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Abstract 
Cuscuta, commonly known as dodder, is a parasitic plant that poses a significant threat to crops worldwide, including 
black gram (Vigna mungo). Early detection and management of Cuscuta infestation are crucial to minimize yield 
losses and ensure optimal crop productivity. In this paper, the DodderNet is used to detect Cuscuta early in black 
gram plant farms. The proposed approach, DooderNet, combines preprocessing techniques, Image Annotation, 
segmentation, and U-Net. The pre-trained model RESNET50 is used to train on given Cuscuta images. It isn't easy 
to train these images with this model. The dataset consists of 200 high-resolution images of black gram fields in 
Avanigadda Mandal, Krishna District, Andhra Pradesh, India, and corresponding annotations in jpg image format. 
Finally, there are comparisons between various state-of-the-art convolutional neural network (CNN) architectures, 
including U-Net, DeepLab, and Fully Convolutional Network (FCN). The existing DeepLab and FCN, compared 
with DooderNet, show robust performance with an accuracy of 0.90%. 
Keywords: Cuscuta detection, Deep learning segmentation, Parasitic plant identification, Agricultural computer 
vision, U-Net architecture, Crop disease managementRetryClaude can make mistakes. Please double-check responses. 
 
1. INTRODUCTION 
Plant disease prediction is one of the complex tasks in the present scenario [1] [2]. Early prediction of 
plant diseases is essential to prevent heavy loss if they are not detected in the early stages. In general, 
plants also suffer from various diseases that affect the regular growth of plants [3]. Diseases mainly occur 
in any part of plants like leaves, stems, and roots. There are multiple plants and crops, which makes it 
very difficult to detect and classify diseases with existing models. Most farmers fail to predict plant diseases 
early because of a lack of knowledge [4]. Many manual and traditional approaches are used to detect and 
diagnose plant diseases that obtain minimal accuracy [5]. Designing and developing dynamic plant 
diseases significantly reduces manual efforts and provides accurate analysis [6]. Agriculture becomes the 
primary source of income to the farmers in India. Sometimes, to improve the crop yield, farmers will use 
pesticides and chemicals to reduce the loss of plant growth and crop quality. Nowadays, chemicals are 
becoming more and more used for plant yielding. It has a significant impact on human life, which shows 
various side effects, causes heavy health issues, and leads to death [7]. Machine learning (ML) and deep 
learning (DL) algorithms used on various plants and fruit types, such as fruit [8], paddy [9], tomato [10], 
and peach [11]. There is a relationship between plant diseases and pesticide usage because farmers most 
widely use these pesticides to control damage in the early stages. 
The genus Cuscuta, commonly known as Dodder, encompasses parasitic plants that belong to the family 
Convolvulaceae [12] [13]. It parasitizes various crops, including black gram (Vigna mungo), leading to 
severe yield losses and economic repercussions for farmers. In India, black gram is a staple legume crop 
cultivated extensively in regions such as Andhra Pradesh, which plays a crucial role in the agricultural 
economy [14]. However, Cuscuta infestation poses a significant challenge to black gram cultivation, 
adversely affecting plant growth, nutrient uptake, and yield quality. Early detection of Cuscuta infestation 
is important; it's urgent for effective management and mitigation of its impact on black gram yields. The 
current traditional checking and visual analysis methods, being labor-expensive, more computation time, 
and often insufficient for timely intervention, underscore the pressing need for automated solutions that 
leverage advanced technologies to enable early detection and monitoring of Cuscuta infestation in 
blackgram fields. In recent years, DL models, particularly CNN, which is more powerful for image analysis 
and pattern recognition tasks, including object detection and segmentation. These models can learn 
intricate patterns and features from large-scale datasets, making them well-suited for agricultural 
applications such as pest detection and disease diagnosis [15]. 
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Figure 1(A): Type 1; Figure 1(B): Type 2, and Figure 1(C): Type 3. 
This study aims to investigate the efficacy of various DL approaches for the early identification of Cuscuta 
infestation in black gram plant farms. We collected a comprehensive dataset comprising high-resolution 
images of black gram fields in Avanigadda Mandal, Krishna District, Andhra Pradesh, India. The 
corresponding annotations delineate the presence of Cuscuta-infested regions in each image, providing 
clear and precise information for analysis." We employ a range of CNN architectures, including U-Net 
[16], DeepLab [17], and FCN, to perform semantic segmentation of Cuscuta-infested areas. Through 
comparative analysis and performance evaluation, they provide valuable insights and practical 
recommendations for farmers and agricultural practitioners, inspiring them to adopt advanced 
technologies for improved pest management and crop yield optimization. The structure of the remaining 
paper is as follows: 1. Introduction; 2. Literature Survey, which shows the performance of various 
algorithms applied to plant disease images; 3. Methodology, which explains the proposed approaches used 
in this research; 4. Dataset description; 5. Performance metrics; 6. Results and Discussion; and 7. 
Conclusion. 
 
