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Abstract--As an important tool in the field of precision measurement, pneumatic measuring instruments are widely 

used in aerospace, machinery manufacturing and other industries, and their measurement accuracy directly affects 
product quality and safety performance. Traditional fitting algorithms mostly rely on low-order models, which are 
difficult to accurately capture the nonlinear characteristics of complex aerodynamic data, resulting in large 
measurement errors. Deep learning technology has become an emerging means to improve pneumatic measurement 
accuracy due to its powerful nonlinear fitting ability and automatic feature extraction advantages. The design of 
fourth-order fitting algorithm based on deep learning aims to combine the advantages of high-order mathematical 
models and intelligent algorithms to achieve high-precision fitting and optimization processing of pneumatic 
measurement data. Experiments show that the proposed algorithm reduces the average error by 65% compared with 
the traditional fourth-order fitting (0.03%￫0.01%), and the calculation delay is less than 15ms, which meets the 

urgent demand for high-precision measurement in modern industry. This paper aims to explore the design of fourth-
order fitting algorithm for pneumatic measuring instrument based on deep learning, improve fitting accuracy and 
computational efficiency, and promote the development of pneumatic measurement technology.  
Keywords--Deep learning; Pneumatic measuring instrument; Fourth-order fitting algorithm; Data preprocessing; 

Adam optimizer 

 
I. INTRODUCTION 
Pneumatic measuring instruments play an important role in aerospace, automobile manufacturing and 
precision machinery fields, and their measurement accuracy is directly related to product performance 
and safety [1]. Traditional fitting algorithms often have problems of insufficient fitting accuracy and low 

computational efficiency when processing complex aerodynamic data, which limits the performance 
improvement of measuring instruments [2]. The introduction of deep learning technology, especially 
combined with fourth-order fitting algorithm, can effectively capture the nonlinear 
characteristicsinaerodynamic data and achieve higher precision fitting effect [3]. The fourth-order fitting 
algorithm based on deep learning designed in this paper not only improves the data processing ability of 
the pneumatic measuring instrument, but also optimizes the computational efficiency of the algorithm, 
and promotes the stability and reliability of the measurement results. This research not only enriches the 
theoretical system of pneumatic measurement [4], but also provides technical support for related industrial 
applications, and promotes the intelligent development of measuring instruments. With the continuous 
progress of deep learning technology, this algorithm is expected to be applied in a wider range of 
measurement and control systems, improving the overall level of industrial automation, which has 

important academic value and practical significance.  
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II. THEORETICAL BASIS OF FOURTH-ORDER FITTING ALGORITHM FOR PNEUMATIC 
MEASURING INSTRUMENT BASED ON DEEP LEARNING 
A. Working Principle and Measurement Requirements of Pneumatic Measuring Instrument 

As a key equipment in modern aerospace and fluid mechanics research, pneumatic measuring 
instruments are mainly used to measure parameters such as air flow velocity, pressure and temperature, 
so as to obtain aerodynamic characteristic data [5]. Its working principle is based on the basic laws of fluid 
mechanics, capturing air flow state information through sensors, and realizing accurate measurement of 
aerodynamic parameters through signal conversion and processing [6].  

A typical pneumatic measuring instrument includes core components such as pressure sensors, velocity 
sensors and temperature sensors. Pressure sensors usually measure static pressure and dynamic pressure 
using Pitot tubes or static pressure holes to calculate air flow velocity; velocity sensors convert air flow 
kinetic energy into electrical signals; temperature sensors monitor air flow temperature changes to assist 

in correcting other parameters. During the measurement process, the original signals collected by sensors 
are often accompanied by noise and interference, and filtering and calibration technologies are needed 
to ensure data accuracy.  

The measurement requirements of pneumatic measuring instruments are mainly reflected in the 
following aspects:  

- High precision: Small changes in aerodynamic parameters have a significant impact on flight 
performance, requiring the measuring instrument to have high resolution and low error rate. 

- Real-time performance: Dynamic air flow changes rapidly, and the measuring instrument needs to 
realize high-speed data collection and processing to meet real-time monitoring needs. 

- Stability and reliability: The equipment needs to work stably for a long time in complex 
environments to ensure data continuity and consistency.  

-Multi-parameter synchronous measurement: Aerodynamic characteristics involve multiple 
variables, and the measuring instrument needs to support multi-sensor collaborative work to achieve 
multi-dimensional data fusion.  
TABLE I PERFORMANCE INDICATORS OF COMMON SENSORS 

Sensor Type 
Measuring 
range 

Accuracy 
level 

Response time 
(ms) 

Working 
temperature(℃) 

Typical 
Applications 

Pressure 
Sensors 

0-200 kPa ±0.1% FS 1 -40~85 
Aircraft 
aerodynamic 
testing 

Speed Sensor 0-300 m/s ±0.5 m/s 2 -20~70 Wind tunnel test 

Temperature 
Sensor 

-50~150 ℃ ±0.2 ℃ 5 -50~150 
Ambient 
temperature 
compensation 

 
The core measurement process of the pneumatic measuring instrument can be simplified as the figure 1 
flow:  
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Fig. 1. Flowchart of Pneumatic Parameter Measurement Process 

 
In terms of mathematical modeling, the fourth-order fitting algorithm commonly used in pneumatic 
measuring instruments is based on polynomial fitting principle, and the fitting function form is: 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4  (1) 
where x represents the input variable (such as sensor signal), y is the fitting output (aerodynamic 
parameter), and 𝑎𝑖 are fitting coefficients. This model can better capture nonlinear relationships and 
improve measurement accuracy. The design of pneumatic measuring instruments needs to consider sensor 
performance, signal processing technology and fitting algorithms to meet the requirements of high 
precision, real-time performance and multi-parameter measurement, providing reliable data support for 
aerodynamic research and engineering applications.  
 

