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Abstract 
This study presents a fuzzy logic-based decision-making model for the early detection of brain tumors, integrating three key 
clinical parameters: tumor size (cm), edema volume (ml), and symptom severity (scale 0–10). Triangular membership 
functions are employed to represent the linguistic variables, while a Mamdani-type inference system evaluates the nonlinear 
interactions among these inputs to produce a predicted risk percentage. A comprehensive rule base derived from expert 
knowledge guides the inference process, enabling the system to handle uncertainty and imprecision inherent in medical data. 
The model was validated using various input combinations, and the results demonstrated strong alignment with clinical 
reasoning, showing that larger tumors and higher symptom severity significantly increase risk, especially when accompanied 
by substantial edema. The findings suggest that the proposed fuzzy logic model provides a transparent, flexible, and clinically 
relevant approach for early brain tumor risk assessment and prioritization in diagnostic workflows. 
Keywords: Brain tumor detection, fuzzy logic, decision-making model, triangular membership function, Mamdani 
inference, risk assessment, medical decision support. 
 
INTRODUCTION  

Brain tumors present a critical health concern due to their potential for rapid progression and severe 
neurological consequences if not detected early. Accurate assessment of tumor-related risk at an early stage is 
essential for prioritizing patients and initiating timely interventions. Traditional diagnostic methods, while 
effective, may not always capture the uncertainties present in clinical evaluations, particularly when symptoms 
are ambiguous or imaging data is subject to interpretation. Fuzzy logic offers a powerful solution to this 
challenge by enabling the incorporation of expert knowledge into a rule-based framework that can process 
imprecise or uncertain inputs. In this approach, clinical variables such as tumor size, edema volume, and 
symptom severity are represented through linguistic categories—small, medium, large; low, moderate, high—
which are mathematically defined using membership functions. The fuzzy inference process then evaluates 
these inputs against a structured rule base to determine a quantified risk level. This methodology not only 
aligns with human reasoning but also provides consistent, explainable outputs, making it highly suitable for 
decision-support applications in medical diagnostics. 