2. LIETRATURE REVIEW 
Elfatimi et al. [18] proposed the classified model for bean leaf diseases, which is a more effective model. 
The proposed approach is applied to various architectures. Differently, the comparison is analyzed based 
on the given parameters. The trained model MobileNetV2 architecture improves pattern detection with 
fast training times and high accuracy. The dataset consists of 3 classes, two abnormal classes, and one 
healthy class, and testing was conducted on 1296 bean images. The proposed model accuracy is 97% on 
the training dataset and 93% on the testing dataset. Jiang et al. [19] proposed a new model that detects 
apple leaf disease from the ALD dataset, available in Kaggle. These dataset images are developed using 
data augmentation, and annotation techniques are applied. The proposed approach, deep-CNN, 
combined with GoogLeNet Inception to increase the apple leaf detection rate called INAR-SSD. The 
performance of INAR-SSD shows the 78.80% mAP on ALDD with a speed of 23.13 FPS. The results 
show that the proposed approach achieved high performance with a rapid detection rate. The drawback 
of the INAR-SSD is it is limited to one plant disease detection only. Zhao et al. [20] presented the 
DoubleGAN, which creates high-resolution images of normal and diseased samples. The DoubleGAN 
works in two stages: In the first stage, the healthy leaves are trained using the Wasserstein-GAN. Then, 
the abnormal or diseased leaves are converted to 64*64 pixel images. In stage 2, superresolution-GAN is 
used to train on 256*256 pixel images to overcome unbalanced data. Finally, compared with DCGAN, 
DoubleGAN generated high-resolution images and obtained the accuracy of disease detection at 99.61%, 
and for plant species, it is 99.81%.  
Wu et al. [21] introduced the data augmentation developed by GAN to detect leaf diseases. The DCGAN 
is used to augment the given dataset images, and the actual images are used as input for GoogLeNet. The 
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accuracy of GoogLeNet is achieved at 94.12%. Combined with the DCGAN and t-SNE, the proposed 
approach is applied to high-quality images using the Visual Turing Test. The tomato leaf images were 
used for the experiments and achieved an accuracy of 94.33%, which is a high detection rate compared 
with other models. Tabbakh et al. [22] introduced a hybrid classification model to classify plant diseases. 
The proposed hybrid model performs well by combining Transfer Learning for pattern transfer—all the 
stages of the proposed approach analyzed on wheat datasets present in PlantVillage. The second step 
primarily focused on intense training to overcome overfitting. The third step is feature extraction using 
the ViT model, and the final step is classification using MLP. The final result obtained an accuracy of 
98.82% for PlantVillage and 99.87% for the wheat dataset. Moupojou et al. [23] proposed the DL model 
that helps farmers to detect plant diseases effectively. The training was conducted on PlantVillage dataset 
that contains images of multiple plant diseases. There are 2569 images, and FieldPlant consists of 5170 
plant diseases belonging to 27 plant diseases. The proposed approach obtained better accuracy through 
the comparison between various algorithms and among all the algorithms. Ahmad et al. [24] proposed 
the automated plant diseases classification approach developed using CNN. The CNN is more efficient 
regarding significant dataset-loading issues like memory management. The proposed approach also 
focused on solving the class imbalance issue. Transfer learning transfers the weights analysed on a huge 
dataset. We implemented the proposed approach on the PlantVillage and Pepper datasets, carefully 
analyzing the results to ensure accuracy and validity. The accuracy of PlantVillage was 99.1%, and for the 
pepper dataset, it was 99.71%. Sunil et al. [25] presented the new DL-based model called EfficientNet, 
which is used to classify the two diseases of cardamom plants. The U-Net model removes unwanted 
background images from the input image by selecting multiscale features. The EfficientNet obtained a 
high accuracy compared with CNN, with an accuracy of 98.28%.  
Amin et al. [26] introduced the end-to-end DL model that finds the normal and abnormal corn plant 
leaves based on performance metrics. The fused, integrated method used the CNN model to extract the 
features from the cron leaf images. The performance of the proposed approach combined with data 
augmentation provides a better classification. The proposed classification accuracy is about 98.56%, 
which is high compared with ResNet152 and InceptionV3. Hassan et al. [27] proposed the novel DL 
approach combined with inception layer and residual connection. The accuracy of PlantVillage dataset is 
99.39%, the rice disease dataset is 99.66%, and the cassava dataset is 76.59%. Li et al. [28] described the 
review process of various algorithms based on multiple plant diseases. The authors also presented the 
latest trends and challenges based on plant diseases and pesticides. Wang et al. [29] proposed the few-shot 
learning model by combining the Siamese network to overcome issues in the classification of leaf's issue 
with small dataset images. The feature extraction was implemented by using the CNN model. The 
proposed approach integrates the SSO and KNN classifiers. The experiments were conducted using three 
datasets, Flavia, Swedish, and Leafsnap, and obtained an accuracy of 97.87%. Yang et al. [30] proposed 
the CNN model to extract the spectral features from the corn seedlings. Finally, accuracy in classification 
and computational efficiency were analyzed to determine a 10-layer knot CNN model. CNN identified 
the cold damage levels in different maize seedlings, which were highly correlated based on chemical 
technique rankings. The difference between the correlation coefficient and CNN detection analysis with 
the chemical method for cold damage is 0.8219. The final results show better results based on cold 
damage in maize seedlings. 