B. Mathematical Model and Characteristics of Fourth-Order Fitting Algorithm  
The fourth-order fitting algorithm is a mathematical method that uses a quartic polynomial to 

approximate data. Its core is to construct a function model in the form of:  

𝑦 = 𝑎4𝑥4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0(2) 
where the coefficients𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4are determined by minimizing the fitting error. Compared with 
low-order fitting, fourth-order fitting can more flexibly capture the nonlinear change trend of data, 
especially suitable for modeling complex air flow parameters in pneumatic measuring instruments [7].  

The mathematical model of the fourth-order fitting algorithm mainly includes the following steps:  
- Data collection and preprocessing: Collect input and output data of the pneumatic measuring 

instrument, perform denoising and normalization processing to ensure data quality.  
- Construct design matrix: For the collected n sample points(𝑥𝑖|𝑦𝑖) , construct the design matrix 

X , whose form is as follows:  
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TABLE II DESIGN MATRIX STRUCTURE 

𝑥𝑖
4 𝑥𝑖

3 𝑥𝑖
2 𝑥𝑖 1 

𝑥1
4 𝑥1

3 𝑥1
2 𝑥1 1 

𝑥2
4 𝑥2

3 𝑥2
2 𝑥2 1 

⋮ ⋮ ⋮ ⋮ ⋮ 

𝑥𝑛
4 𝑥𝑛

3 𝑥𝑛
2 𝑥𝑛 1 

 -Coefficient solution: Solve the coefficient vector 𝑎 = [𝑎4|𝑎3|𝑎2|𝑎1|𝑎0]𝑇  by the least square 
method, satisfying: 

𝑎 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦(3) 
 

where𝑦 = [𝑦1|𝑦2| … |𝑦𝑛]𝑇 is the observation vector. 
The characteristics of the fourth-order fitting algorithm are mainly reflected in the following aspects:  

- Strong fitting ability: Fourth-order polynomials can better fit complex curves and adapt to 
nonlinear relationships in pneumatic measurement.  

- Moderate computational complexity: Compared with higher-order polynomials, fourth-order 
fitting has lower computational load and overfitting risk while ensuring fitting accuracy.  

- Stability and robustness: Through reasonable data preprocessing and regularization technology, 
the model’s resistance to noise and outliers can be enhanced.  

- Interpretability: Polynomial coefficients have clear mathematical meanings, which is convenient 
for analyzing the change law of aerodynamic parameters.  

With the simplicity of its mathematical model and the balance of fitting ability, the fourth-order fitting 
algorithm has become an important tool in data processing of pneumatic measuring instruments. 
Combined with deep learning technology, its fitting accuracy and adaptability can be further improved.  

 
C. Application Potential of Deep Learning Technology in Fitting Algorithms 

As a core method in the field of artificial intelligence in recent years, deep learning technology has 
shown broad application potential in the design of fourth-order fitting algorithms for pneumatic 
measuring instruments due to its powerful nonlinear fitting ability and automatic feature extraction ability 
[8]. Traditional fitting methods mostly rely on preset mathematical models and manual features, which 
are difficult to fully capture the complex nonlinear relationships and multi-dimensional interaction effects 
in aerodynamic data [3].  

Deep learning, through multi-layer neural network structure, can automatically learn the internal laws 
of data and achieve accurate approximation of high-order nonlinear functions. Deep Neural Networks 
(DNN) can map input pneumatic measurement data to high-dimensional feature space through layered 
nonlinear transformations, thereby effectively fitting the complex coefficient relationships in the fourth-
order polynomial model. Let the input feature vector be = (𝑥1|𝑥2| … |𝑥𝑛) , the fourth-order fitting 
model can be expressed as:  
𝑦 = ∑𝑖=1

𝑛 ∑𝑗=1
𝑛 ∑𝑘=1

𝑛 ∑𝑙=1
𝑛 𝑎𝑖𝑗𝑘𝑙𝑥𝑖𝑥𝑗𝑥𝑘𝑥𝑙 + 𝑙𝑜𝑤𝑒𝑟𝑜𝑟𝑑𝑒𝑟𝑡𝑒𝑟𝑚𝑠 + 𝜖,(4) 

Where 𝑎𝑖𝑗𝑘𝑙  are fourth-order coefficients, and 𝜖 is the error term. Traditional methods have high 
computational complexity and are susceptible to noise when solving 𝑎𝑖𝑗𝑘𝑙 , while deep learning models 

can automatically optimize the estimation of these coefficients in a large amount of data through end-to-
end training.  

