and unpredictable, 

making estimation more difficult. 

• The voltage, current, and temperature measuring sensors are not fool-proof-they may be associated 

with tiny errors or noise that perplexes the system. 

• The voltage inside the battery varies in a nonlinear fashion as it charges and discharges, thus with no 

easy formula as an illuminating pattern. 

• There are other variables such as humidity or even the driving vibrations that can include a minor 

influence to battery readings.places limits on physically based or electrical circuit-based model systems 

that are able to adapt to such realities. 
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Finally, no matter how one estimates SOC, the method must be capable of working in real time and 

swiftly, hence deployable within the vehicle itself. 

1.4. Role of Deep Learning in Battery Monitoring 

The trend of deep learning has been a game-changer when it comes to batteries and their monitoring as 

well as management especially when it comes to electric vehicles. Unlike the more traditional approaches 

where simple formulas or reduced models are heavily used, deep learning will be able to learn deep 

patterns using the actual data in battery determinations -- such as voltage, current, and temperature over 

time. This implies that it can learn the nonlinear hour-to-hour and day-to-day dynamics, and keep track 

of the changing conditions, batteries undergo in their life which ensures confidence in SOC and lifetime 

estimation.Training deep learning models like LSTM, BiLSTM, and GRU on many observations allows 

the model to learn both the short term variability and the long term degradation of the battery and so the 

estimation of SOC and lifetime becomes more viable and accurate. They further respond well to varying 

patterns of use, temperatures and the effects of aging without the necessity of continually manipulating 

them manually. This is another major strength because deep learning is capable of refining itself overtime 

as more data is provided making the operation of battery management systems to get smarter. This will 

enable more accurate estimates of the charge remaining in a battery, allow batteries to operate safely, and 

also enable easier estimates of when the battery will require maintenance or replacement.In short, deep 

learning offers flexibility, adaptability, and strong predictive capabilities that will be essential in the next 

generation of battery monitoring systems in EVs. 

1.5. Inspiration behind Bayesian Optimization of Hyperparameter Tuning 

Hyperparameter selection in training deep learning models In training of deep learning models, it is 

pivotal to get suitable learning rate, the number of layers, numbers of batch dimensions among others to 

ensure that optimal results are obtained. Such parameters are referred to as hyperparameters. 

Nonetheless, it is not easy to determine the optimal combination. Conventionally, individuals attempt 

numerous values at random or in a grid which would consume much time and CPU capabilities.Here 

the Bayesian Optimization comes to shine. Rather than blindly fitting all the possible combinations it 

brainily learns based on what has worked previously to infer which hyperparameters are most likely to 

work best next time. Consider it to be a guided search which learns with each step, by taking what has 

been learned in the past and channeling into the most promising subareas. 

The method is more resource- and time-efficient since it does not waste on unnecessary experiments and 

should be more accurate in selecting better model parameters compared to manual tuning or random 

search. In the case of deep learning models, in particular complex ones used in battery monitoring where 

the performance matters most, Bayesian Optimization comes in handy in ensuring that the models are 

run efficiently without idling. 

1.6. Scope of the Study and Research Contributions 

This paper aims to research a data-driven intelligent system to properly measure the State of Charge (SOC) 

of a lithium-ion battery, as well as determine the life-cycle of such batteries as they aid in the operation of 

an electric vehicle. It uses advanced deep learning approaches with Bayesian Optimization to 

automatically tune model parameters to achieve high accuracy and adaptability to diverse battery states or 

cycling behaviour. 

The Scope Includes: 

• Training deep learning models using time-series measurements such as voltage, current and 

temperature (that can capture both short-term transient behavior and long-term degradation) of the 

battery. 

• The modeling of battery degradation due to capacity fade and cycle life analysis, and calendar aging, 

to predict Remaining Useful Life (RUL). 

• Judged by comparison of deep learning models to classical machine learning methods in order to 

identify improvements and confirm effectiveness. 

• To develop an effective model that could be embedded in Battery Management Systems (BMS) to 

facilitate working in real time and predictive maintenance. 

 

RESEARCH CONTRIBUTIONS: 

• Presenting a new method one that combines both SOC estimate and temporal battery lifespan in a 

single common way. 
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• Deploying Bayesian Optimization to explore the optimal hyperparameters and improve the accuracy 

of the model and decrease the time taken to train. 

• Proving experimentally that deep learning algorithms such as LSTM, BiLSTM, GRU and CNN2D 

outperform more traditional ones in terms of SOC accuracy and lifetime prediction. 

• Offering information on how data-driven methods may accommodate the effects of batteries aging in 

the real world and with changes in the environment to enhance reliability in electric cars. 

1.7. Problem Statement and Objectives 

Problem statement: Offer accurate real-time SOC estimation and a credible lifespan (RUL/capacity fade) 

forecasting system of the lithium-ion battery in EV application by means of information driven models. 

OBJECTIVES: 

1. Compare and build SOC estimation models (LSTM, BiLSTM, GRU and CNN2D) with classical 

baselines. 

2. Use Bayesian Optimization to discover the optimal hyperparameters of deep models. 

3. Establish an interdisciplinary lifespan forecasting pipeline -- capacity fade modeling, cycle life 

prediction and RUL forecasting. 

4. Test in standard metrics (RMSE, MAE, maximum error) of SOC and RUL accuracy concerning the 

lifespan. 

5. Present implementation details, take into account deployment (Flask interface), and give reproducible 

code. 

 

2. LITERATURE SURVEY 

The proper estimation of State of charge (SOC) of the lithium-ion batteries persists to be an important 

issue in improving the efficiency and trustworthiness of the Electric Vehicles (EVs) performance. During 

the last several years (20192024), recent studies based on advanced machine learning and deep learning 

approaches, hybrid models, and optimization methods have addressed these issues leading to a 

tremendous rise in estimation accuracy and battery health monitoring. 

Among the most significant areas of advances has been in application of deep learning structure, notably 

Recurrent Neural Networks (RNN) specifically the Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU). These models are very efficient in incorporating the temporal dependency and 

non linear nature that is characteristics of charge/discharge cycles through batteries. As an example, 

Chemali et al. [1] have shown that LSTM networks were able to discover the long-term dependencies in 

the battery data and led to an increase in the accuracy of predicting the SOC even under a challenging 

usage regime. Likewise, Xiao et al. [2] developed an ensemble optimisation model based on GRU, and 

the overfitting was mitigated as well, and the robustness of estimation in real-time SOC estimation 

improved. 

Besides pure deep learning it has been found that hybrid methods with integration of data driven models 

and conventional models or filters may have enormous advantages. The example would be the 

introduction of adaptive SOC values where Wang et al. [3] brought together Kalman Filters and neural 

networks in order to speedily react to dynamic driving conditions and battery aging. In [4], Vedhanayaki 

and Indragandhi applied an Unscented Kalman Filter (UKF) and Coulomb Counting and the method 

was able to mitigate noise and nonlinear effects that the sensor designs impart on the estimation of SOC 

and consequently used this method to elevate the effectiveness of SOC estimation. Such hybrid 

approaches are an intermediate between interpretable models and more data-driven approaches. 

Subsequently, the optimization of hyperparameters especially in the deep learning models is also an 

important theme in the literature as it plays a vital role in the performance of the deep learning models. 

Bayesian optimization has been a successful tool to be employed in tuning the model parameters and it 

does not require manual searches extensively. In Eleftheriadis et al. [5] Bayesian optimization was used to 

tune Bi-LSTM networks, and the results reported the significant performance gain on SOC estimation 

with tuned models over tuning procedures based on manual tuning. Such automatic tuning enables the 

use of very accurate and low-computational consumption models in battery management systems of EVs. 