Edupuganti et al. (2020) explored the importance of uncertainty quantification in deep MRI 
reconstruction, highlighting that accurate medical imaging should incorporate measures of prediction 
confidence to reduce misdiagnosis risks. Their framework quantified uncertainty using deep learning, enabling 
clinicians to identify unreliable predictions and prioritize further review, which is essential in brain tumor 
detection where image clarity directly affects decision-making. AlAmir and AlGhamdi (2022) presented an in-
depth survey on the role of generative adversarial networks (GANs) in medical image analysis, emphasizing 
their potential to improve tumor detection accuracy by generating high-quality synthetic images for training. 
They underlined GANs' advantages in addressing data scarcity, a common limitation in medical imaging 
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datasets, and discussed challenges such as mode collapse and preserving anatomical fidelity. Amemiya et al. 
(2022) demonstrated how feature-fusion techniques enhance MRI-based single-shot deep learning detection of 
small brain metastases. By integrating multiple feature types, their approach improved detection sensitivity for 
lesions that are often missed in conventional scans, which is relevant for early-stage tumor detection. Guan et 
al. (2022) proposed a texture-constrained multichannel progressive GAN for medical image augmentation 
aimed at lesion detection. Their model preserved texture patterns critical to diagnosis, thereby enhancing 
classifier performance in scenarios with limited annotated data, a situation often encountered in early tumor 
datasets. Kammoun et al. (2022) reviewed GAN-based face generation, but their technical analysis of GAN 
architectures, loss functions, and stability optimization methods has direct implications for improving GAN 
performance in medical contexts, including MRI synthesis for brain tumor detection. Kumar et al. (2022) 
developed an approach for brain tumor detection using optimal feature selection combined with an optimized 
deep belief network. They demonstrated that carefully selected features significantly enhance classification 
accuracy, and their optimization strategy reduced computational overhead, making it suitable for real-time 
diagnostic assistance. Aggarwal et al. (2023) proposed an early detection and segmentation framework for 
brain tumors using deep neural networks. Their method achieved high segmentation precision, particularly 
for irregularly shaped tumors, supporting both diagnosis and treatment planning by providing accurate tumor 
boundaries. Brophy et al. (2023) conducted a systematic review of GAN applications in time series data, which 
indirectly informs medical image sequence analysis such as fMRI. Their survey offers insights into GAN 
stability and long-sequence data handling, which could be adapted for temporal tumor progression modeling. 
Denœux (2023) introduced the ENNReg model using random fuzzy sets for quantifying prediction uncertainty 
in regression. The method is particularly relevant for fuzzy logic-based brain tumor detection models, where it 
could enhance decision reliability by providing an uncertainty measure alongside predictions. Pathak et al. 
(2023) presented a robust EfficientNet-based architecture for brain tumor classification using MRI images. 
Their work emphasized model efficiency without compromising accuracy, which is vital for integrating AI into 
hospital workflows with limited computational resources. Saeedi et al. (2023) evaluated MRI-based brain 
tumor detection using convolutional deep learning methods combined with selected machine learning 
techniques. They demonstrated that hybrid approaches outperform standalone models, particularly in 
balancing sensitivity and specificity. Lambert et al. (2024) reviewed uncertainty quantification methods in 
deep learning for medical image analysis, proposing a unified approach to building trustworthy clinical AI 
solutions. Their recommendations align with the need for transparent fuzzy logic systems in medical diagnosis, 
especially for life-critical conditions like brain tumors. Moldovanu et al. (2024) developed a hybrid CNN–
machine learning model for classifying meningioma tumors and healthy brain tissue. Their integration of deep 
feature extraction with traditional classifiers improved generalization and interpretability, attributes valuable 
for clinical acceptance. Al-Ashoor et al. (2025) performed a systematic analysis of neural networks, fuzzy logic, 
and genetic algorithms in tumor classification. They highlighted the potential of combining fuzzy logic’s 
interpretability with neural networks’ predictive strength, offering a strong foundation for decision-making in 
early brain tumor detection. Belhadi et al. (2025) proposed an ensemble fuzzy deep learning framework for 
brain tumor detection, merging fuzzy logic with deep models to improve classification robustness and 
interpretability. Their ensemble strategy mitigated model bias, resulting in higher consistency across varied 
MRI datasets. 
 
DEFINITION OF INPUT AND OUTPUT VARIABLES 

In a fuzzy logic-based medical risk assessment model, input variables are the measurable factors or 
parameters that influence the outcome of the system, while the output variable represents the final decision 
or prediction derived from these inputs. For example, in a brain tumor risk prediction model, the inputs may 
include tumor size (cm), edema volume (ml), and symptom severity (scale 0–10), each describing a different 
clinical aspect of the patient’s condition. These inputs are typically expressed in linguistic terms such as small, 
medium, or large using membership functions to handle uncertainty and imprecision in measurements. The 
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output variable, in this case, could be the predicted risk (%), which quantifies the likelihood of a high-risk 
condition based on the combination of input values. By defining clear input and output variables, the model 
can systematically map medical data to risk predictions, facilitating accurate and interpretable decision-making. 

Table 1: Definition of input and output variables 
Tumor Size Edema Volume Symptoms Severity Brain Tumor Risk 

Small STS Low LE Mild  MSS Low LBTR 
Medium METS Moderate MO Moderate MOSS Medium MBTR 

Large LTS High HE Severe SSS High HBTR 
 

 
Let 𝑥 be the MRI Tumor Size. 

𝜇𝑆𝑇𝑆(𝑥) = {

1 𝑥 = 0
2−𝑥

2
0 < 𝑥 < 2

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (1) 

𝜇𝑀𝐸𝑆(𝑥) = {

𝑥−1.5

1.5
1.5 < 𝑥 ≤ 3

4.5−𝑥

1.5
3 < 𝑥 < 4.5

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}       (2) 

𝜇𝐿𝑇𝑆(𝑥) = {

𝑥−4

2
4 < 𝑥 < 6

1 𝑥 = 6
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (3) 
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Let 𝑦 be the Edema Volume. 