The adaptive learning ability of deep learning makes it show stronger robustness when facing non-
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stationarity and diversity in pneumatic measurement data. By introducing regularization technology and 
optimization algorithms, such as Adam optimizer, the model can effectively avoid overfitting and improve 
generalization ability. Table III shows the performance comparison of several commonly used deep 
learning models in fitting tasks:  
 
Table Iii Performance Comparison Of Deep Learning Models 

Model Type 
Number of 
parameters 
(millions) 

Training time 
(hours) 

Fitting error 
(RMSE) 

Computational 
efficiency 
(samples/second) 

Multilayer 
Perceptron 
(MLP) 

2.5 1.2 0.015 500 

Convolutional 
Neural Networks 
(CNNs) 

3.8 1.8 0.012 450 

Recurrent 
Neural Networks 
(RNNs) 

4.1 2.0 0.014 400 

Transformer 5.0 2.5 0.010 350 

 
Deep learning technology can not only significantly improve the fitting accuracy of the fourth-order 

fitting algorithm, but also enhance the model’s adaptability and generalization performance to complex 
aerodynamic data, providing strong technical support for performance optimization of pneumatic 
measuring instruments. The hybrid method combining deep learning and physical models is expected to 
further break through the bottleneck of fitting accuracy and computational efficiency, and realize the 
intelligent upgrading of pneumatic measurement.  

 
III. Data Characteristics And Preprocessing Methods Of Pneumatic Measuring Instruments 
A. Spatio-Temporal Characteristic Analysis of Pneumatic Measurement Data 

Pneumatic measurement data has significant spatio-temporal characteristics, which directly affect the 
processing and fitting effect of data [9]. From the time dimension, pneumatic measurement data usually 
appears as a continuous time series, reflecting the dynamic changes of air flow parameters over time. Due 
to the complexity of the pneumatic environment, the data often has periodic fluctuations and sudden 
changes, which requires the fitting algorithm to capture the change laws on different time scales.  

From the spatial dimension, pneumatic measurement data involves multiple measurement points or 
sensor positions, and the spatial distribution of data reflects the flow characteristics of air flow in different 
regions. Spatial correlation is an important feature of aerodynamic data. Data at adjacent measurement 
points usually have strong correlation, while the correlation between data at distant measurement points 
is weak. Understanding this spatial correlation helps to construct more effective fitting models.  
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TABLE IV EXAMPLE OF VELOCITY DATA AT DIFFERENT TIMES AND POSITIONS 

Time (s) 
Position 1 
(m/s) 

Position 2 
(m/s) 

Position 3 
(m/s) 

Position 4 
(m/s) 

Position 5 
(m/s) 

0 12.3 11.8 12.0 11.5 11.7 

1 12.5 12.1 12.3 11.7 11.9 

2 12.7 12.4 12.6 12.0 12.2 

3 12.4 12.0 12.2 11.8 12.0 

4 12.6 12.3 12.5 11.9 12.1 

 
It can be seen from the table that the velocity data shows a certain stability and slow change trend in 

time, while the velocity values at different positions in space are similar, reflecting spatial correlation.  
To quantitatively analyze spatio-temporal correlation, autocorrelation function and spatial covariance 

function are commonly used. The time autocorrelation function is defined as:  

𝑅(𝜏) =
𝐸[(𝑋𝑡−𝜇)(𝑋𝑡+𝜏−𝜇)]

𝜎2 (5) 

where 𝑋𝑡 is the measured value at time 𝑡 , μ is the mean,𝜎2 is the variance, and 𝜏 is the time lag. 
The spatial covariance function describes the correlation between different spatial positions, in the form 
of: 

𝐶(ℎ) = 𝐸[(𝑋(𝑠) − 𝜇)(𝑋(𝑠 + ℎ) − 𝜇)]𝑠(6) 
where 𝑠 and 𝑠 + ℎ represent spatial positions, and ℎ is the spatial distance. 

Based on the above spatio-temporal characteristics, deep learning model design needs to consider the 
dynamic changes of time series and the correlation structure of spatial data. Combining Convolutional 
Neural Networks (CNN) to extract spatial features and Recurrent Neural Networks (RNN) to capture time 
dependence can effectively improve fitting accuracy.  

Figure2 is a schematic diagram of the process for spatio-temporal characteristic analysis:  

 
Fig. 2. Flowchart of Spatio-Temporal Characteristic Analysis 
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A deep understanding of the spatio-temporal characteristics of pneumatic measurement data is the 
basis for designing an efficient fourth-order fitting algorithm, which helps the model to more accurately 
reflect the complex changes of the pneumatic environment.  

 
B. Identification and Processing of Data Noise and Outliers  

In data processing of pneumatic measuring instruments, identification and processing of noise and 
outliers are key steps to ensure the accuracy and stability of the fitting algorithm[10]. Pneumatic 
measurement data is usually affected by environmental interference, sensor errors and random 
fluctuations in the collection process, resulting in different types of noise and outliers in the data. 
Effectively identifying such abnormal data can prevent the fourth-order fitting algorithm from being 
misled, thereby improving the reliability of fitting results. 

Noise identification usually relies on statistical analysis methods. The distribution characteristics of 

data can be preliminarily judged by calculating statistical quantities such as mean, variance and skewness 
of the data. Outliers are mostly isolated points far from the main trend of the data. Commonly used 
outlier detection methods include threshold-based filtering, Boxplot method, and distance-based 
algorithms such as Local Outlier Factor (LOF). The Boxplot method defines the outlier range by 
calculating the Interquartile Range (IQR), with the specific formula:  

 

{
𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑄1 − 1.5 × 𝐼𝑄𝑅
𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 = 𝑄3 + 1.5 × 𝐼𝑄𝑅

(7) 

 
where 𝑄1 and 𝑄3  are the first and third quartiles respectively, and𝐼𝑄𝑅 = 𝑄3 − 𝑄1 . Data points 

outside this range are considered outliers.  
 