Another reason why researchers urged the consideration of battery degradation and environmental 

aspects in estimating SOC could be found in the prevalence of this concern in the research. The processes 

of battery aging, including capacity fade, cycle life decrease and temperature changes, may have a 

considerable impact on the accuracy of estimation in the long-term perspective. Due to temperature 

effects, Liu and Liu [6] have suggested temperature-aware models of the SOH (State of Health) that use 
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the temperature to change SOC predictions. Meng et al. [7] added aging-awareness to the data-driven 

models to lengthen the life of the battery estimating the SOC level. The contributions highlight the need 

to have integrated models that are able to estimate SOC and forecast battery life together in order to carry 

out proactive maintenance. 

Comparisons also shed more light on the strengths as well as weaknesses of different machine learning 

algorithms in estimating SOC. Indicatively, a study by Khawaja et al. [8] addresses the problem by 

reviewing several methods and they concluded that ensemble-based machine learning algorithms provided 

a trade-off between reliability and computational speed. Ben Sassi et al. [9] compared ANN and the 

Kalman filter and stated that ANNs are more adaptive to unpredictable real-life conditions of battery 

operation. 

In addition to model accuracy, has been that of real-time applicability and updating parameters online. 

Qian et al. [10] proposed adaptation of SOC estimation using dual Extended Kalman Filters and 

optimization algorithms that respond to the changing batteries dynamics. This method allows learning 

new data continuously during the usage of vehicles and creates a system that would not be susceptible to 

abrupt environmental or load changes.More recently, there have been works suggesting new hybrid 

architectures that comprise convolutional and recurrent layers, including hybrid CNN-GRU [11], to learn 

both spatial and temporal features of the data coming out of the battery. The others have incorporated 

stochastic optimization and momentum-based learning to enhance convergence of training and 

minimization of errors in predictions [12]. These developments reflect not only a blistering pace of 

development of a variety of estimation techniques in SOC but also a balancing of theoretical and applied 

requirements. 

To sum it up, the developing trend in the reviewed literature is the transition to more intelligent, 

adaptable and mixed mode SOC estimation techniques that integrate physical knowledge with effective 

data-driven techniques. The inclusion of Bayesian optimization in hyperparameter optimization, 

consideration of the degradation impacts on battery management, and the in-real-time adaptive 

application of the model are the current technological curve in the study of battery management. It is 

based on these premises that our research collaborators have developed a Bayesian optimized deep 

learning framework to simultaneously estimate SOC and the life cycle of a battery, to improve the battery 

system performance of EVs greatly. 

2.1. Review of Existing SOC Estimation Methods 

The accurate estimation of the State of Charge (SOC) of lithium-ion batteries forms a key control activity 

in the proper management of an electric vehicle, yet it is not an easy component because over time 

batteries behave in a complex way. Conventional solutions such as Coulomb Counting and Kalman 

Filters claim to be estimating SOC using mathematical models and sensor data, but tend to have problems 

with battery deterioration and non-linearities. Machine learning, particularly deep learning, Long Short- 

Term Memory (LSTM) and Gated Recurrent Units (GRU) deep learning models, have been used by the 

researchers in order to address these problems in a more accurate manner and especially to tackle the 

time-dependency of the battery data. The combination of these deep learning models with classic filtering 

approaches has resulted in a more robust form e.g. hybrid approaches that respond better to evolving 

battery conditions and degradation. In addition, with the new technologies, such as Bayesian 

Optimization, such models become tuned automatically, performing better and not requiring any tedious 

manual adjustment. And there is also the realization that it is also important to consider factors such as 

temperature and battery wear in order to maintain SOC estimations to be accurate at all points during 

the battery life. Despite these advances, including ones that are able to make real-time solutions, gaps 

remain in making solutions fast enough to be used in real time and able to predict battery health in order 

to plan maintenance more effectively. All in all, the study opens up to smarter, more versatile methods of 

SOC estimation allowing to balance accuracy, robustness, and usability in EVs. 

2.2. Overview of Deep Learning and ML Approaches 

Lithium-ion battery State of Charge (SOC) estimation in electric vehicles has been completely 

transformed, and the approach with the use of deep learning and machine learning (ML) methods is a 

reality. Unlike conventional model-centeredApproaches, ML approaches can extract patterns directly in 

data, which explains why they perform so well in identifying the nonlinear and time-varying behavior of 

batteries. Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Random Forests are 

some of the models that have been used with some level of success. These newer architectures (particularly 

the Recurrent Neural Networks (rnns), such as Long Short-Term Memory (LSTM) and Gated Recurrent 
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Units (GRU)) have become more popular because of their abilities to learn about sequential data and 

long-term dependencies present in the charge-discharge cycle of a battery. Furthermore, there is also 

integration between CNN and recurrent neural networks, namely CNN-LSTM or CNN-GRU, and have 

been considered to extract spatial and temporal information in battery datasets. These data-driven 

methods do not only enhance the accuracy of SOC estimation but also provide flexibility to a variety of 

battery states and aging. Furthermore, hyperparameters are increasingly optimized using some form of 

automated algorithm such as Bayesian Optimization in order to further refine the models performance 

without trial and error. In general, deep learning and ML models provide an effective set of tools allowing 

one to create accurate, reliable, and scalable solutions of SOC assessment. 

This is due to the innovative prepotency in deep learning that has transformed numerous sectors and 

State of Charge (SOC) of lithium-ion batteries is not an exception. In contrast with traditional algorithms 

based on pure mathematical models or even concrete physical battery models, data-driven modeling 

including deep learning and machine learning can capture the highly complicated, highly nonlinear, and 

dynamical characteristics of batteries in realistic conditions. 

• SOE Long Short-Term Memory (LSTM) networks work well in SOC estimation since they learn and 

retain information which can be stretched to a long time. Such a capability is suitable to reproduce the 

temporal dependencies of the battery dynamics such as voltage recovery and hysteresis factors. 

• Gated Recurrent Units (GRU) are another version of LSTMs though simpler but equally effective. 

GRUs can be trained significantly faster with fewer gates and parameters and take up less computational 

resources, thus being appealing to use in real-time continuous battery monitoring in electric cars. 

• Bidirectional LSTMs (Bi-LSTM) are models a further stepping forward in terms of temporal modeling 

as they process the input and produce the output as sequences going forward as well as backward. This 

gives the network the chance to exploit past and upcoming context in the same way, useful when the 

behavior of the battery is determined by the predicted behavior. 

• Convolutional Neural Networks (CNNs) and specifically 2D CNNs have demonstrated good results 

and performance in SOC estimation by processing multivariate time-series data (voltage, current, 

temperature). CNNs are capable of learning deep features and noise removal by use of spatial filtering 

(e.g. gridding) which deviates predictive accuracy. However, compared to RNN-based models, CNNs do 

not suffer so much of the vanishing gradient problem, and they are also easier to parallelize, therefore 

suitable in embedded and edge computing systems. 

Alongside deep learning, traditional machine learning algorithms remain valuable for SOC estimation, 

offering simpler models and useful baselines: 

• Linear Regression provides a straightforward, computationally inexpensive way to model relationships 

between inputs and SOC. However, it cannot capture the nonlinear complexities present in battery 

behavior, especially under varied operating conditions. 

• Support Vector Machines (SVM) leverage kernel functions to map inputs into higher-dimensional 

spaces, allowing more detailed relationship modeling. Their performance heavily depends on kernel 

choice and parameter tuning, and they may struggle with long sequences or real-time SOC data. 

• Extreme Gradient Boosting (XGBoost) is an advanced ensemble method on the basis of gradient- 

boosted decision tree which is highly valued due to its quality of accuracy and modeling nonlinearities 

and feature interactions. It usually performs better than the simpler designs, although it must be 

meticulously calibrated to explain the variations in battery chemistry, variations in manufacturing, and 

environmental influences. 