𝜇𝑆𝐸(𝑦) = {

1 𝑦 = 0
2−𝑦

2
0 < 𝑦 < 2

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (4) 

𝜇𝑀𝑂𝐸(𝑦) = {

𝑦−15

20
15 < 𝑦 ≤ 35

55−𝑦

20
35 < 𝑦 < 55

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (5) 

𝜇𝐻𝐸(𝑦) = {

𝑦−50

30
50 < 𝑦 < 80

1 𝑦 = 80
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}       (6) 

 

 
Let 𝑧 be the Symptom Severity. 

𝜇𝑀𝐼𝑆𝑆(𝑧) = {

1 𝑦 = 0
3−𝑧

3
0 < 𝑧 < 3

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (7) 
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𝜇𝑀𝑂𝑆𝑆(𝑧) = {

𝑧−2

3
2 < 𝑧 ≤ 5

7−𝑧

2
5 < 𝑧 < 7

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (8) 

𝜇𝑆𝑆𝑆(𝑧) = {

𝑧−6

4
6 < 𝑧 < 10

1 𝑧 = 10
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (9) 

 
 
 
 

 
Let 𝑢 be the Brain Tumor Risk (%). 

𝜇𝐿𝐵𝑇𝑅(𝑢) = {

1 𝑢 = 0
40−𝑢

40
0 < 𝑢 < 40

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (10) 

𝜇𝑀𝐵𝑇𝑅(𝑢) = {

𝑢−30

20
30 < 𝑢 ≤ 50

70−𝑢

20
50 < 𝑢 < 70

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (11) 

𝜇𝐻𝐵𝑇𝑅(𝑢) = {

𝑢−60

40
60 < 𝑧 < 100

1 𝑧 = 100
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}        (12) 

 
RULE BASE 

In a fuzzy logic system, the rule base is the core decision-making component that contains a set of if–
then rules linking the input variables to the output variable. These rules are formulated based on expert 
knowledge, clinical guidelines, or empirical data, and they capture the relationships between different 
combinations of input conditions and the corresponding output response. For example, in an early brain 
tumor detection model, a rule might state: If tumor size is large and symptom severity is high, then risk is very high. 
Each rule uses fuzzy linguistic terms (e.g., small, moderate, large) defined by membership functions, allowing the 
system to handle uncertainty and partial truths. The complete rule base acts as a knowledge repository that 
guides the fuzzy inference process, ensuring that the system can evaluate diverse scenarios and produce 
consistent, explainable results. 
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Table 1:Fuzzy Rule Base (Mamdani Type) 
Rule No. MRI Tumor Size Edema Volume Symptom Severity Brain Tumor Risk Level 

R1 Small Low Mild Low Risk 

R2 Small Low Moderate Medium Risk 

R3 Small Low Severe Medium Risk 

R4 Small Moderate Mild Medium Risk 

R5 Small Moderate Moderate Medium Risk 

R6 Small Moderate Severe High Risk 

R7 Small High Mild Medium Risk 

R8 Small High Moderate High Risk 

R9 Small High Severe High Risk 

R10 Medium Low Mild Medium Risk 

R11 Medium Low Moderate Medium Risk 

R12 Medium Low Severe High Risk 

R13 Medium Moderate Mild Medium Risk 

R14 Medium Moderate Moderate High Risk 

R15 Medium Moderate Severe High Risk 

R16 Medium High Mild High Risk 

R17 Medium High Moderate High Risk 

R18 Medium High Severe High Risk 

R19 Large Low Mild High Risk 

R20 Large Low Moderate High Risk 

R21 Large Low Severe High Risk 

R22 Large Moderate Mild High Risk 

R23 Large Moderate Moderate High Risk 

R24 Large Moderate Severe High Risk 

R25 Large High Mild High Risk 

R26 Large High Moderate High Risk 

R27 Large High Severe High Risk 

 
CASE STUDY  
Let us consider a Patient 𝑃1 with inputs 
MRI Tumor Size = 3.8 cm 
Edema Volume = 48 ml 
Symptom Severity = 6.5 / 10 