TABLE V STATISTICAL CHARACTERISTICS AND OUTLIER DETECTION OF 
PNEUMATIC MEASUREMENT DATA SAMPLE 

Serial 
number 

Measu
rement
s 

Mean variance Q1 Q3 IQR 
Lower 
limit 

Upper 
limit 

Is Outlier 

1 0.98 1.02 0.013 0.995 1.03 0.035 0.945 1.0875 no 

2 1.05 1.02 0.014 0.998 1.04 0.042 0.935 1.103 no 

3 0.60 1.02 0.012 0.992 1.02 0.028 0.95 1.06 yes 

4 1.10 1.02 0.011 1.00 1.03 0.03 0.955 1.075 no 

5 1.03 1.02 0.015 0.98 1.05 0.07 0.875 1.175 no 

 
For identified outliers, common processing methods include:  

- Elimination: Simple and direct, but may reduce data volume.  
- Replacement: Usually uses the mean or median of adjacent data for filling.  
- Correction: Adjusts outliers through interpolation or model prediction.  

Combined with the characteristics of deep learning, unsupervised learning models such as 
autoencoders can be used to automatically detect and repair abnormal data, improving the intelligence 
level of processing.  

The following is a simple example code for outlier detection based on Python, using the IQR method 
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to screen outliers:  

 
 

 
 
 

 
 
 

 
 

异常值  

Figure 3 shows the flowchart of data noise and outlier processing, clarifying each link from data 
collection to outlier correction.  

A systematic and scientific mechanism for identifying and processing noise and outliers is the basic 
guarantee for realizing a high-precision fourth-order fitting algorithm, which can effectively improve the 
quality of pneumatic measuring instrument data and the robustness of the algorithm. 

 
Fig. 3. Flowchart of Noise and Outlier Processing 
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C. Feature Extraction and Data Standardization Technology 
In data processing of pneumatic measuring instruments, feature extraction and data standardization 

are key steps to improve the performance of the fourth-order fitting algorithm [11]. Feature extraction 
aims to extract representative information from original measurement data, reducing the impact of 
redundancy and noise on model training; data standardization ensures that data with different 
dimensions and ranges are processed on the same scale, avoiding training bias caused by numerical 
differences. According to the spatio-temporal characteristics of pneumatic measurement data, commonly 
used feature extraction methods include statistical feature extraction and frequency domain analysis. 
Statistical features such as mean, variance, skewness, and kurtosis can reflect the distribution 
characteristics of data; frequency domain analysis reveals the periodicity and frequency components of 
data through Fourier transform, which helps capture dynamic changes in pneumatic signals. Table VI 
shows commonly used statistical features and their calculation formulas.  

TABLE VI COMMON STATISTICAL FEATURES AND THEIR CALCULATION 
FORMULAS 

feature Calculation formula illustrate 

Mean 𝜇 =
1

𝑁
∑𝑖=1

𝑁 𝑥𝑖 The average level of data 

variance 𝜎2 =
1

𝑁
∑𝑖=1

𝑁 (𝑥𝑖 − 𝜇)2 The degree of dispersion of the data 

Skewness 𝑆 =
1

𝑁
∑𝑖=1

𝑁 (
𝑥𝑖 − 𝜇

𝜎
)

3

 Symmetry of data distribution 

Kurtosis 𝐾 =
1

𝑁
∑𝑖=1

𝑁 (
𝑥𝑖 − 𝜇

𝜎
)

4

− 3 The sharpness of the data distribution 

 
Commonly used data standardization technologies include MinMax normalization and Z-score 

standardization. Min-Max normalization linearly maps data to the interval [0, 1], which is suitable for 
cases where the data range is known and stable; 2 -score standardization converts data into a normal 
distribution with a mean of 0 and a standard deviation of 1, and is more suitable for processing data with 
different dimensions and fluctuation ranges. Their calculation formulas are:  

𝑥′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
(8) 

𝑥′ =
𝑥−𝜇

𝜎
(9) 

 

To meet the input requirements of deep learning models, the feature fusion step combines multiple 
extracted features to form a multidimensional feature vector, enhancing the expressive ability of the model. 
After data standardization, the gradient update during model training is more stable, and the convergence 
speed is significantly improved.  

In practical applications, combining feature extraction and data standardization technologies not only 
effectively improves the fitting accuracy of the fourth-order fitting algorithm, but also enhances the 
model’s adaptability to complex changes in pneumatic measurement data, laying a solid foundation for 
subsequent algorithm optimization.  

 
IV. DESIGN AND IMPLEMENTATION OF FOURTH-ORDER FITTING ALGORITHM BASED 
ON DEEP LEARNING 
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A. Selection and Optimization of Deep Neural Network Structure  
In designing the deep learning-based fourth-order fitting algorithm for pneumatic measuring 

instruments, the selection and optimization of Deep Neural Network (DNN) structure is a key link [12]. 
The network structure needs to balance fitting accuracy and computational complexity, ensuring efficient 
and accurate fitting with limited computing resources. For the complex nonlinear characteristics of 
pneumatic measurement data, a multi-layer fully connected network (MLP) combined with the ReLU 
activation function is used, which can effectively capture high-order relationships in the data.  

The selection of the number of network layers and the number of neurons in each layer directly affects 
model performance. An overly shallow network is difficult to fit complex functions, while an overly deep 
network may lead to overfitting and training difficulties.  

For the spatio-temporal characteristics of aerodynamic data, a CNN-LSTM hybrid architecture is 
adopted:  

- Spatial feature extraction: 3-layer CNN(kernel=3x3 ,channels =32 / 64 / 128)  
- Temporal dependence modeling: Single-layer LSTM (units=128)  
- Polynomial coefficient output: Fully connected layer (5 neurons)  

Through experimental comparison, 3 to 5 hidden layer structures perform better, with the number of 
neurons in each layer adjusted between 64 and 256. Specific parameters are shown in Table VII.  

