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Abstract: Electric Vehicles (EVs) require efficient and adaptive motor control strategies to ensure optimal performance 
under various driving conditions. Traditional control methods lack the ability to dynamically adapt to such conditions, 
leading to suboptimal efficiency and ride quality. This paper presents the design and implementation of intelligent, data-
driven motor control strategies that leverage advanced Deep Learning (DL) architectures, particularly long short-term 
memory (LSTM) networks and Convolutional Neural Networks (CNNs). The proposed control strategy dynamically 
adjusts the motor input parameters based on real-time sensor data and predicted torque demands. The simulation results 
show significant improvements in energy efficiency and torque ripple reduction compared to traditional PID and Field-
Oriented Control (FOC) strategies. 
Keywords: Electric Vehicle (EV), Motor Control, Deep Learning, LSTM, CNN, Torque Ripple, Adaptive Control, 
MATLAB/Simulink. 
 
1. INTRODUCTION 
The global transition toward sustainable transportation has significantly accelerated the adoption of Electric 
Vehicles (EVs) in recent years. Driven by environmental imperatives, such as reducing greenhouse gas 
emissions and curbing urban air pollution, governments, industries, and consumers are increasingly 
recognizing EVs as a viable alternative to conventional internal combustion engine (ICE) vehicles [1]. In 
addition to their ecological advantages, EVs offer improved energy efficiency, lower operational costs, and 
enhanced performance characteristics, such as high torque at low speeds and quieter operation. 
Despite these benefits, the efficient and adaptive control of electric motors remain a key technical challenge 
in EV technology. Electric motors are the heart of EV propulsion systems, and their control strategies directly 
impact the overall energy efficiency, ride comfort, torque delivery, regenerative braking efficiency, and battery 
longevity [2]. Traditional motor control techniques—such as proportional-integral-derivative (PID) controllers 
and Field-Oriented Control (FOC), have been widely used o w i n g to their simplicity and proven stability in 
linear or moderately nonlinear systems. However, these methods have significant limitations in handling 
highly dynamic and nonlinear operating environments. Specifically, they struggle to adapt in real time to 
rapid variations in road gradient, vehicle load, traffic conditions, and the highly unpredictable nature of 
driver behavior. 
2. Limitations of Traditional Motor Control Techniques and Development of Deep Learning 
Control Techniques 
To address the limitations of traditional motor control techniques, Artificial Intelligence (AI) and Machine 
Learning (ML) techniques have emerged as powerful tools capable of learning and generalizing from large 
and diverse datasets [3]. Within this context, Deep Learning (DL), a subset of ML that uses multi-layered 
neural network architectures, has demonstrated remarkable success across domains s u c h a s computer 
vision, natural language processing, and time- series forecasting. DL models c a n automatically learn complex 
patterns and relationships from raw sensor data, reducing the need for handcrafted features and manual 
tuning. This study focuses on the integration of Long Short-Term Memory (LSTM) and Convolutional Neural 
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Networks (CNN) into the motor control loop of EVs. LSTM networks, a specialized form of Recurrent Neural 
Networks (RNNs), are particularly suitable for modeling sequential and time- dependent data, making them 
suitable for capturing temporal dynamics in driving behavior, vehicle response, and motor load. Meanwhile, 
CNNs excel at spatial feature extraction and noise-resistant pattern recognition, making them suitable for 
preprocessing sensor data and identifying the underlying trends. 
By combining the strengths of the LSTM and CNN architectures, the proposed approach seeks to develop 
an intelligent and adaptive motor control strategy. This control framework is designed to continuously learn 
from historical and real- time operational data, predict optimal control signals under varying conditions, 
minimize torque ripple, maximize energy efficiency, and enhance driving comfort and safety. 
Unlike traditional model-based controllers that rely on fixed parameters or require extensive retuning, this 
data-driven strategy inherently adapts to the complexities and nonlinearities present in real-world EV 
operations. The integration of DL-based control opens new avenues for predictive, self- tuning, and context-
aware motor control, positioning it as a transformative advancement in the domain of intelligent electric 
mobility systems. 
 
3. LITERATURE SURVEY 
Numerous studies have addressed the control of EV motors. Conventional controllers, such as PID and FOC 
have been employed for decades [4]. These methods are well established and relatively easy to implement; 
however, they often struggle to adapt to nonlinearities and time-varying dynamics in EV powertrains. With 
the advent of machine learning, methods such as Artificial Neural Networks (ANNs) and fuzzy logic have 
been explored [5]. ANNs can learn complex relationships between input and output variables; however, they 
often require extensive training data and can be difficult to interpret. Fuzzy logic controllers offer a more 
intuitive approach to control design; however, they can be challenging to tune and optimize. 
Recent studies using Deep Reinforcement Learning for vehicle control have shown potential, but with 
limitations in terms of stability and training complexity [6]. Deep Reinforcement Learning (DRL) algorithms 
can learn optimal control policies through trial and error; however, they often require significant 
computational resources and can be sensitive to hyperparameter tuning. Our research bridges the gap by 
combining temporal (LSTM) and spatial (CNN) deep learning models to predict and regulate the control 
parameters. This approach leverages the strengths of both LSTM and CNN models to capture both temporal 
dependencies and spatial features in the input data, thereby improving the control performance. 