 
Figure 2: Architecture Diagram for Proposed Approach 
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3. DATASET DESCRIPTION 
The dataset includes images of black gram fields collected from Avanigadda Mandal, Krishna District, 
Andhra Pradesh, India, one of the regions severely affected by Cuscuta. It consists of 220 high-resolution 
images of black gram fields using drones equipped with high-definition cameras, ensuring comprehensive 
coverage of the agricultural landscape. Among these, 190 images are training, and  30 images are valid. 
In addition to field images, separate images of Cuscuta samples were taken against white and black 
backgrounds to highlight the parasite's features. Microscopic images of Cuscuta were also captured to 
provide detailed structural information for training the models. 
3.1 Dataset 
Training Data: Images and labels were split into training and validation sets, stored in separate folders. 
o Training Images Folder: D:/project/images/train 
o Training Annotations Folder: D:/project/labels/train 
o Validation Images Folder: D:/project/images/valid 
o Validation Annotations Folder: D:/project/labels/valid 
 
3.2 Data Preprocessing 
Images were resized to 256×256256 \times 256256×256 pixels, and annotation masks were generated 
using the coordinates provided in JSON format. The images were converted to RGB format, and masks 
were created to represent the Cuscuta regions as binary values (1 for Cuscuta, 0 for the background). 
 
3.3 Image Anotation 
Each image in the dataset was annotated using the [PixLabAnnotate](https://annotate.pixlab.io/) tool, 
which allows for detailed and accurate labeling. Manual annotations were performed using rectangle and 
polygon tools to mark the Cuscuta-infested regions precisely. For each image, 2 to 76 annotations were 
made to ensure comprehensive coverage and accuracy. Annotations were saved in JSON format, 
providing detailed information about the location and extent of Cuscuta infestation within the black 
gram fields. Agricultural experts manually curated the annotations to ensure accuracy and consistency. 
 