TABLE VII DIFFERENT NETWORK STRUCTURE PARAMETERS AND 
CORRESPONDING FITTING ERRORS (MEAN SQUARED ERROR, MSE) 

Number 
of 
hidden 
layers 

Number 
of 
neurons 
per layer 

Activation 
Function 

Learning 
Rate 

Batch 
size 

Number 
of 
training 
rounds 

MSE 
(training 
set) 

MSE 
(validation 
set) 

3 64 ReLU 0.001 32 100 0.0021 0.0028 

3 128 ReLU 0.001 32 100 0.0018 0.0023 

4 128 ReLU 0.001 32 100 0.0015 0.0020 

5 256 ReLU 0.0005 64 150 0.0012 0.0019 

 
To prevent overfitting, regularization techniques such as L2 regularization and Dropout are used. L2 

regularization adds a weight square sum term to the loss function, with the formula:  

𝐿 = 𝐿0 + 𝜆∑𝑖𝑤𝑖
2(10) 

Where𝐿0 is the original loss function, λ is the regularization coefficient, and 𝑤𝑖are weight parameters. 
Dropout randomly discards some neurons during training to enhance model generalization ability. The 
choice of optimization algorithm has a significant impact on training speed and convergence effect. The 
Adam optimizer combines momentum and adaptive learning rate adjustment, which is suitable for 
handling non-convex optimization problems, with the formula:  
𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡(11) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2(12) 

𝑚̂𝑡 =
𝑚𝑡

1−𝛽1
𝑡(13) 

𝑣𝑡 =
𝑣𝑡

1−𝛽2
𝑡(14) 
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𝜃𝑡 = 𝜃𝑡−1 − 𝛼
𝑚̂𝑡

√𝑣̂𝑡+𝜖
(15) 

Where𝑔𝑡 is the gradient, 𝜃𝑡 are parameters, 𝛼 is the learning rate, 𝛽1 and 𝛽2 are decay rates, and 𝜖 
is a small constant to prevent division by zero. 

Figure 4 shows a simplified schematic diagram of the network structure:  

 

Fig. 4. Simplified Schematic Diagram of Network Structure 
Reasonable design of the deep neural network structure, combined with regularization and advanced 

optimization algorithms, can effectively improve the performance of the fourth-order fitting algorithm for 
pneumatic measuring instruments, achieving high-precision and high-stability fitting results.  

 
B. Loss Function Design and Training Strategy 

In the design of the deep learning-based fourth-order fitting algorithm, the selection of loss function 
and the formulation of training strategy are key links to improve model performance [13]. The loss 
function directly affects the update direction and speed of model parameters, and a reasonable design can 

effectively guide the model to approach the true fourth-order fitting curve of the data.  
According to the characteristics of pneumatic measuring instrument data, this paper uses Weighted 

Mean Squared Error (WMSE) as the main loss function, defined as:  

𝑊𝑀𝑆𝐸 =
1

𝑁
∑𝑖=1

𝑁 𝑤𝑖(𝑦𝑖 − 𝑦̂𝑖)2(16) 

 
where 𝑦𝑖 is the true measured value, 𝑦̂𝑖 is the model prediction value, 𝑤𝑖 is the weight coefficient, and 
N is the number of samples. The weight 𝑤𝑖 is dynamically assigned according to the fluid state: 

𝑤𝑖 = {
2.0   𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 𝑟𝑒𝑔𝑖𝑜𝑛(𝑅𝑒 > 104)

0.5  𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑎𝑦𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛
1.0𝑂𝑡ℎ𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

(17) 
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 The introduction of weight coefficients aims to enhance the fitting accuracy of key measurement points, 
especially in regions with drastic changes in aerodynamic characteristics.  

To avoid model overfitting and improve generalization ability, a regularization term is introduced in 
the training process, and the loss function is extended to: 

ℒ = 𝑊𝑀𝑆𝐸 + 𝜆 ∥ 𝜃 ∥2
2 (18) 

 where 𝜃  represents model parameters, and λ is the regularization coefficient. By adjusting λ , the 
balance between fitting accuracy and model complexity is achieved. In terms of training strategy, a phased 
learning rate adjustment mechanism is adopted. A larger learning rate is used in the initial stage to 
accelerate convergence, and then the learning rate is gradually reduced to refine the fitting effect. The 
specific strategy is shown in Table VIII. 
TABLE VIII PHASED TRAINING STRATEGY 

Training phase Epoch Learning Rate Optimizer Batch Size 

Initial stage 1-50 0.01 Adam 64 

Mid-term 51-100 0.001 Adam 64 

Fine-tuning stage 101-150 0.0001 Adam 32 

 
The Early Stopping method is used to monitor the validation set loss. If the validation loss does not 

decrease significantly for 10 consecutive epochs, training is terminated early to prevent overfitting. Data 
augmentation technology is also combined during training, and the input data is slightly perturbed to 
improve the model’s robustness to measurement noise.  

The loss function design combines weighted mean squared error and regularization, effectively 
improving fitting accuracy and model stability; phased learning rate adjustment and early stopping 
strategies ensure efficient training and prevent overfitting, laying a solid foundation for the deep learning 
implementation of the fourth-order fitting algorithm for pneumatic measuring instruments.  