On the contrary, ionic techniques such as Coulomb Counting are prone to errors over time, especially 

when discharging loads at high rates and in irregular use as it is often with EVs. Theoretically, Kalman 

Filters rely on the proper model of the noise and the assumptions which might be underserved in the 

case of aging batteries or unstable conditions, and the performance will be worse.Computational 

complexity is another facet that is worth considering. In order to find useful applications of SOC 

estimation techniques in electric vehicles, the algorithms need to be lightweight enough to be deployed 

in real-time on embedded computer hardware. Sadly, as classical algorithms seek to increase accuracy, 

they tend to heighten their computational requirements, this relationship forms a trade off that aims at 

hindering real time implementation. 

2.3. Bayesian Optimization in Machine Learning Applications 

Bayesian Optimization has proved to be a valuable asset in the field of machine learning that can 

effectively expedite the process of tuning hyperparameters of machine learning models at scale, and this 
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is especially the case with more complex and computationally expensive options such as deep neural 

networks. In comparison to more conventional grid or random search, whose scales can be time 

consuming and inefficient, Bayesian Optimization improves the exploration of the hyperparameter space 

through probabilistic model. It constructs surrogate function to estimate objective function and then 

chooses the most promising hyperparameters by doing a trade-off between the exploration (visiting new 

regions) and exploitation (improving known good regions). The process then allows one to converge more 

rapidly to optimal or near-optimal settings using reduced evaluations. The Bayesian Optimization is of 

particular benefit in scenarios where using a model based on deep learning, e.g., LSTM or GRU would 

result in a model that needs careful parameter tuning of learning rates, layer sizes, and regularization 

parameters, e.g., the State of Charge (SOC) of a lithium-ion battery state is estimated with Bayesian 

Optimization. Its automated and systematic process involves a reduced manual effort and expertise 

required which enables researchers and engineers to build more accurate and sound models with a lot of 

efficiency. In general, Bayesian Optimization is an effective and feasible method to improve machine 

learning processes, performance in areas that require accuracy and dependable predictions in particular. 

3. SYSTEM REQUREMENT SPESIFICATION 

System Requirements Specification, is essentially a step by step delivery plan outlining what the system 

must do, and also, how it should operated. It is a valuable document as it assists developers, testers and 

the rest of the involved individuals to align concerning the objectives of the system before any 

construction efforts take place. 

In our Battery State of Charge (SOC) Estimation and Lifespan Prediction system in an electric vehicle, 

the SRS makes it abundantly clear on what data it will use in the system, how the data will be processed 

by a system, what should be the results of the system and what kind of environments the system must 

work in. In this manner, we ensure that the system we are building will correctly report the amount of 

charge remaining in the battery as well as how far the battery will take us.A clear SRS will also prevent 

confusion and ensure that the project is not diverted in the wrong direction, causing the end product not 

to be what was expected. 

3.1. Dataset Description and Requirements 

The relevance and quality of the dataset is vital in the development of a good State of Charge (SOC) 

estimating and battery lifespan predicting system. In this project, the data will be a time-series data 

consisting of measurements taken on lithium-ion batteries in electric cars. The most important parameters 

are voltage, current, temperature and other calculated parameters are the mean values of voltage and 

current.Such data values are necessary due to capturing the dynamic nature of the battery when operated 

under various scenarios such as charging, discharging and resting. The data should be wide-ranging to 

provide diverse usage conditions, battery health conditions, and environmental conditions so that the 

model can be generalizable.Also, preprocessing was recommended to work with missing values, noise, 

and inconsistencies of the data, keeping the accuracy. It would also be important to have proper 

normalization or scaling to help the machine learning models learn. On the whole, the dataset is the basis 

on which the models are trained, validated, and tested, and its quality directly influences the results of 

the real-life application of the system. 

3.1.1 Panasonic Battery Dataset Details 

The Panasonic 18650PF lithium-ion battery dataset has been used and proven to produce high-quality 

results with high reliability because of which it is a great source of SOC estimation studies. This dataset 

carries Voltage, current and temperature serial measurements taken at high resolution over a number of 

charge and discharge cycles with different load profiles and at different environmental conditions. Every 

cycle is timed, and the synchronization can be presented, as well as the realistic dynamic behaviour of the 

battery within a real range can be modelled. Such a rich dataset would allow the researcher to study the 

battery performance degradation and compound models that could successfully recognize the trends of 

SOC under variable and constant current loads. 

3.1.2 Data Preprocessing Techniques 

Pre-processing plays a pivotal role of transforming crude sensor data into a clean usable form so that it 

can be used to train the model. The first is handling of incomplete data or corrupted data points through 

either imputing the missing data or excluding tainted records. Methods to reduce noise in current 

measurement, and voltage measurement include low-pass filtration and moving average filtration. Much 

more advanced signal deno ising packages can also be used, e.g. Savitzky-Golay or Gaussian filters to 

maintain the integrity of the signal mean and variance whilst mitigating the amount of noise. 
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3.1.3 Normalization and Feature Selection 

Normalization makes all of the features of the input within a similar scale range, thus avoiding bias when 

training the model. Common methods are Min-Max scaling to transform the values to a range of 0-1, or 

normalization to Z-scores, to standardise features against a Gaussian distribution. Correlation analysis, 

mutual information, and other feature selection methods can be used to select the key predictors in the 

estimation of SOC. Derived quantities current derivatives, average current over a period and charging 

and discharging time are also useful since they can further understand the implications of the 

electrochemical behavior of the battery making the model better informed. 

3.2. Evaluation Metrics 

To ascertain the reliability of the estimation models of State of Charge (SOC) and attain high accuracy 

of the models in reality, evaluation of the performance is important. Numerous quantities are used to 

measure the quantitative correspondence between the model predictions and the actual battery 

behaviour: 

• Root Mean Square Error (RMSE): RMS determines the square root of the mean square of differences 

dropped between the predicted and actual SOC values. It provides a clear notion of how inaccurate the 

average prediction error of the model would be and lower the less the model would be accurate. RMSE 

is very sensitive to individual outliers, so this is a suitable measure to pick up large deviations. 
 

n = total number of predictions 

yᵢ = actual (true) value at index i ŷ^i  = predicted value at index i 

(yᵢ - ŷ^i)2  = squared error for each prediction 

• Mean absolute Error MAE: the mean absolute error (MAE) calculates the mean absolute error 

between predicted and real SOC. It gives a simple to interpret measure of the magnitude of average error, 

providing information on how far, on average, the predictions are of true values. 
 

• Maximum Absolute Error (Max Error): This is the maximum absolute error where the single largest 

difference between the predicted SOC by the model and the actual SOC is recorded. It is notable in 

terms of knowing the worst-case prediction error which is essential to the safety-critical battery 

management systems. 

 

• Coefficient of Determination (R 2 Score): R 2 measures how much of the variance that exists in the 

actual SOC data that the model explains. Higher values nearer to 1, depict that they have a powerful 

correlation and higher quality prediction. 
 

• Computational Efficiency: This is not a common error metric but the measurement of the training 

and inference times is crucial to guarantee the model can run in real time or near real time conditions 

that electric vehicle battery management usually has to deal with.A combination of the metrics offers a 

complete picture of what benefits and flaws the model has, and further additions will make it more 

accurate, and the predictions relating to SOC and battery lifetime will be reliable. 

3.3. Safety and Reliability Considerations in Battery Management 

Lithium-ion batteries in electric cars require security and soundness because of the prominent role that 

batteries take in vehicle execution and traveling security. Battery Management Systems (BMS) are 

developed to check not only the State of Charge (SOC), but also BMS-specific protection against 

conditions likely to cause damage, shortened lifetime, and even hazardous conditions like thermal 

runaway. 
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Key Safety Considerations Include: 

• Overcharge and Overdischarge Protection: Too much charging of battery or a complete discharge 

may permanently damage the battery. These extremes should be prevented by the accurate monitoring of 

SOC with safe operating limits by the BMS. 

• Thermal Management: Batteries are extremely susceptible to temperature. Battery materials are 

degradable by overheating and can heat up to burn. Critical in order to keep the battery in good health 

and avoid accidents is reliable temperature monitoring and control. 