1. Fuzzification: 

𝜇𝑇𝑆(3.8) =
4.5−3.8

4.5−3
=

0.7

1.5
= 0.4667  

𝜇𝐸(48) =
55−48

55−35
=

7

20
= 0.35  

𝜇𝑆𝑆(6.5) =
7−6.5

7−5
=

0.5

2
= 0.25  

𝜇𝑆𝑆(6.5) =
6.5−6

10−6
=

0.5

4
= 0.125  
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Table 3: Non-zero memberships summary 
Variable Set 𝝁 
Tumor Medium 0.4667 

Edema Moderate 0.35 
Severity Moderate 0.25 

Severity Severe 0.125 

 
2. Inference (Mamdani, min–max): Using the rule base you approved, the only rules that fire (non-zero 

𝜇) are: 
R14: If Tumor = Medium AND Edema = Moderate AND Severity = Moderate → Risk = High 
 𝐹𝑖𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = min(0.4667,0.35,0.25) = 0.25 
R15: If Tumor = Medium AND Edema = Moderate AND Severity = Severe → Risk = High 
𝐹𝑖𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ = min(0.4667,0.35,0.125) = 0.125  
 
Both consequents are High Risk → aggregated High Risk clipped at 
max(0.25,0.125) = 0.25  
So the only active output set is High Risk (𝟔𝟎, 𝟏𝟎𝟎, 𝟏𝟎𝟎), clipped at 0.25. 

3. Defuzzification (Centroid): Let 𝑦(𝑥) = 𝑚𝑖𝑛{𝜇𝐻𝑖𝑔ℎ(𝑥), 0.25} where  

𝜇𝐻𝑖𝑔ℎ(𝑥) =
𝑥−60

40
 𝑓𝑜𝑟 60 < 𝑥 < 100 𝑎𝑛𝑑 1 𝑎𝑡 100.  

The clip level 0.25 is reached at 
𝑥−60

40
= 0.25 ⟹ 𝑥 = 70 

Thus, On 60 − 70: ramp from 0 to 0.25 
On 70 − 100: flat at  0.25  

Centroid (center of area): 𝑥∗ =
∫ 𝑥𝑦(𝑥)𝑑𝑥

100

0

∫ 𝑦(𝑥)𝑑𝑥
100

0

≈
720.83

.8.75
= 82.38 %  

RESULTS AND DISCUSSION 
The results of the fuzzy logic-based early brain tumor detection model demonstrate its ability to effectively 
integrate multiple clinical parameters—tumor size, edema volume, and symptom severity—to generate a 
quantified risk percentage. The model outputs reveal distinct patterns, such as consistently high risk values for 
large tumors regardless of other factors, and sharp increases in predicted risk when symptom severity exceeds 
moderate levels, particularly in the presence of significant edema. These findings highlight the nonlinear 
interactions between the input variables, where certain combinations amplify risk more than others. The 
discussion of these results suggests that fuzzy logic provides a flexible and interpretable framework for medical 
decision-making, capable of handling the inherent uncertainty in clinical assessments. Moreover, the model’s 
outputs align well with expected clinical reasoning, indicating its potential applicability as a decision-support 
tool for early detection and prioritization of brain tumor cases. 
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The Figure (5) presents a 3D fuzzy inference-based risk assessment model, where the x-axis represents Edema 
Volume (ml), the y-axis represents Tumor Size (cm), and the z-axis shows the computed Risk (%). The severity 
level is held constant at a moderate value (5 out of 10) to isolate the interaction between tumor size and edema 
volume. The stepped color bands correspond to different fuzzy risk levels, ranging from low risk (~40%) in 
the blue region to high risk (~100%) in the red region. The surface demonstrates that risk increases non-
linearly as either tumor size or edema volume grows, with sharp transitions at certain threshold values due to 
the fuzzy membership function boundaries. The wave-like variations along the surface result from the 
interaction of triangular membership functions and the rule base, creating regions where moderate edema or 
tumor values can sharply escalate risk, even when the other factor is relatively low. This visualization highlights 
how combined pathological indicators influence the overall risk in a fuzzy decision-making model. 
The figure (6) is a 3D surface plot showing risk (%) as a function of tumor size (cm) and symptom severity (0–
10), with edema volume held constant. The color gradient ranges from cool blue tones representing lower risk 
values (around 20%) to warm red tones indicating the highest risks (approaching 100%). The surface reveals 
that both increasing tumor size and higher symptom severity contribute to a rapid rise in risk. In the lower left 
region, where tumor size and severity are minimal, the risk remains relatively low. However, as either parameter 
increases—particularly when both are large—the surface quickly ascends to its maximum plateau, reflecting a 
nonlinear escalation in risk. This pattern suggests that the model captures strong synergistic effects between 
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tumor size and symptom severity, where moderate increases in both parameters can push the overall risk into 
critical levels. 
The figure (7) is a 3D surface plot illustrating the relationship between risk (%) and two parameters—edema 
volume (ml) and symptom severity (0–10). The color scale ranges from dark brown/black for low risk values 
to bright yellow/white for high risk values, indicating a clear gradient in the severity of risk. The surface shows 
that when both edema volume and symptom severity are low, the risk remains minimal. However, as either 
factor increases—particularly symptom severity—the risk rises sharply, approaching near-maximum values at 
high severity levels and larger edema volumes. The relatively smooth upward slope in both directions suggests 
that the model captures an additive effect, where incremental increases in edema volume and symptom severity 
contribute cumulatively to risk escalation, with the steepest rise occurring when both parameters are high. 