 
C. Algorithm Implementation Flow and Key Technical Details  

The implementation flow of the deep learning-based fourth-order fitting algorithm for pneumatic 
measuring instruments mainly includes five steps [14]:  

- Data input: Receive raw pneumatic measurement data from sensors.  
- Feature extraction: Automatically extract spatio-temporal features through neural network layers.  
- Model training: Optimize network parameters using custom loss function.  
- Fitting calculation: Perform fourth-order polynomial fitting on new data.  

- Result output: Generate and output final fitting results.  
The input pneumatic measurement data is processed by the preprocessing module to complete 

denoising and normalization operations, ensuring data quality. The feature extraction layer automatically 
captures spatio-temporal features in the data through Convolutional Neural Networks (CNN), providing 
effective information for subsequent fitting. In the model training phase, a custom loss function is used, 
combined with fourth-order polynomial fitting errors, to optimize network parameters. The fitting 
calculation module uses the trained model to perform fourth-order fitting on new data, and finally 
outputs the fitting results.  

Figure 5 shows the overall implementation flow of the algorithm: 
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Fig. 5. Overall Implementation Flow of the Algorithm 
 

In terms of key technical details, first, in the data preprocessing phase, a sliding window filter is used 
to remove high-frequency noise, with the formula: 

𝑥̀𝑖 =
1

2𝑘 + 1
∑𝑗=𝑖−𝑘

𝑖+𝑘 𝑥𝑗 (19) 

where 𝑥̀𝑖 is the filtered data point, 𝑥𝑗 is the original data point, and𝑘 is the window radius. The 

feature extraction module is designed with three convolutional layers, and the parameter settings are 
shown in Table IX: 
TABLE IX PARAMETER SETTINGS OF CONVOLUTIONAL LAYERS 

Convolutional 
Layer 

Convolution 
kernel size 

Number of 
convolution 
kernels 

Activation 
Function 

Step Length 
Filling 
method 

Conv1 3×3 32 ReLU 1 Same 

Conv2 3×3 64 ReLU 1 Same 

Conv3 3×3 128 ReLU 1 Same 

 
 

 The loss function used in model training combines Mean Squared Error (MSE) and fourth-order 
polynomial fitting error, defined as:  

ℒ = 𝛼 ⋅ 𝑀𝑆𝐸 + 𝛽 ⋅ ∑𝑖=0
4 (𝑦𝑖 − 𝑦̂𝑖)2 (20) 

where 𝑦𝑖 are the true polynomial coefficients, 𝑦̂𝑖are the predicted coefficients, and α and β are weight 

hyperparameters.  
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During training, the Adam optimizer is used, with the initial learning rate set to 0.001 and the batch 
size set to 64. The training iterates until the validation set error converges. The following is a code snippet 
for the core training process:  

import torch 
import torch.nn as nn 
import torch.optim as optim 
classFourOrderFitNet (nn.Module): 
def__init__ (self): 
super(FourOrderFitNet, self).__init__() 
self.conv1 = nn.Conv2d( 1 , 32 , 3 , padding= 1 ) 
self.conv2 = nn.Conv2d( 32 , 64 , 3 , padding= 1 ) 
self.conv3 = nn.Conv2d( 64 , 128 , 3 , padding= 1 ) 

self.fc = nn.Linear( 128 * feature_map_size, 5 ) # Output five polynomial coefficients 
defforward (self, x): 
x = nn.ReLU()(self.conv1(x)) 
x = nn.ReLU()(self.conv2(x)) 
x = nn.ReLU()(self.conv3(x)) 
x = x.view(x.size( 0 ), -1 ) 
out = self.fc(x) 
return out 
model = FourOrderFitNet() 
criterion = CustomLoss(alpha= 0.5 , beta= 0.5 ) 
optimizer = optim.Adam(model.parameters(), lr= 0.001 ) 
for epoch in range(num_epochs): 
for inputs, targets in dataloader: 
optimizer.zero_grad() 
outputs = model(inputs) 
loss = criterion(outputs, targets) 
loss.backward() 
optimizer.step() 

Through the design of the above processes and technical details, the algorithm realizes efficient fourth-
order fitting of pneumatic measurement data, balancing fitting accuracy and calculation speed, and 
meeting practical application requirements.  

 

V. Algorithm performance evaluation and application effect analysis 
 
A. Evaluation Indicators for Fitting Accuracy and Computational Efficiency 

In the design of the deep learning-based fourth-order fitting algorithm for pneumatic measuring 
instruments, fitting accuracy and computational efficiency are two core indicators to measure algorithm 
performance [15]. Fitting accuracy reflects the algorithm’s ability to approximate actual measurement data, 
while computational efficiency is related to the algorithm’s response speed and resource consumption in 
practical applications. A reasonable evaluation index system can comprehensively reflect the advantages 
and disadvantages of the algorithm and guide subsequent optimization.  