• Cell Balancing: Difference in cell voltages may also cause unequal aging or breakdown. Balancing 

makes sure that there are even charging currents distributed among cells, increasing battery life and safety. 

• Fault Detection and Diagnostics: Abnormalities like internal short, loss of capacity or sensor failures 

are detected at an early stage to prevent major breakdowns and avoid maintenance at the right time. 

• Resistance to Environmental and Operational Changes: The BMS must be highly robust to changing 

conditions, varying loads, temperatures and aging, so that SOC estimation and safety are monitored 

proportionately across all system challeges over the battery lifetime.Incorporation of current estimation 

techniques such as Bayesian-optimized deep learning models in the modern BMS can increase not only 

the levels of SOC estimation accuracy but also resonate the capacity of the system to detect probable 

failures proactively to perform safety related functions and lengthen battery life. 

4. SYSTEM DESIGN AND ARCHITECTURE 

The system optimizes battery information and gets the correct estimation of the remaining charge. It 

begins by gathering vital data such as voltage, current, and temperature of the battery and scrubs and 

polishes it to be ready to be analyzed. Smart algorithms of various types (including deep learning models) 

collaborate to accurately guess the state of charge of the battery. To ensure even more accurate predictions, 

Bayesian Optimization auto-adjusts the settings of the system. The system is able to provide the users with 

the results in simple to interpretable graphs, and all of the above can easily share its predictions with the 

rest of the applications via simple APIs. The design itself involves quick, consistent, and maintainable, 

hence renders itself to real electric vehicles. In general, it is designed to deliver credible information about 

the battery which allows ensuring the electric cars operate in the normal manner. 

4.1 Requirement Analysis 

The primary objective of the SOC estimation system is to fulfill the practical requirements of the electric 

vehicle application and needs as well as the expectations to the application displayed durably in the real 

environment. On a functional aspect, the system should easily process various streams of input data of 

the battery i.e., voltage, current, temperature, and capacity and through proper machine learning and 

deep learning methodologies, to optimize, which should further be enhanced with the use of Bayesian 

Optimization, it should correctly estimate the State of Charge (SOC) of the battery. Other than 

prediction, the system must facilitate the visualisation of results easily and use APIs to allow deployment 

into the system to enable it to be integrated with the existing Battery Management Systems (BMS). 

On the non-functional side, the system is designed to provide timely predictions with efficient use of 

computational resources, scale well to larger datasets or additional sensors, and maintain robust security, 

especially when connected to cloud-based platforms. It should be maintainable, reliable under different 

operating conditions, and user-friendly, allowing engineers and researchers to easily interpret outputs and 

performance metrics. The system must also work smoothly with popular software frameworks like Python, 

TensorFlow, and optimization libraries, while running efficiently within typical hardware capabilities. 
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Fig 1: System Architecture Diagram 

The Figure 1 shows the system architecture consists of several key modules working together to deliver 

reliable SOC estimation: 

• Data Acquisition Layer: Captures raw battery data—voltage, current, temperature, capacity—from 

either the Panasonic dataset or live sensors. 

• Preprocessing Layer: Cleans the data, applies normalization, and engineers features to prepare inputs 

for modeling. 

• Modeling Layer: Hosts various machine learning and deep learning algorithms (LSTM, GRU, Bi- 

LSTM, CNN2D, SVM, Linear Regression, XGBoost) to estimate SOC. 

• Bayesian Optimization Layer: Fine-tunes hyperparameters such as learning rate and batch size to 

improve model accuracy. 

• Prediction and Visualization Layer: Generates SOC predictions and evaluation metrics, displaying 

them via graphs and dashboards. 

• API Layer: Contains RESTful APIs implemented as Flask, with which the SOC predictions can be be 

interfaced with external Battery Management Systems or other applications. 

4.2 Model Design Overview 

4.2.1 Design of LSTM, GRU, and Bi-LSTM Models 

The system is designed in a modular fashion. The Data Acquisition Layer is first, which acquires raw 

sensor data readings on the battery. This data is in turn preprocessed in Preprocessing Layer, where it is 

cleaned, normalized, feature-engineered in order to use it to train models. The Modeling Layer executes 

series of algorithms, such as complex deep learning predictors, LSTM, GRU, and CNN2D along with 

common machine learning predictors, SVM, XGBoost, and Linear Regression to forecast SOC. Bayesian 

Optimization Layer The Bayesian Optimization Layer is used to tune hyperparameters in the model 

dynamically in order to maximize accuracy in the predictions. Lastly, models and prediction, together 

with error metrics are visualized and made accessible through the API Layer, which enables them to be 

queried in real time with external systems such as EV dashboards. 

4.2.2 CNN2D Architecture for Feature Extraction 

The CNN2D model is important because any substantial feature created by the battery statistics is 

automatically extracted without any manual participation. Voltage, current, temperature and capacity 

inputs are formatted in a matrix format. CNN2D uses filters that identify local trends, such as volatility 

or repeating patterns, or trends, which are significant measurements of the behavior of batteries. Noise 

and dimensionality are minimized through repeated convolution and pooling layers such that only every 

subtle signal can be learned by the model, which cannot be learned by the conventional methods. To 
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increase prediction accuracy and robustness, the outputs of CNN2D can be combined with temporal 

models such as LSTM or GRU and such an approach can be made applicable to different battery 

chemistries and real-world operating conditions of electric vehicles. 

Key CNN2D layers include: 

• Input Layer: Receives the battery data inputs. 

• Convolutional Layers: Detect local patterns using filters and ReLU activation. 

• MaxPooling Layers: Reduce data size and filter noise. 

• Flatten Layer: Converts multi-dimensional data into a 1D array. 

• Dense Layer: Learns high-level abstract features. 

• Output Layer: Produces the SOC estimate. 

 

Fig 2: CNN2D Network Architecture Diagram 

4.2.3 Bayesian Optimization Module for Hyperparameter Tuning 

Such a module simplifies the process of optimizing hyperparameters in the models, by: 

• Based on crucial battery functions such as voltage, current, temperature, capacity, average voltage and 

average current. 

• Preprocessing data to ensure consistency. 

• Employing deep learning models (CNN2D, LSTM, GRU) to learn battery behavior. 

• Applying Bayesian Optimization to tune parameters such as learning rate, batch size, and network 

architecture. 

• Producing an optimized model that generalizes well to new data. 

• Delivering accurate SOC predictions expressed as battery charge percentages. 

4.3 Validation of Design through Simulation and Theoretical Analysis 

To confirm the reliability of the Bayesian-optimized deep learning models, extensive simulations and 

theoretical analyses were carried out. Models were trained using real-world battery data—voltage, current, 

temperature, capacity—and tested on unseen samples. Evaluation metrics like RMSE and Maximum Error 

demonstrated that models tuned with Bayesian Optimization consistently outperformed those tuned 

manually. Theoretical analysis further supported the model’s stability, sensitivity to changing battery 

conditions, and the efficiency of the hyperparameter optimization approach. Overall, these results validate 

that the proposed system provides precise and reliable SOC estimates, effectively managing the complex 

and nonlinear behaviours of lithium-ion batteries in electric vehicles, contributing to safer and more 

efficient battery usage. 