 
 
 
 
 
 
 
 
 
 

 
 
           Figure 3 (a): Cuscuta infestation-1                      Figure 3 (b): Cuscuta infestation-2 
 

         
 
            Figure 3 (c): Cuscuta infestation-3                     Figure 3 (d): Cuscuta infestation-4 
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4. RESNET50 (PRE-TRAINED MODEL) 
RESNET50 is the pre-trained Residual Network, which consists of 50 layers. It is mainly used to develop 
to solve the vanishing gradient issue. The gradients directly flow through the network, which helps with 
more deep training. Training intensely on complex datasets becomes very effective in processing the 
Cuscuta images and requires fine-tuned visual recognition, like detecting advanced features connected 
with Cuscuta infestations. Deep learning (DL) has played a significant role in plant disease detection and 
classification in recent years. From there, CNN became one of the influential tools for the analysis of 
images based on its strengths in detecting automated features from raw image data. Early detection of 
Cuscuta infestation is crucial for preventing its growth and reducing its impact on crops. Many traditional 
methods work on manual disease detection methods, which take more computation time. 
In this paper, the RESNET50 used to Cuscuta detection which involves in training the network on dataset 
labeled images, where the Cuscuta identified clearly. In training phase, the network study the difference 
between effected and non-effected reagions by identifying patterns specific to Cuscuta, which is limited 
factors like twining structure and color. After completion of training, the testing can be started on new 
images which automatically identified the Cuscuta infestations with high accuracy. The following layers 
present in RESNET50 architecture: 
1. Input Layer 
➢ The shape of input: The size of input image with shape 224x224x3 (width x height x channels). 
2. Initial Convolution and Max-Pooling 
➢ Conv1: A 7x7 convolution with 64 filters, stride of 2 
➢ MaxPooling: A 3x3 layer with a stride of 2. 
3. Residual Blocks (Bottleneck Layers) 
➢ It consists of 4 phases; every phase contains several residual blocks. Every block has a "bottleneck" 
structure with 3 layers: 
➢ 1x1 Convolution: Reduces the total channels. 
➢ 3x3 Convolution: Performs spatial convolution. 
➢ 1x1 Convolution: Restores total channels. 
The layers are: 
➢ Stage 1: contains 3 x 64 residual blocks 
➢ Stage 2: contains 4 x 128 residual blocks. 
➢ Stage 3: contains 6 x 256 residual blocks 
➢ Stage 4: contains 3 x 512 residual blocks. 
4. Average Pooling 
➢ Global average pooling is applied after the last residual block to reduce the spatial dimensions to 1x1. 
5. Fully Connected (FC) Layer 
➢ A dense layer with 1000 units (for ImageNet) or adjusted to the number of classes in your specific 
dataset (e.g., 2 for detecting the presence or absence of Cuscuta infestation). 
5. TESTING PHASE 
In this phase, the following steps used to show the testing phase: 
 
5.1 Adaptive Input Image Pre-processing: 
Histogram Equalization (HE): HE is one of the image processing techniques that improve the contrast 
of input images by changing the intensity distribution of the histogram. Enhancing the image's contrast 
becomes very important because it helps visualize the abnormal conditions in the input image. All the 
input images suffer from low contrast rates due to their different lighting conditions, shadows, and the 
complicated nature of plant structures. HE mainly focused on improving the contrast and showing the 
difference between the parasitic Cuscuta and the host plants. The following equations are used to measure 
the HE: 
1. Histogram Computation 
The histogram for input image is measured. Let H(i) represents the total pixels with intensity level 'i'. 
2. Measure Probability Density Function (PDF) 
The probability of every intensity level is measured by using: 

p(i) =
h(i)

N
     (1) 

Where, N-total pixels. 
3. Measure Cumulative Distribution Function (CDF) 
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The CDF is measured by using the following equation: 

CDF(i) = ∑ p(j)      (2)

i

j=0

 

4. Mapping the Intensity Levels 
Transmit every intensity level in the actual image to a new intensity level using the CDF: 

NewIntensity(i) = round [(CDF(i) − CDFmin) × 
L − 1

N − 1
]          (3) 

 
Bilateral Filtering (BF): It is a non-linear method that preserves input image edges and reduces the noise 
smoothing filter in image processing. In this paper, we underscore its significant role in detecting Cuscuta 
infestations, a crucial application where the aim is to remove the noise from the input images. BF 
considers both spatial proximity and intensity similarity of pixels. This dual consideration helps in 
smoothing the image while retaining important edges and details, which is crucial for accurate analysis of 
Cuscuta-infested areas. The key factors of BF are given below: 
Spatial Domain Weighting: This component accounts for the geometric closeness of pixels, ensuring 
that a pixel's influence on its neighbor decreases with distance. This aspect helps maintain the integrity 
of edges and other crucial features in the image. 
Intensity Domain Weighting: This component evaluates the intensity differences between pixels. Pixels 
with similar intensities are considered more related, contributing more significantly to the averaging 
process. This helps in smoothing out noise without blurring important details. 
 