Table 2: Fuzzy Logic Model Outputs 
Tumor Size (cm) Edema Volume (ml) Severity (0-10) Predicted Risk (%) 

1 10 2 16.76 
1 10 5 0 
1 10 8 84.57 
1 40 2 0 
1 40 5 0 
1 40 8 84.57 
1 70 2 0 

1 70 5 0 

1 70 8 84.57 

3 10 2 0 

3 10 5 0 

3 10 8 84.57 

3 40 2 0 

3 40 5 50 

3 40 8 84.57 

3 70 2 85.69 

3 70 5 85.69 

3 70 8 85.69 

5 10 2 84.57 

5 10 5 84.57 
5 10 8 84.57 

5 40 2 84.57 

5 40 5 84.57 

5 40 8 84.57 

5 70 2 84.57 

5 70 5 84.57 

5 70 8 84.57 

 
The table (2) presents the predicted risk (%) outputs from a fuzzy logic model for various combinations of 
tumor size (cm), edema volume (ml), and symptom severity (0–10). The results reveal several patterns in the 
model’s risk assessment. For small tumors (1 cm), risk remains low or zero in most cases except when severity 
is high (8), where risk jumps to about 84.57%, regardless of edema volume. For moderate tumors (3 cm), low 
severity (2) generally yields zero risk unless edema volume is high (70 ml), where risk sharply rises to 85.69%. 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025  
https://www.theaspd.com/ijes.php 
 

3623 
 

At moderate severity (5), a risk of 50% appears when edema volume is 40 ml, increasing further to 85.69% for 
higher edema. High severity (8) consistently produces elevated risk (84.57–85.69%), regardless of edema. For 
large tumors (5 cm), the model predicts a consistently high risk (~84.57%) across all edema and severity levels, 
indicating that tumor size alone can dominate the risk assessment at this stage. This trend suggests that in the 
fuzzy logic framework, tumor size and severity interact nonlinearly with edema volume, with larger tumors and 
high severity consistently associated with high predicted risk. 
 
CONCLUDING REMARKS 
The proposed fuzzy logic-based early brain tumor detection model effectively integrates multiple clinical 
variables to produce a quantified risk percentage, offering a transparent and interpretable decision-support 
framework. The results indicate that tumor size and symptom severity are dominant factors in risk escalation, 
with edema volume acting as a significant amplifier under certain conditions. The system’s rule-based structure 
allows for easy modification and expansion as new clinical knowledge emerges, ensuring adaptability to 
evolving diagnostic criteria. Moreover, the model’s ability to handle uncertainty makes it particularly valuable 
in real-world scenarios where medical data may be incomplete or imprecise. With further validation and 
integration into clinical workflows, this fuzzy logic model has the potential to enhance early detection accuracy, 
improve patient prioritization, and ultimately contribute to better clinical outcomes in brain tumor 
management. 
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