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Abstract

This study presents a fuzzy logic-based decision-making model for the early detection of brain tumors, integrating three key
clinical parameters: tumor size (cm), edema volume (ml), and symptom sewverity (scale 0-10). Triangular membership
functions are employed to represent the linguistic variables, while a Mamdani-type inference system evaluates the nonlinear
interactions among these inputs to produce a predicted risk percentage. A comprehensive rule base derived from expert
knowledge guides the inference process, enabling the system to handle uncertainty and imprecision inherent in medical data.
The model was wvalidated using various input combinations, and the results demonstrated strong alignment with clinical
reasoning, showing that larger tumors and higher symptom severity significantly increase risk, especially when accompanied
by substantial edema. The findings suggest that the proposed fuzzy logic model provides a transparent, flexible, and clinically
relevant approach for early brain tumor risk assessment and prioritization in diagnostic workflows.

Keywords: Brain tumor detection, fuzzy logic, decision-making model, triangular membership function, Mamdani

inference, risk assessment, medical decision support.

INTRODUCTION

Brain tumors present a critical health concern due to their potential for rapid progression and severe
neurological consequences if not detected early. Accurate assessment of tumor-related risk at an early stage is
essential for prioritizing patients and initiating timely interventions. Traditional diagnostic methods, while
effective, may not always capture the uncertainties present in clinical evaluations, particularly when symptoms
are ambiguous or imaging data is subject to interpretation. Fuzzy logic offers a powerful solution to this
challenge by enabling the incorporation of expert knowledge into a rule-based framework that can process
imprecise or uncertain inputs. In this approach, clinical variables such as tumor size, edema volume, and
symptom severity are represented through linguistic categories—small, medium, large; low, moderate, high—
which are mathematically defined using membership functions. The fuzzy inference process then evaluates
these inputs against a structured rule base to determine a quantified risk level. This methodology not only
aligns with human reasoning but also provides consistent, explainable outputs, making it highly suitable for
decision-support applications in medical diagnostics.

Edupuganti et al. (2020) explored the importance of uncertainty quantification in deep MRI
reconstruction, highlighting that accurate medical imaging should incorporate measures of prediction
confidence to reduce misdiagnosis risks. Their framework quantified uncertainty using deep learning, enabling
clinicians to identify unreliable predictions and prioritize further review, which is essential in brain tumor
detection where image clarity directly affects decision-making. AlAmir and AlGhamdi (2022) presented an in-
depth survey on the role of generative adversarial networks (GANs) in medical image analysis, emphasizing
their potential to improve tumor detection accuracy by generating high-quality synthetic images for training.
They underlined GANs' advantages in addressing data scarcity, a common limitation in medical imaging
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datasets, and discussed challenges such as mode collapse and preserving anatomical fidelity. Amemiya et al.
(2022) demonstrated how feature-fusion techniques enhance MRI-based singleshot deep learning detection of
small brain metastases. By integrating multiple feature types, their approach improved detection sensitivity for
lesions that are often missed in conventional scans, which is relevant for early-stage tumor detection. Guan et
al. (2022) proposed a texture-constrained multichannel progressive GAN for medical image augmentation
aimed at lesion detection. Their model preserved texture patterns critical to diagnosis, thereby enhancing
classifier performance in scenarios with limited annotated data, a situation often encountered in early tumor
datasets. Kammoun et al. (2022) reviewed GAN-based face generation, but their technical analysis of GAN
architectures, loss functions, and stability optimization methods has direct implications for improving GAN
performance in medical contexts, including MRI synthesis for brain tumor detection. Kumar et al. (2022)
developed an approach for brain tumor detection using optimal feature selection combined with an optimized
deep belief network. They demonstrated that carefully selected features significantly enhance classification
accuracy, and their optimization strategy reduced computational overhead, making it suitable for real-time
diagnostic assistance. Aggarwal et al. (2023) proposed an early detection and segmentation framework for
brain tumors using deep neural networks. Their method achieved high segmentation precision, particularly
for irregularly shaped tumors, supporting both diagnosis and treatment planning by providing accurate tumor
boundaries. Brophy et al. (2023) conducted a systematic review of GAN applications in time series data, which
indirectly informs medical image sequence analysis such as fMRI. Their survey offers insights into GAN
stability and long-sequence data handling, which could be adapted for temporal tumor progression modeling.
Denceux (2023) introduced the ENNReg model using random fuzzy sets for quantifying prediction uncertainty
in regression. The method is particularly relevant for fuzzy logic-based brain tumor detection models, where it
could enhance decision reliability by providing an uncertainty measure alongside predictions. Pathak et al.
(2023) presented a robust EfficientNet-based architecture for brain tumor classification using MRI images.
Their work emphasized model efficiency without compromising accuracy, which is vital for integrating Al into
hospital workflows with limited computational resources. Saeedi et al. (2023) evaluated MRI-based brain
tumor detection using convolutional deep learning methods combined with selected machine learning
techniques. They demonstrated that hybrid approaches outperform standalone models, particularly in
balancing sensitivity and specificity. Lambert et al. (2024) reviewed uncertainty quantification methods in
deep learning for medical image analysis, proposing a unified approach to building trustworthy clinical Al
solutions. Their recommendations align with the need for transparent fuzzy logic systems in medical diagnosis,
especially for life-critical conditions like brain tumors. Moldovanu et al. (2024) developed a hybrid CNN-
machine learning model for classifying meningioma tumors and healthy brain tissue. Their integration of deep
feature extraction with traditional classifiers improved generalization and interpretability, attributes valuable
for clinical acceptance. Al-Ashoor et al. (2025) performed a systematic analysis of neural networks, fuzzy logic,
and genetic algorithms in tumor classification. They highlighted the potential of combining fuzzy logic’s
interpretability with neural networks’ predictive strength, offering a strong foundation for decision-making in
early brain tumor detection. Belhadi et al. (2025) proposed an ensemble fuzzy deep learning framework for
brain tumor detection, merging fuzzy logic with deep models to improve classification robustness and
interpretability. Their ensemble strategy mitigated model bias, resulting in higher consistency across varied
MRI datasets.