 
Fig. 1. Development of Deep Learning algorithms for optimal motor control strategy 

 
4. METHODOLOGY 
A. Dataset Preparation 
To develop and validate the proposed deep learning- based motor control strategy, real-world driving behavior 
was simulated using standardized driving cycles, specifically the World- wide Harmonized Light Vehicles Test 
Procedure (WLTP) and the Federal Test Procedure (FTP-75) [7]. These cycles were selected for their 
comprehensive representation of urban, suburban, and highway driving patterns, incorporating frequent 
stops, accelerations, decelerations, and varying speeds. 
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From these driving cycles, a multivariate time-series dataset was generated using a high-fidelity electric vehicle 
simulation model. The following key parameters were captured at high frequency (e.g., 10–50 Hz): Motor 
Current (A), Motor Torque (Nm), Motor Speed (RPM), Battery State of Charge (SOC). 
B. Data Preprocessing 
The raw time-series data underwent a multi-stage preprocessing pipeline: 
Normalization: All features were scaled to a [0,1] or [-1,1] range using min-max normalization to prevent 
feature dominance and accelerate model convergence. 
Noise Filtering: A combination of low-pass Butterworth filters and moving averages was applied to suppress 
the sensor noise and ensure smoother signal transitions. 
Time-Window Segmentation: The data were segmented into fixed-length windows (e.g., 2–5 s), forming 
input tensors of shape (timesteps × features) suitable for feeding into the LSTM layers. Overlapping windows 
were used to increase the sample diversity and capture the transitional states. 
Label Definition: For supervised learning, the target variable was defined as the optimal control signal, such 
as the motor voltage-to-frequency (V/f) ratio, which was computed using an ideal control response from a 
baseline model. 

 
Fig. 2. Proposed CNN-LSTM Deep Learning Model for EV Motor Control 

C. Deep Learning Architecture 
The proposed deep learning framework was designed to extract both spatial patterns and temporal dynamics 
from a multivariate time-series dataset [8]. The architecture consists of the following layers: 
Convolutional Layers (CNN Block): CNN layers act as feature extractors to capture local temporal trends 
and inter- feature correlations in short-term driving data [9]. Two 1D convolution layers (e.g., 64 filters, kernel 
size = 3) followed by ReLU activation and max-pooling. A high-level feature map representing localized driving 
patterns. 
LSTM Layers: The LSTM layers are responsible for modelling long-term dependencies and contextual 
patterns across sequences of driving states. One or two stacked LSTM layers (e.g., 128 units each), each 
followed by dropout layers to prevent overfitting, were used. Flattened feature maps from the CNN block. A 
fixed-size encoded vector summarizing the temporal driving context. 
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Dense Output Layer: The final fully connected (dense) layer maps the LSTM output vector to a scalar or 
vector output representing the predicted control signal. A linear activation function was used because the 
control signals (e.g., voltage or torque command) were continuous values. 
5. Simulation Environment 
The simulation environment developed in this study follows a structured workflow aimed at modeling, 
implementing, and evaluating a deep learning-based motor control strategy for electric vehicles (EVs). 

 
Fig. 3. Proposed CNN-LSTM Deep Learning Model for EV Motor Control 

The process begins by initiating the simulation in MATLAB/Simulink, which provides a robust platform for 
dynamic system modeling. This setup involves configuring time steps, defining the simulation durations, and 
loading standard driving cycles such as WLTP and FTP-75, which represent urban and highway driving 
conditions. 
Following initialization, a detailed model of a Brushless DC (BLDC) motor was created. This model includes 
both the electrical characteristics and mechanical load dynamics. It was integrated with a three-phase inverter 
using pulse-width modulation (PWM) techniques to simulate a realistic motor control switching behavior. 
The inverter motor system was designed to respond dynamically to input signals, mimicking the physical 
response of an actual EV powertrain. 
A deep learning (DL) controller developed using MATLAB’s Deep Learning Toolbox was then implemented. 
The controller employs a hybrid CNN-LSTM architecture trained on historical vehicle data. It is embedded 
as a functional block within the Simulink model and receives multiple real-time sensor inputs. The inputs 
included the motor current, torque, speed, battery state of charge (SOC), road gradient, and acceleration 
data. The DL controller processes these data to predict optimal control signals, such as voltage- to-frequency 
ratios or torque commands. 
The sensor data were continuously collected and processed during the simulation. This includes 
normalization, noise filtering, and reshaping into the appropriate input formats for the neural network. The 
processed data were then fed into the DL controller, which generated motor drive signals based on the learned 
patterns and current conditions. 
Once the control signals were generated, they were used to drive the BLDC motor model within the 
simulation. The real- time responsiveness of this loop allows the system to mimic the actual EV operation 
with high fidelity. Finally, the performance of the controller was evaluated using key metrics, including torque 
ripple, energy efficiency, and speed tracking accuracy. These metrics were benchmarked against traditional 
control methods, such as PID and Field-Oriented Control (FOC), demonstrating the enhanced adaptability 
and effectiveness of the proposed deep learning-based control strategy. 
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6. RESULTS AND DISCUSSION 
The performance of the DL-based controller was bench- marked against the PID and FOC controllers. The 
evaluation metrics included the following: 