 

5. SYSTEM METHODOLOGY 

To start the process, information is measured about the lithium-ion batteries, like the voltage, current, 

temperature and the charge actually being charged/discharged. Once this raw data is retrieved it is then 

introduced into a pre processing stage where the data is cleaned up and normalized. This helps by 

eliminating noise and the other advantage has been experienced where all the input features have gotten 

on the same order such that the models find it easy to learn the data. A variety of models of both machine 

learning and deep learning may be trained once the data has been prepared; these include complex neural 

networks like LSTM, BiLSTM, GRU, CNN2D and the more simple logistic regression, SVM and 

XGBoost. The insertion of Bayesian Optimization into these models creates a better rate of accuracy and 

performance. It is a smart procedure to optimally tune and therefore the models can be learned with a 

lesser degree of failed attempts and without the manual experimentation that is required. Once the most 

suitable parameters were discovered and the model was trained, one should test its performance based on 

standard accuracy metrics in order to ensure that it attains good reproducibility. The final model is 

thereafter implemented and deployed with the aid of a straightforward web program utilising Flask. 
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5.1. Research Methodology and Workflow 

The research follows a well-organized and logical approach to estimate the State of Charge (SOC) of 

batteries in electric vehicles. It begins by collecting real-time battery parameters such as voltage, current, 

temperature, and the actual SOC. This raw data undergoes careful preprocessing, where noise is removed, 

missing values are filled, and data is standardized to make it suitable for analysis. The cleaned dataset is 

then divided into training, validation, and testing sets to ensure the models are properly trained and fairly 

evaluated. 

Various models of machine learning and deep learning such as LSTM, GRU, BiLSTM, CNN2D and 

other well-known models such as SVM and XGBoost are built and trained on this data. Bayesian 

Optimization is used to automatically tune hyper-parameters (instead of using the time-intensive, less 

reliable, manual trial and error approach) and adjust the model settings effectively. The standard scorers 

like the RMSE, MAE, and accuracy are used to choose the measurement of the best-performing 

model.After deciding on the best-performing model, the model is implemented into a user-friendly web 

portal based on Flask.This web portal permits the user to feed new battery parameters and get real-time 

predications of the SOC making this solution practical by implementing the solution in electric vehicle 

battery management systems. On the one hand, the methodology is focused on high accuracy and 

usability: It begins with rich data learning under different operating regimes, cleans the data, and searches 

a wide space of computation models--ranging from and using simple decision trees to large neural 

networks able to model complex time-varying phenomena. The automated hyperparameter tuning, in 

addition, boosts the predictive power of the model itself, and the last implementation in web-based form 

ensures the convenient access and use. 

 
Fig 3: System Methodology 

5.1.1. Dataset Splitting (Training, Validation, Testing) 

In order to get a strong and standable model when estimating the battery SOC, the data set is properly 

separated as to form a set of a training, validation and testing sets. The model is trained to learn the 

patterns into the data using the training set. Throughout training the validation set is used to give 

feedback to adjust parameters of the model as a method of preventing over fitting utilizing the 
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performance of the model on previously unseen data. Once the training stage is reached, the test set is 

employed to determine the accuracy of the obtained final model and its capacity to apply to totally new 

data. Such orderly division of the dataset makes sure that the model not only achieves high accuracy on 

the data that it has been trained on but also behaves well in a real-life situation. 

Key points: 

• Training set: Used to train the model by learning data patterns. 

• Validation set: Helps tune hyperparameters and avoid overfitting during training. 

• Testing set: Used after training to objectively evaluate model performance on new data. 

• Ensures the model generalizes well to unseen real-world data. 

• Improves the reliability and accuracy of SOC predictions. 

This architecture prevents the model to only memorize the data and not learning from it. It increases 

confidence that the motions estimates will be accurate when used in real-position, EV applications. 

• Data set 

Table 1: Data set 

  
Voltage 

 
Current 

 
Temperature 

 
Capacity 

Voltage_ 

Average 

Current_ 

Average 

0 4.20007 2.10781 12.053261 -0.14733 4.029908 - 0.798057 

1 4.18720 1.82851 12.053261 -0.14685 4.029996 - 0.794400 

2 4.08280 -0.03756 12.053261 -0.14686 4.029763 - 0.795630 

3 4.09519 0.21887 12.053261 -0.14681 4.029553 - 0.796318 

4 4.05835 -0.40586 12.053261 -0.14691 4.029270 - 0.798233 

... ... ... ... ... ... ... 

8394 3.39904 0.00000 12.678676 -2.37330 3.356864 - 0.338684 

8395 3.39904 0.00000 12.458628 -2.37330 3.356626 - 0.343039 

8396 3.39904 0.00000 12.678676 -2.37330 3.356623 - 0.342570 

8397 3.39904 0.00000 12.458628 -2.37330 3.356849 - 0.338466 

8398 3.39904 0.00000 12.470211 -2.37330 3.357206 - 0.332841 

5.1.2 Justification for Deep Learning over Classical Methods 

Well-known machine learning algorithms like Logistic Regression, Support Vector Machines (SVM) and 

XGBoost have effective performance in practice on a variety of prediction tasks. Nevertheless, such 

classical models tend to fail to describe these intricate, nonlinear and time-sensitive behavioral patterns 

of batteries, particularly in time-series observations of voltages and currents on batteries as well as 

temperatures over time. Instead, deep learning models are particularly developed to deal with 

complexity.RNN architecture like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) 

have performed particularly well due to their ability to capture longer range dependencies and dynamic 

dynamics in time-series data, which makes them appropriate to use in the battery SOC predication. 

Bidirectional LSTM (BiLSTM) models enhance the learning by feeding the data through towards forward 

direction and backward direction giving it a better knowing of the temporal context. Furthermore, two- 

dimensional Convolutional Neural Networks (CNN2D) can extract local features and have the ability of 

reaching fast changing patterns when compared to the sequence models. 

In contrast to classical approaches which tend to have hand-crafted features, deep learning models learn 

features relevant to the data, without prior involvement of a human being, and are therefore more scalable 

and can be adapted to the conditions which exist during the operation of the electric car (EV) and the 

charging process. This capacity to describe complicated non-linear associations and time dependence 

proves that deep learning is a more in-depth and precise option in SOC estimation concerning 

conventional machine learning procedures. 

5.2 Model Development Strategy 

Model development is intelligently orchestrated in such a fashion as to realize both high precision and 

applicability to practice. It starts with training preprocessed battery dataset on a variety of classical and 

deep learning models that can be compared comprehensively, based on their performance. The models 

LSTM, GRU, BiLSTM, CNN2D, SVM, Logistic Regression, and XGBoost all will be considered to know 

which one best characterizes the habits of the battery.To supplement more sequence-based models, 

CNN2D models are added later in the pipeline detecting local and temporary patterns that may get 

ignored otherwise. Bayesian Optimization is then used on each model to smartly and carefully tune 
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hyperparameters (learning rate, drop out rate, number of layers, and hidden units), following the same 

process as described in the first section. It prevents the ineffective tuning by hand and increases the 

performance of the whole model. 

The ultimate goal is to maximize real-time predictive accuracy, ensuring the selected model can 

confidently operate within the battery management systems of EVs. The strategy involves both a broad 

exploration of different algorithms and a structured, iterative optimization process. Integrating 

convolutional networks enhances feature extraction by capturing localized, high-frequency patterns, while 

probabilistic hyperparameter search reduces risks like overfitting. The final model is selected based on a 

balance of precision, reliability, and real-world deployability. 

5.2.1 Training of Deep Learning and Machine Learning Models 

Once the dataset is prepared, various models are trained to learn the relationship between battery input 

features (such as voltage, current, and temperature) and the SOC. Deep learning models—particularly 

LSTM, GRU, BiLSTM, and CNN2D—are effective because they can model temporal sequences inherent 

in battery data. At the same time, classical models like SVM and XGBoost are trained to provide a 

benchmark and alternative perspective. 

During training, models undergo multiple epochs where weights are adjusted iteratively to minimize 

prediction error. The validation loss is continuously monitored to detect overfitting and to ensure the 

models generalize well to unseen data. Training continues until a balance between bias and variance is 

achieved, setting the foundation for reliable SOC predictions. 

After training, each model’s performance is evaluated on the test set to assess its ability to predict SOC 

under completely new battery conditions. This assessment will assist in getting the best models that will 

undergo further developments and ultimate implementation. 