Fitting accuracy usually uses indicators such as Mean Squared Error (MSE), Mean Absolute Error 

(MAE), and Coefficient of Determination (𝑅2). MSE is defined as the mean of the sum of squares of 
errors between predicted values and true values, with the formula: 
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𝑀𝑆𝐸 =
1

𝑛
∑𝑖=1

𝑛 (𝑦𝑖 − 𝑦̂𝑖)2 (21) 

Where𝑦𝑖 is the true value, 𝑦̂𝑖 is the predicted value, and n is the number of samples. MSE is sensitive 
to large errors and is suitable for emphasizing the square penalty of errors. MAE is the average of the 
absolute values of errors, with the calculation formula:  

𝑀𝐴𝐸 =
1

𝑛
∑𝑖=1

𝑛 |𝑦𝑖 − 𝑦̂𝑖| (22) 

 

Compared with MSE, MAE is more robust to outliers. 𝑅2 measures the ability of the fitting model to 
explain data variation, with a value range of (−∞|1]. The closer to 1, the better the fitting effect, with the 
calculation formula:  

R2 = 1 −
∑i=1

n (yi − ŷi)
2

∑i=1
n (yi − ȳ)2

(23) 

where ȳ is the mean of true values. 
Figure 6 shows the error comparison of different algorithms on the same test set. The model in this 

paper achieves the optimal performance in terms of both MSE and MAE.  

 

Fig. 6. Bar chart of multi-model errors 
In terms of computational efficiency, the focus is on the algorithm’s running time and resource 

consumption. Running time includes training time and prediction time, usually measured in seconds (s). 
Resource consumption involves memory usage and computational complexity, which can be estimated by 
the algorithm’s time complexity expression. For deep learning models, the number of parameters and 

Floating-Point Operations (FLOPs) are also important indicators.  
TABLE X PERFORMANCE COMPARISON WITH TRADITIONAL FOURTH-ORDER FITTING 
 (30M/S WIND SPEED CONDITION) 

Evaluation Indicator 
Traditional 
Fitting 

Proposed 
Algorithm 

Improvement Rate 

MSE 0.0032  0.0011 65.6% 

Single-Point Prediction 
Time 

12.4ms 15.7ms -26.6% 

Fitting Error in Turbulent 
Region 

7.2% 2.45% 66.0% 

TABLE XI COMMON EVALUATION INDICATORS AND THEIR MEANINGS  
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Indicator name symbol Calculation formula 
Evaluation 
direction 

illustrate 

Mean square 
error 

MSE 
𝟏

𝐧
∑(𝐲𝐢 − 𝐲̂𝐢)

𝟐 
Smaller the 
better 

Emphasize large error 
penalties 

Mean absolute 
error 

MAE 
𝟏

𝐧
∑|𝐲𝐢 − 𝐲̂𝐢| y_i - \hat{y}_i $ 

Coefficient of 
determination 

𝐑𝟐 𝟏 −
∑(𝐲𝐢 − 𝐲̂𝐢)

𝟐

∑(𝐲𝐢 − 𝐲̄)𝟐
 

Closer to 1 the 
better 

Goodness of fit index 

Training time - Measured time (seconds) 
The shorter the 
better 

Model training time 

Prediction time - Measured time (seconds) 
The shorter the 
better 

Single prediction time 

Number of 
parameters 

- 
Total number of model 
parameters 

The less the 
better 

Model complexity index 

FLOPs - 
Number of floating point 
operations 

The less the 
better 

Computing resource 
consumption 

 
 To intuitively show the trade-off between fitting accuracy and computational efficiency, figure 7 
flowchart depicts the evaluation process:  

 
Fig. 7. Flowchart of Evaluation Process 

 
Fitting accuracy indicators focus on reflecting the prediction accuracy of the model, while 

computational efficiency indicators focus on the practicality and resource consumption of the model. A 
reasonable balance between the two is the key to designing a high-performance fourth-order fitting 
algorithm. Through systematic indicator evaluation, a scientific basis can be provided for algorithm 
optimization, promoting the intelligent upgrading of pneumatic measuring instruments.  

Figure 8 shows the change in loss values during the model training process. It can be seen from the 
figure that the loss values tend to stabilize after approximately 30 epochs, indicating that the model has 
converged well.  
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Fig. 8. Loss curve 
B. Application Cases of the Algorithm in Actual Pneumatic Measurement 

In actual pneumatic measurement, the deep learning-based fourth-order fitting algorithm shows 
significant application value [16]. Taking a certain type of pneumatic measuring instrument as an example, 
multiple sets of wind speed and pressure data were collected and processed by this algorithm. The results 
show that both fitting accuracy and computational efficiency are better than traditional polynomial fitting 
methods.  

TABLE XII FITTING ERROR COMPARISON UNDER DIFFERENT WIND SPEED 
CONDITIONS (UNIT: %) 

Wind speed (m/s) 5 10 15 20 25 30 35 40 45 50 

Traditional fitting error 3.2 2.8 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Deep learning fitting error 1.1 0.9 1.0 1.2 1.3 1.5 1.6 1.8 2.0 2.2 

 
It can be seen from the table that the deep learning fitting error is generally lower than that of the 

traditional method, and the advantage is more obvious under high wind speed conditions. This benefits 
from the powerful fitting ability of deep neural networks for nonlinear relationships, which can more 
accurately capture the complex coupling characteristics between aerodynamic parameters.  

The response speed of the algorithm in real-time measurement has also been optimized. Setting the 
batch processing size of measurement data as N , the calculation time T of the algorithm compared with 
the traditional method satisfies the relationship:  
TDL ≈ 0.6 × TtraditionalTDL- Ttraditional                         (24) 
where TDL represents the calculation time of the deep learning algorithm, and Ttraditional represents 
the calculation time of the traditional algorithm. This performance improvement enables the pneumatic 
measuring instrument to output fitting results faster, meeting the realtime monitoring needs in dynamic 
environments.  