Ifiltered(x) =
1

Wp
∑ I(xi) ∙ Gs(||xi − x||) ∙ Gr(||I(xi) − I(x)||)

xiϵS
               (4) 

This study explores the effectiveness of BFin the context of Cuscuta infestation detection and analysis, 
with the ultimate goal of contributing to more reliable and efficient methods for managing these parasitic 
plants. 
 
5.2 Feature Extraction using Color Segmentation 
Color segmentation is a crucial technique in computer vision and image processing, employed to partition 
an image into distinct regions based on color similarities. This method plays a pivotal role in various 
agricultural applications, particularly in the detection and monitoring of plant health and infestations. 
One such application is the detection of Cuscuta infestations in blackgram crops. The distinguishing 
characteristic of Cuscuta is its unique coloration, which typically contrasts with the green hues of healthy 
crops. This contrast can be exploited using color segmentation techniques to accurately identify and 
isolate the regions infested by Cuscuta from the rest of the image. By extracting features based on color, 
the segmentation process can effectively highlight areas affected by the parasite, enabling targeted 
interventions. 
This process typically involves converting the image into a color space that makes segmentation easier, 
and then applying thresholds to identify the regions of interest. 
1. Color Space Conversion 
The first step in color segmentation is often to convert the image from the RGB color space to another 
color space that separates color information from intensity information, such as HSV (Hue, Saturation, 
Value) or LAB (Lightness, A, B). 

HSV = f(RGB)     (5) 
 

LAB = g(RGB)     (6) 
2. Thresholding for Color Segmentation 
Once the image is in a suitable color space, thresholding is applied to isolate the colors corresponding to 
Cuscuta infestations. 
A. HSV Thresholding: 

Mask(x, y) = {
1  if Hmin ≤ H(x, y) ≤  Hmax and Smin ≤ S(x, y) ≤  Smax and Vmin     (7)

0  Otherwise,
 

B. LAB Thresholding: 

Mask(x, y) = {
1  if Amin ≤ A(x, y) ≤  Amax and Bmin ≤ B(x, y) ≤  Bmax,       (8)

0  Otherwise,
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3. Feature Extraction 
After segmentation, various features can be extracted to characterize the detected Cuscuta regions: 
 

Area = ∑ Mask(x, y)        (9)

x,y

 

 

Centroid = (
∑ x ∙ Mask(x, y)x,y

Area
,
∑ y ∙ Mask(x, y)x,y

Area
 )       (10) 

 

Perimeter = ∑ Edge(x, y)

x,y

      (11) 

5.3 U-Net Architecture 
It is most effective DL models for tasks involving image segmentation, including the detection and 
localization of specific objects within images. This model is actually developed for biomedical image 
segmentation; It is proven to be highly adaptable to other domains, including agriculture. U-Net is 
designed to capture fine-grained details in images, which is essential for accurately identifying the presence 
of Cuscuta vines intertwined with the host plants. Agricultural datasets, especially those focused on 
specific infestations like Cuscuta, are often limited in size. U-Net's ability to train effectively even on 
smaller datasets makes it an ideal choice for this application. The U-Net architecture extracts features at 
multiple scales, which allows it to detect both small and large instances of Cuscuta, ensuring robust 
detection across different scenarios.  
1. Structure of U-Net 
U-Net follows an encoder-decoder structure described in two main parts: 
Encoder (Contracting Path): This consists of a sequence of convolutional layers that gradually reduce the 
input image's size while retaining important features. The encoder's function is to learn an image's spatial 
context by lowering its dimensionality. The encoder contains two 3 x 3 convolutions (unpadded), heed 
by a ReLU activation with 2 x 2 max-pooling operation 2 stride for compression. 

Convolutional Layer: Cl+1 = ReLU(Conv3x3(Cl))     (12) 
 

Max Pooling: Pl+1 = MaxPool2 x 2(Cl+1)       (13) 
2. Bottleneck 
This part connects the encoder and decoder, consisting of convolutions that capture the most abstract 
features before upsampling starts. 
Decoder (Expanding Path): The network's decoder component expands the encoded features to their 
original image size. It utilizes inverted convolutions and eliminates links from the encoder's corresponding 
layers to preserve fine features in the segmentation output. The decoder was developed using a feature 
map with a 2 x 2 convolution, which extracts the total features from the channels, a correlatively cropped 
feature map from the contraction path, and two 3 x 3 convolutions, each followed by a ReLU. 