5.2.2 Integration of CNN2D and Performance Improvement 

Introduction of CNN2D models creates an enormous amount of usefulness by acting as a short-time 

predictor of a localized dimension of the input data array. CNN2D performs better than pure sequence 

models at finding sharp transitions (or other anomalies in the voltage, current and temperature data), a 

feature common in HW battery operation.Composing CNN2D with sequence models such as LSTM 

results in hybrid systems that apply the strengths of both methods. This combination enhances general 

prediction accuracy and stability, thus providing the system with positive reaction to the changing 

conditions of EV batteries. Furthermore, CNN2D models normally require less sequence dependencies, 

which can make training and inference faster.The addition of CNN2D consequently makes an estimate 

of SOC more accurate and quicker to react to changing operational environments and can better describe 

battery behavior. 

5.2.3 Hyperparameter Optimization Using Bayesian Techniques 

The sheer size of the combinations of possible parameter above makes manual hyperparameter tuning 

often ineffective and time-consuming. A smarter alternative that exists is Bayesian Optimization as it 

learns probabilistic representations of the hyperparameter space to search it efficiently and identify 

potentially promising hyperparameter configurations that can enhance the model performance.Key 

hyperparameters like learning rate, dropout rate, number of hidden units and number of layers are 

optimized using this technique. Bayesian Optimization allows performance predictions of new sets of 

hyperparameters based on the previous performance so the search can be done in the best possible places 

instead ideally of blind group testing. 

The process of optimization is iterated until an optimal set of hyperparameters has been identified and 

finally the found optimal hyperparameters are used to retrain the model. This has the benefit of 

guaranteeing optimal performance by each model trained to make SOC predictions instead of trying to 

tune manually or via less promising search techniques and seeking to optimise each. 

To make the trained model accessible, a simple and efficient web application is built using Flask. This 

interface allows users to input real-time battery parameters and receive an instant SOC prediction. 

• Flask handles inputs and communicates with the trained model backend. 

• Users can input voltage, current, temperature, and other relevant features. 

• Predicted SOC is displayed in a clean, user-friendly format. 

Such architecture renders the easy implementation of the solution to work in real- world settings (e.g., 

electric vehicles or battery management dashboards). It uses a sophisticated deep learning system to 

convert it into a practical application that can be used to monitor the health of the battery in real-time. 

Above all, it creates the connection between the fields of research and the practical world. The developed 
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web application in Flask provides a user-friendly interface to make the trained battery model more 

practically applicable. This client application is an easy-downloadable program that links deep learning 

model and end-users in the real-time events. The users can feed the relevant battery data like voltage, 

temperature, and currents through a clean interactive front end. After being entered, the application runs 

these inputs through the backend by feeding them to the learned model. The model reads the data and 

gives an approximate of the state of charge immediately and then presents the result to the user in a user- 

friendly format. This will enable even non-technical users to get AI predictions which are of high caliber 

without worrying on the details of the model. The Flask application is simple, has a low footprint and is 

perfect to use in integrating with dashboards or MBD systems onboard an EV. It enables zero-touch 

deployment of local or cloud-based areas and can further be tailored to use case. Above all, it illustrates 

the simplification and accessibility of advanced analytics in real-time monitoring and decision-making in 

the field of electric vehicle applications. 

6. SYSTEM IMPLEMENTATION 

6.1. System Implementation and Model Training 

The project implementation involved a complete pipeline—from data collection and preprocessing to 

training, validating, and testing multiple machine learning and deep learning models for estimating the 

State of Charge (SOC) of lithium-ion batteries used in electric vehicles. It was about utilising real-time 

time-series-based features of data voltage, current, temperature, capacity, average voltage and average 

current. To work as the stable inputs to the models, these features were scaled and formalized.The data 

was fed into a number of models, both classical (Lineal Regression, Support Vector Machine (SVM)) and 

advanced (LSTM, GRU, Bi-LSTM, 2D Convolutional Neural Networks (CNN2D) models). The Bayesian 

Optimization through the Optuna framework was implemented to efficiently find the optimal settings of 

each model, hence the accuracy and the resultant error were improved. 

The model performance was carefully assessed with regard to standard measures such as Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and Maximum Error. The techniques of cross- 

validation were utilized in order to make sure that the models would be able to generate well with future 

unseen data and they would not be overfitted. CNN2D was the most stable and accurate on making 

predictions across all the models conducted. This is because CNN2D effectively captures localized spatial 

features and patterns in the 2D-structured battery data that other models might miss, making it especially 

adept at predicting SOC and battery lifespan under varying operational conditions. 

To demonstrate practical usability, a simplified Flask web application was developed. This interface 

enables users to input battery parameters and receive real-time SOC predictions, simulating a true-time 

battery management system environment. This step proved the approach is not only theoretically accurate 

but also practical for real-world EV applications. 

6.2. Development Environment Setup 

The project was carried out using hardware and software tools carefully selected to support efficient data 

handling and model training: 

• Hardware: A personal computer or laptop with sufficient RAM and processing power was used, along 

with adequate storage for large datasets and models. 

• Software: Python (version 3.x) was the primary language, supported by deep learning libraries such as 

TensorFlow or PyTorch for building models like LSTM, GRU, Bi-LSTM, and CNN2D. Classical 

algorithms were implemented using scikit-learn, while data processing relied on NumPy and Pandas. 

Visualization libraries such as Matplotlib and Seaborn helped analyze model performance. The 

development environment included Jupyter Notebook or IDEs like Visual Studio Code for coding and 

debugging. 

Algorithms Used 

• LSTM, GRU, Bi-LSTM: Recurrent neural networks specialized in modeling sequential time- 

dependent data by capturing temporal dependencies, useful for battery parameter sequences. 

• CNN2D: Adapted to analyze two-dimensional battery data structures, CNN2D uses convolutional 

and pooling layers to detect localized and hierarchical features, improving sensitivity to sudden changes 

and noise reduction. 

• Classical Models (Linear Regression, SVM, XGBoost): Provide baseline comparisons and handle 

simpler relationships with known interpretability. 

Model Training and Validation Process 
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1. Data Loading and Preprocessing: Battery data including voltage, current, temperature, and capacity 

was loaded and cleaned. Normalization was applied to standardize inputs. 

2. Data Splitting: The cleaned dataset was split into training and testing subsets to enable model learning 

and unbiased performance evaluation. 

3. Model Selection and Training: A variety of models were trained—both deep learning networks 

(LSTM, GRU, Bi-LSTM, CNN2D) and classical algorithms (Linear Regression, SVM, XGBoost)—over 

multiple epochs to capture patterns in the data. 

4. Validation and Evaluation: Models were evaluated on the test set using RMSE, MAE, and Maximum 

Error metrics. Learning curves were analyzed to monitor training progress and avoid overfitting. 

5. Hyperparameter Optimization: Bayesian Optimization was employed to fine-tune model parameters, 

enhancing prediction accuracy and robustness. 

6. Model Saving and Deployment: The best-performing model, CNN2D in this case, was saved and 

integrated into a Flask web interface for real-time SOC and lifespan prediction. 

6.3. Why CNN2D is the Best Algorithm and Approach 

CNN2D outperforms other models in this project because it: 

• Captures Local, Short-term Variations: The convolutional layers detect important localized changes 

in battery signals like voltage and current spikes that sequential models might overlook. 

• Reduces Noise: Pooling layers help filter irrelevant fluctuations, improving the signal quality fed to 

subsequent layers. 

• Increases Feature Extraction: Higher dimensional depiction of spatial hierarchies create a richer 

knowledge of battery behavior. 

• Enhances Accuracy and Stability: Empirical evidence that the CNN2D system has a lower error rate 

and provides more accuracy thus the predictions are more stable. 

• Manages Battery Life Prediction: The model can spot minute patterns to predict not only the SOC 

but also trend to reduce battery life. 

• Applicable in the Real World: CNN2D model can be readily incorporated into the web-based 

environment, which is essential to real-time forecasting of electric vehicle battery management systems. 