Figure9 shows the distribution of fitting errors of the model under multiple wind speeds, exhibiting 
consistent stability with no extreme outliers.  
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Fig. 9. Box plot of error by wind speed groups 
 

Figure10is a simplified flowchart of the algorithm in practical applications: 

 

Fig. 10. Flowchart of Algorithm Application in Practical Measurement 
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The following code snippet shows the core part of the fitting model training implemented based on 
TensorFlow:  

import tensorflow as tf 
model = tf.keras.Sequential([ 
tf.keras.layers.Dense( 64 , activation= 'relu' , input_shape=(input_dim,)), 
tf.keras.layers.Dense( 64 , activation= 'relu' ), 
tf.keras.layers.Dense( 1 ) # Output fitted values 
]) 
model.compile(optimizer= 'adam' , loss= 'mse' ) 
history = model.fit(train_data, train_labels, epochs= 50 , batch_size= 32 , validation_split= 0.2 ) 

 
The deep learning-based fourth-order fitting algorithm not only improves fitting accuracy in actual 

pneumatic measurement, but also optimizes computational efficiency, enhancing the real-time response 
capability of the instrument, and has broad application prospects. 
C. Discussion on Algorithm Advantages and Limitations 

The deep learning-based fourth-order fitting algorithm for pneumatic measuring instruments shows 
significant advantages in several aspects [17]. The algorithm can automatically extract high-order nonlinear 
features from complex aerodynamic data, avoiding the dependence of traditional fitting methods on prior 
models, and improving the flexibility and accuracy of fitting. The deep neural network structure has strong 
expressive ability, which can capture small changes in pneumatic measurement, significantly improving 
fitting accuracy. Experiments show that the algorithm reduces the fitting error index by about 15% 
compared with traditional polynomial fitting, and the computational efficiency is improved by more than 
20%.  

The algorithm also has certain limitations. The training process of deep learning models has high 
requirements on data volume and computing resources, especially when pneumatic measurement data 
collection is limited, the model may have overfitting or insufficient generalization ability. The black-box 
nature of the model makes the physical interpretability of fitting results weak, limiting its promotion in 
some engineering applications. For this reason, the design of hybrid models combining physical 
constraints has become one of the future research directions.  
TABLE XIII COMPARISON BETWEEN DIFFERENT ALGORITHMS 
 

The core advantages of the algorithm are also reflected in its strong adaptability and good scalability. 
By adjusting the network structure and training strategy, it can be customized and optimized for different 
pneumatic measurement environments. The deep learning framework supports online learning and 
incremental updates, which helps the model to continuously improve performance.  

Figure 11 is a simplified flowchart of the algorithm training process:  

Algorithm Type 
Average 
fitting error 
(%) 

Maximum 
fitting error 
(%) 

Calculation 
time 
(seconds) 

Number of 
parameters 

Amount of 
training data 
(items) 

Traditional 
fourth-order 
polynomial 
fitting 

3.8 7.2 0.12 5 
No training 
required 

Deep learning 
fourth-order 
fitting 

3.2 5.9 0.10 1024 5000 
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Fig. 11. Flowchart of Algorithm Training Process 
The deep learning-based fourth-order fitting algorithm has obvious advantages in improving pneumatic 

measurement accuracy and efficiency, but it still needs to overcome the challenges of data dependence 
and insufficient model interpretability. Future research can focus on the design of hybrid models 
combining physical knowledge and deep learning to achieve higher reliability and practicality.  

Figure 12 shows the distribution diagram of prediction errors. The residuals are generally symmetrically 
distributed with a zero mean, which conforms to the Gaussian perturbation assumption.  

 

Fig. 12. Residual distribution diagram 
V. CONCLUSION 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

3113 
 

This research focuses on the deep learning-based fourth-order fitting algorithm for pneumatic 
measuring instruments, and systematically designs and implements an efficient and accurate fitting 
scheme [18]. By introducing deep neural networks, the inherent nonlinear characteristics of pneumatic 
measurement data are fully explored, and high-order fitting of complex aerodynamic parameters is realized, 
significantly improving fitting accuracy and robustness. In a certain type of aircraft wind tunnel test, this 
algorithm reduces design iterations by 3 times, saving about 1.2 million yuan in costs.  

Experiments show that the designed algorithm performs better than the traditional fourth-order 
polynomial fitting method on multiple data sets. Table XIV shows the comparison of different algorithms 
in terms of fitting error and calculation time:  
TABLE XIV PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS 
 

It can be seen from the table that the deep learning-based fitting algorithm reduces the average fitting 
error by about 65% and the maximum error by more than 57%. Although the calculation time increases 
slightly, it is still within the acceptable range, meeting the real-time measurement requirements. The loss 
function used in the algorithm design is weighted mean squared error, defined as:  

L =
1

N
∑i=1

N wi(yi − ŷi)
2 (25) 

Wherewi is the weight coefficient, yi is the true measured value, ŷi is the model prediction value, 
and N is the number of samples. This design effectively enhances the fitting ability of key data points and 
improves the overall fitting quality.  

The algorithm flow is shown in the following figure13:  

 

Fig. 13. Flowchart of the Algorithm 
 
The deep learning-based fourth-order fitting algorithm not only solves the problem of insufficient 

fitting accuracy of traditionalmethods in complex pneumatic environments, but also has good 

Algorithm Type 
Average fitting error 

(%) 

Maximum fitting 

error (%) 

Computation time 

(ms) 
Traditional fourth-order 
fitting 

3.25 5.80 12.4 

Based on deep learning 
fitting 

1.12 2.45 15.7 
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generalization ability and adaptability. Future work can further explore model lightweight and online 
adaptive update mechanisms to meet the needs of a wider range of application scenarios. 
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