Upsampling: Ul = UpConv2x2(Bl)      (14) 
Concatenation: Ml = Concat(Ul, CL−l)     (15) 

Convolutional layers: Cl−1 = ReLU(Conv3 × 3(Ml))     (16) 
3. Final Output Layer 
This layer performs a 1 x 1 convolution, mapping each feature vector to the appropriate various classes. 

Output layer: O = Conv1×1(C1)    (17) 
The U-Net architecture's symmetry and ability to capture both global context and fine details make it 
particularly effective for segmentation tasks, such as detecting Cuscuta infestation in agricultural settings. 
 
6. RESULTS AND DISCUSSION  
In this section, the experimental steup and conducted the experiments are explained, then the 
comparative results are given. 
6.1 Expeirmental Steup 
The Python programming language is used to implement the algorithms. The algorithms RESNET50 as 
training model and U-net as the testing model developed with Python machine learning (ML) libraries. 
The confusion matrix used to measure the count values based on true positives (TP), false positive (FP), 
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true negative (TN), and false negative (FN). Based on the obtained count values the performance is 
measured.The performance of proposed approach is measured by using the following parameters: 

Accuracy =
TN + TP

TN + TP + FN + FP
 

 

Precision =
TP

FP + TP
 

 

Recall =
TN

TP + FN
 

 

F1 − Score =
TP

FN + FP + 2TP
 

 
 
6.2 DISCUSSION OF RESULT ANALYSIS 
Figure 3 shows the count values of DeepLab that are obtained from the analysis of confusion matrix. The 
overall count value shows the accurate values that shows huge impact on Cuscuta infestation from the 
given input images. The TP obtained the 100, FN is 20, FP is 10, and TN is 70. Figure 4 shows the count 
values of FCN with the values of TP-110, FN-17, FP-8, and TN-65. These values are obtained from the 
analysis of Cuscuta infestation dataset with the implementation of FCN. The final model implemented 
is U-Net obtained the values of TP-126, FN-14, FP-7, and TN-53. Here, the highest TP’s are achieved by 
U-Net, because it is one of the more powerful models that performes better in terms of finding the 
accurate patterns. The FP obtained the lowest value with 7 samples. It is very low compare with other 
models. Showing the high TP’s reflects the proposed U-Net shows the accurate and correctly finding the 
samples. The lowest number of TP’s represents that the model not performed effectively compared with 
U-Net, because U-Net obtaines high values.       
 

 
Figure 3: Count Values of DeepLab 
 

 
                  Figure 4: Count Values of FCN 

 
Figure 4: Count Values of U-Net 
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Table 1 shows the performance of algorithms based on confusion matrix count values obtained from 
various algorithms. Among all these models U-Net shows the highest performance in terms of disease 
detection rate. U-Net achieved the accuracy of 0.90%, which is high compare with DeepLab with the 
accuracy of 0.85%. Figure 5 visdualize the obtained values using Graph chart,  
Table 1: Comparitive Performance of Algorithms based on Cuscuta infestation 
 

 Accuracy Precision Recall F1-Score 

DeepLab 0.85 0.83 0.91 0.87 

FCN 0.88 0.87 0.93 0.90 

U-Net 0.90 0.90 0.95 0.92 

 

 
Figure 5: Performance of Algorithms based on obtained count values 
 
7. CONCLUSION 
The DooderNet is implemented by combining with RESNET50 as a pre-trained model and classification 
model Fully Convolutional Network (FCN). The transfer learning is used to transfer the features of the 
RESNET50 based on the weighted vectors present in the pre-trained model. The potential of deep 
learning models, specifically U-Net, DeepLab, and FCN, in accurately identifying and segmenting 
Cuscuta species. The high accuracy achieved by the U-Net model suggests that it is a promising tool for 
agricultural practitioners seeking to improve pest management strategies. Future research could focus on 
integrating these models into automated systems for real-time monitoring and intervention, ultimately 
contributing to increased black gram yield and sustainability in agriculture. 
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