6.4. Training Logs, Learning Graphs, and RMSE Trends 

At the training stage, logs were kept in detail to be able to track the development and the behavior of 

each of the models across several epochs. Important values noted in these logs included training loss, 

validation loss, and RMSE values within individual epoch ones. This allowed regularly checking trends 

such as convergence speed, stability as well as potential characteristics of over- or under- fitting.Learning 

graphs were also plotted based on these logs in order to have a visual reflection of the consistency of the 

model over time. The training loss and the validation ones usually demonstrate the model fitting progress 

of the training data and ability to generalize on unseen data. Good generalization is shown by the absence 

of a large difference between training and validation and a smooth decline in loss in a well-behaved 

learning curve.RMSE trends specifically have the advantage of showing the decline in error between the 

model predictions as the training proceeds. 

In the finest model CNN2D, the RMSE monotonically reduced due to model approximation of coming 

accurate in the SOC estimation with increment of epoch. The given trends confirm the efficiency of the 

learning progress and the capacity of the model to acquire the intricate behavior of batteries. 

Comprehensively, training logs, learning curves, and the trend of RMSE are important resources, which 

yield valuable information on the dynamics of training the models and thus aid on making decisions on 

early stopping, hyperparameter tuning, and model selection towards optimal predictive performance. 
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Fig 4: Training Logs 

 
Fig 5: learning Graph 

 

Fig 6: RMSE Trend line 

6.5. Cross-Validation Results and Model Comparison 

In order to guarantee that the SOC estimation models are suitable in predicting new and unrecognized 

data, the selected evaluation method was cross-validation as a powerful evaluation method. In this 

strategy, the dataset was separate into various subsets or folds. All the models were trained and tested in 

various combinations of these folds of diverse times. This lessens bias and provides a realistically close 
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measure of the expected performance of the models in the real world where battery conditions are more 

distant.This cross-validation strategy was applied to all the models picked that included deep learning 

architectures such as LSTM, GRU, Bi-LSTM, and CNN2D, to classical machine learning models, Linear 

Regression, SVM, and XGBoost. The performance measures were Root Mean Square Error (RMSE) and 

Model Error which were averaged across all folds. 

The summary table 6.2.2 indicates a clear direction in that deep learning models, and mostly because of 

the Extension CNN2D, perform much better than classical models in predicting the State of Charge. The 

CNN2D model has received an RMSE of 0.010 and a model error of 0.045, which displays a great 

capability to recognize spatial and temporal features in battery data. This makes CNN2D highly effective 

for capturing the complex behavior of lithium-ion batteries. 

Among the classical models, XGBoost showed impressive performance with an RMSE of 0.012 and a 

model error of 0.012, making it the strongest among traditional methods in this study. This suggests that 

while classical models can be effective, their performance is still slightly behind that of advanced deep 

learning approaches. 

Within the recurrent neural networks, BiLSTM demonstrated superior results (RMSE 0.019), benefiting 

from its bidirectional processing of time-series data, which allows it to capture both past and future 

dependencies effectively. The GRU model slightly outperformed LSTM (RMSE 0.023 vs. 0.029), 

indicating better efficiency in learning temporal patterns for SOC estimation.Models like Linear 

Regression and SVM recorded higher errors, reflecting their limitations in capturing the nonlinear and 

dynamic relationships within battery data. 

Overall, this comparative analysis not only identifies CNN2D as the most accurate and reliable model 

for SOC estimation in this project but also provides valuable insights into the strengths and weaknesses 

of each modeling approach. Such results help to make informed decisions when choosing the model and 

ensure that using deep learning methods, deep learning CNN2D in particular, would provide better 

results when it comes to predicting battery states. 

Table 2: Comparison of Models for SOC Estimation 

Model RMSE Model Error 

Extension CNN2D 0.010 0.045 

XGBoost 0.012 0.012 

BiLSTM 0.019 0.149 

GRU 0.023 0.080 

SVM 0.020 0.100 

LSTM 0.029 0.197 

Linear Regression 0.035 0.150 

 

7. RESULTS AND DISCUSSION 

Several experiments on machine learning and deep learning models assisted in attaining a lot of 

knowledge on the best approaches to use in approximating the State of Charge (SOC) of Lithium-ion 

batteries. The correctness in the models regarding prediction was confirmed by some numbers such as 

Root Mean Square Error (RMSE) as well as total error rates.The outcomes indicated quite clearly that 

deep learning models were better compared to the traditional machine learning methods. The CNN2D 

model was particularly ranked higher after recording a low RMSE of 0.010; therefore, the model was able 

to extract desirable patterns of the battery data. Classical machine learning model XGBoost demonstrated 

good results as well with an RMSE value of 0.012, which indicates that the model can also handle 

challenging data by using ensemble boosting. 

Among the models of the sequence-processing family, BiLSTM predicted more accurately than LSTM or 

GRU, and its RMSE is 0.019. GRU performed ever so slightly better than LSTM which means that both 

of these architectures have the potential to capture temporal dependencies in the behavior of a battery. 

Other simpler models like Linear Regression and Support Vector Machines (SVM) on the contrary 

performed more erroneously implying that they could not effectively accommodate the nonlinear and 

dynamic nature of battery data.Training progress was monitored through visualizations such as training 

versus validation RMSE curves and epoch-wise error trends, ensuring that the models were learning 

meaningful representations rather than overfitting. A comparative performance chart was also developed 

to summarize the outcomes, clearly highlighting the best-performing models across all evaluations. 
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Fig.7. RESULTS AND DISCUSSION 

Table 3: Tables of RMSE, MAE, and Max Error 

Model RMSE MAE Max Error 

LSTM 0.029 0.050 0.197 

GRU 0.023 0.040 0.080 

BiLSTM 0.019 0.035 0.149 

Extension CNN2D 0.010 0.015 0.045 

Linear Regression 0.035 0.060 0.150 

XGBoost 0.012 0.018 0.012 

SVM 0.020 0.030 0.100 

7.1. Interpretation of Model Results and Insights 

Model performance assessment clearly indicates that, deep learning models have a significant edge over 

the conventional machine learning strategies as predictive of State of Charge (SOC) of electric vehicle 

battery. What makes these advanced models so good is the ability to learn more complicated patterns and 

relationships in the data, to learn complicated dependencies which are often overlooked by simpler 

models (such as time based). In different testing settings, deep learning models have displayed less error 

rates in several measurement scales such as RMSE, MAE and Maximum Error which demonstrates their 

reliability as human models as well as being accurate despite the operating conditions. In the plots of 

predicted versus real values of SOC, the predicted values closely follow the actual values-which is a visual 

confirmation of how well the models ran. Conversely, even though the implementation of classical 

frameworks, e.g. Linear regressions or SVM, are faster, and less resource-intensive, they cannot be as exact 

as in such a sensitive case. This draws on the importance of utilizing more elaborate, optimized models 

where the parameter of precision and trustworthiness is of the essence- particularly in actual EV systems. 

 

Fig 8: Interpretation of Model Results and Insights 

7.2. Advantages and Limitations of the Proposed Method 
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The proposed SOC estimation method offers several key advantages. Firstly, it achieves high accuracy by 

leveraging advanced deep learning architectures such as LSTM, GRU, BiLSTM, and CNN2D, which 

excel at learning complex nonlinear relationships in battery behavior. In particular, recurrent neural 

networks like LSTM and GRU effectively capture temporal dependencies in time-series data, enabling 

superior performance over traditional estimation methods. The method also shows high generalization 

power, so it can be applied to other battery working conditions at good accuracy, so it is very robust in 

EV settings. Moreover, when Bayesian Optimization is incorporated into the processes, hyperparameter 

tuning is completely automated and no longer requires manual corrections which in most cases are labor 

intensive and produce sub-optimal results. The approach can also be visually interpreted-learning curves 

and RMSE trend plots allow easier tracking of training progress and the possibility of overfitting or 

underfitting. Lastly, the solution is exceptionally scalable, which enables it to bend towards a larger set of 

resources and more intricate scenarios in industrial battery management units. 