Table I. Comparison of Control Strategies 

Controller 
Torque Ripple  

(%) 
Efficiency  

(%) 
Speed Tracking Error  

(RPM) 
PID 12.4% 81.3 % ±40 
FOC 9.8% 84.6 % ±30 

DL- Based 4.6% 91.2 % ±10 
Torque Ripple: A measure of the smoothness of the motor torque output. A lower torque ripple indicates 
better control performance [10]. Torque ripple refers to the periodic variations in the motor torque output, 
which can result in vibrations, noise, and reduced drive smoothness. Among the evaluated strategies, the PID 
controller exhibited the highest torque ripple at 12.4%, primarily o w in g to its limited ability to adapt to 
dynamic load changes. The FOC approach, being more advanced, achieved a moderate improvement with 
9.8% torque ripple by decoupling the torque and flux control. However, the DL-based controller significantly 
outperformed both, with only 4.6% torque ripple, demonstrating its superior capacity to learn and predict 
optimal control actions under varying driving conditions, thereby ensuring smoother torque delivery and 
improved ride comfort. 
Energy Efficiency: A measure of the energy consumed by the motor to produce a given amount of torque. 
Higher energy efficiency indicates better control performance [11]. Efficiency is defined as the ratio of the 
useful mechanical output to the electrical energy input. It is a key metric for evaluating the energy 
consumption behavior of EVs. The PID controller exhibited an efficiency of 81.3%, reflecting its non-
adaptive nature and inability to respond optimally to varying system dynamics. The FOC method improved 
this to 84.6%, owing to its vector-based modulation strategy. The DL-based controller achieved the highest 
efficiency at 91.2%, highlighting its intelligent decision- making process that minimizes power loss by adapting 
to instantaneous torque and speed demands using historical data and sensor inputs. 
Speed Tracking Error (RPM): A measure of the difference between the desired motor speed and the actual 
motor speed. A lower speed tracking error indicates better control performance [12]. The speed tracking error 
measures the difference between the desired (reference) motor speed and the actual speed achieved. Lower 
values indicate better dynamic response and stability. The PID controller displayed a relatively poor tracking 
ability with an error margin of ±40 RPM, largely due to its static gain tuning. The FOC method reduced this 
error to ±30 RPM, benefiting from closed-loop control with rotor-flux estimation. The DL-based controller 
provided the most accurate speed tracking with only ±10 RPM error, demonstrating its strong capability in 
modeling time- series patterns and delivering precise control outputs in real time. 
The evaluation confirmed that the DL-based motor control strategy significantly enhanced the overall 
performance of the EV drive system. By leveraging deep learning models, such as CNNs and LSTMs, the 
controller intelligently interprets sensor data and adjusts control parameters in real time, outperforming 
conventional methods in terms of torque smoothness, energy efficiency, and speed regulation. These results 
validate the potential of integrating AI-driven control strategies into future EV technologies to meet the 
increasing demand for smarter and more efficient transportation solutions. 
 
7. CONCLUSION 
Deep learning offers a promising approach for designing intelligent and data-driven motor control strategies 
for electric vehicles. By leveraging the power of deep learning, it is possible to overcome the limitations of 
traditional control methods and develop control systems that can adapt to changing conditions, optimize 
performance, and improve energy efficiency. 
This study successfully demonstrated the viability of using deep learning architectures for intelligent motor 
control in EVs. The CNN-LSTM model adapts dynamically to changing driving conditions, offering improved 
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control accuracy and efficiency. Future work will involve deploying the controller on hardware using 
embedded systems and extending the approach to multiple EV models. 
While challenges remain in deploying deep learning models in real-time EV environments, ongoing research 
and development efforts are paving the way for the widespread adoption of deep learning in EV motor 
control. The future of EV motor control is undoubtedly data-driven and intelligent, with deep learning 
playing a central role in shaping it. 
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