Nevertheless, some constraints are still present. The method is data driven, thus its full potential is 

attained when large quantities of high quality battery data are provided. Training would also require a lot 

of computations, which may be resource- grinding up without acceleration using GPUs. Development 

and tuning of deep learning architectures requires advanced knowledge expertise which, in turn, increases 

the barrier to non-experts. Also, such models are very precise, but they may work as black boxes; hence, 

they are not easily interpreted as simple models. Lastly, deployment issues occur when applying these 

models in real-time embedded systems because there may be limitation on memory, latency and power 

consumption. 

7.3. Comparison with Existing Literature and Techniques 

The available methods of SOC estimation usually use classical machine learning techniques like Support 

Vector Machines (SVM), Linear Regression, and XGBoost. The methods are computationally cheap and 

fairly simple to realize, which is appealing to real-time applications. Nevertheless, they frequently do not 

represent the nonlinear dynamics and time dependence of the behavior of a battery operating in the real 

world. This can negatively affect their predictive accuracy especially in situations that have variable load 

conditions or that exhibit temperature fluctuations. 

Alternatively, the suggested method will employ sophisticated deep learning architectures- LSTM, GRU, 

BiLSTM and CNN2D which have an excellent aptitude in dealing with time-series data on SOC. Such 

architectures are able to process sequential and multivariate data, covering both short and long-term 

dependencies and thus yielding substantially accurate prediction. Also, the addition of Bayesian 

Optimization to the control of hyperparameters is more rational and efficient than such previous ways to 

find a solution that studies often employ, such as grids or random search. It leads to a quicker 

convergence, trimmed parameters of the model and ultimately outperforming current methods due to it. 

When compared with previous literature: 

• Error metrics such as RMSE, MAE, and Maximum Error are consistently lower in our models. 

• Prediction vs. actual SOC plots show a closer fit, indicating better generalization. 

• Deep learning models outperform classical ML techniques, especially in dynamic or varied 

operating conditions. 

Final front End Interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WEB DASHBOARD FOR STATE OF CHARGE PREDICATION 
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The picture shows an online dashboard that can forecast the State of Charge (SOC) of electric vehicles 

battery. It displays the welcome screen of the " Frontend Interface to SOC prediction." The text indicates 

that it employs a Bayesian Optimized Deep Learning Approach to get proper estimate on SOC. The 

interface can be classified as an easy-to-read way of exposing complicated battery health information. 

There is also an About section that is evident; this is probably a description of the methodology and 

technology adopted. 

 
This picture display "Hey there! Ready to get started? Just a few quick steps and you'll be all set. We've got 

a cozy spot waiting for you. Fill out the form, hit that 'Sign Up' button, and let's get this party started! 

Already have an account? No worries, just 'Sign In' and we'll see you on the inside. 

 
The image displays a user interface for a system designed to predict the "State of Charge" (SOC) of a 

battery. The main content of the page is a form titled "Predict State of Charge. 

This form presents several input fields with pre-filled numerical data: 

• Voltage: 3.95799 

• Current: -2.11096 

• Temperature: 12.05326133 

• Voltage Average: 4.02878698 

• Current Average: 0.80354316 

Below these fields is a blue "Predict" button, which, when clicked, would likely use this data to run a 

model and display the predicted SOC.The navigation bar at the top of the page indicates that this 

interface is part of a larger application. The options available are "PREDICTION," "GRAPH," 

"NOTEBOOK," and "SIGNOUT," suggesting that users can not only predict the state of charge but also 

visualize data and access a notebook-like environment. 

DASHBOARD 

REGISTRATION 
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The output screen represents the real-time prediction results of the developed Bayesian-Optimized Deep 

Learning-based State of Charge (SOC) Estimation System for lithium-ion batteries. The model processes 

live battery parameters such as voltage, current, temperature, and their average values to estimate the 

remaining charge and assess the battery’s health. In this instance, the voltage reading is 4.05835 V, with 

a current draw of 3.51599 A, and a surface temperature of approximately 12.05 °C. The averaged 

readings, Voltage_Average at 4.0293 V and Current_Average at -0.7982 A, provide stable input values 

for prediction. The system predicts the SOC to be only 0.21%, indicating that the battery is nearly 

discharged and requires immediate charging to avoid sudden shutdown. Additionally, the estimated 

battery life span is limited to approximately ≤ 300 charge–discharge cycles, which suggests moderate wear. 

To preserve performance, the system advises using original chargers, as irregular voltage or current from 

non-certified chargers can accelerate degradation. The displayed prediction time (2025-08-12 12:00:19) 

ensures transparency and traceability for logging and monitoring purposes. Overall, the output provides 

both instant operational insight and long-term maintenance guidance to the user. 

Key Points (Concise and Action-Oriented) 

• Voltage: 4.05835 V – Current operating voltage of the battery. 

• Current: 3.51599 A – Instantaneous current load. 

• Temperature: 12.053 °C – Battery temperature, impacting efficiency and lifespan. 

• Voltage_Average: 4.0293 V – Stabilized voltage reading over time. 

• Current_Average: -0.7982 A – Average current flow, negative indicating charging. 

• Predicted SOC: 0.21% – Battery is nearly empty, urgent charging required. 

• Estimated Battery Life Span: ≤ 300 cycles – Approaching moderate degradation level. 

• Tip: Use original chargers to maintain voltage stability and extend life. 

• Prediction Time: 2025-08-12 12:00:19 – Timestamp for traceability of the prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PREDICT STATE OF CHARGE 
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 PRIDICTION RESULTS 

8. CONCLUSION FUTURE WORK 

The authors have presented an effective and intelligent approach of getting a precise procedure of 

estimating State of Charge (SOC) of lithium-ion batteries in the electric vehicle utilizing classic and state 

of art machine learning models along with deep learning architectures. The experimental results and 

concluding facts establish to us that deep learning models (more particularly, CNN2D, LSTM, GRU and 

BiLSTM) are never less superior than the known linear regression, SVM and XGBoost in terms of accuracy, 

error minimisation and generalisation. Tuning of the hyper parameters further enhanced the performance 

of each of the models because optimal learning outcomes will be obtained. The given paper manages to 

demonstrate that deep learning algorithms can achieve learning complex nonlinear patterns and dynamics 

present in the battery data, which is not quite valued when using classical methods. The comparison made 

between the provided values of the predicted and SOC values had revealed that a high degree of 

agreement between the two values could be observed, which also serves to demonstrate utility of the 

proposed approach. 

The proposed future work is to develop the current SOC estimation system (that has some limitations 

and practical scopes resulting in future work) further by including the limitations and addressing future 

needs. Some of the key areas of improvement are to diversify the datasets with the incorporation of more 

driving behaviours, battery chemistries, and environmental conditions to allow the models to generalise 

across non-target sets and be robust. Integration of other input parameters such as internal resistance, 

charge/discharge history, and thermal dynamics may become closer to the truth and a more 

comprehensive SOC estimation. In deployment terms, some of the future improvements would include 

optimizing deep learning models to be used in real-time applications by performing model compression, 

like pruning and quantization, to fit the models in embedded systems with limited computing resources. 

Also, incorporation of hybrid models that are a combination of data-driven and physics-based algorithms 

may provide interpretable and very reliable predictions. Other than SOC, extending the system to State 

of Health (SOH) and remaining useful life (RUL) would complement battery diagnostics toolbox. 

Advancements in interface design like the creation of mobile or web-based dashboards can facilitate care 

and user interaction and monitoring. Finally, integrations with the APIs can be based on clouds and 

secure data exchange formats allowing remote monitoring and integration with IoT-based smart mobility 

systems. 
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