DEFINITION OF INPUT AND OUTPUT VARIABLES

In a fuzzy logic-based medical risk assessment model, input variables are the measurable factors or
parameters that influence the outcome of the system, while the output variable represents the final decision
or prediction derived from these inputs. For example, in a brain tumor risk prediction model, the inputs may
include tumor size (cm), edema volume (ml), and symptom severity (scale 0-10), each describing a different
clinical aspect of the patient’s condition. These inputs are typically expressed in linguistic terms such as small,

medium, or large using membership functions to handle uncertainty and imprecision in measurements. The
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output variable, in this case, could be the predicted risk (%), which quantifies the likelihood of a high-risk
condition based on the combination of input values. By defining clear input and output variables, the model
can systematically map medical data to risk predictions, facilitating accurate and interpretable decision-making.

Table 1: Definition of input and output variables
Tumor Size Edema Volume Symptoms Severity Brain Tumor Risk
Small STS Low LE Mild MSS Low LBTR
Medium METS Moderate MO Moderate MOSS Medium MBTR
Large LTS High HE Severe SSS High HBTR

figure & Triangular Membership Functions - MRI Tumar Size (cm)

- { = Small

FiN A
’ o |
\ £ 1 |===Medium
\ g8 | L
F; e

08 S g
\ g H
—_ .\ lI .
-~ ‘\ I H
= \ : :
s, 06 \ 7 f
[} \ 1
a \ 'I i
=2 \ ’ s
= 1 4 !
g0 04t ‘ K ]
8 u4 5 ’.’ ]
& p / !
= ‘\ ," H
7 i
02| X !
X !
I i
4 .
’ \ !
[],-— _________ | - i A I

0 | i 3 4 g b 7

MRI Tumor Size (cm)
Let x be the MRI Tumor Size.

1 x=0
psrs(0) =12 0<x<2 (1)
0 Otherwise
=2 15<x<3
s () =425 3 <y g s @
0 Otherwise
x—4
- 4<x<6
Mrrs(x) = 1 x=6 3)
0 Otherwise

3616


https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://www.theaspd.com/ijes.php

Figure 2: Triangular Membership functions - Edema Yolume (ml)
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RULE BASE

In a fuzzy logic system, the rule base is the core decision-making component that contains a set of if-

then rules linking the input variables to the output variable. These rules are formulated based on expert

knowledge, clinical guidelines, or empirical data, and they capture the relationships between different

combinations of input conditions and the corresponding output response. For example, in an early brain

tumor detection model, a rule might state: If tumor size is large and symptom severity is high, then risk is very high.

Each rule uses fuzzy linguistic terms (e.g., small, moderate, large) defined by membership functions, allowing the
system to handle uncertainty and partial truths. The complete rule base acts as a knowledge repository that

guides the fuzzy inference process, ensuring that the system can evaluate diverse scenarios and produce

consistent, explainable results.
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Table 1:Fuzzy Rule Base (Mamdani Type)

Rule No. MRI Tumor Size Edema Volume Symptom Severity Brain Tumor Risk Level
R1 Small Low Mild Low Risk
R2 Small Low Moderate Medium Risk
R3 Small Low Severe Medium Risk
R4 Small Moderate Mild Medium Risk
R5 Small Moderate Moderate Medium Risk
R6 Small Moderate Severe High Risk
R7 Small High Mild Medium Risk
R8 Small High Moderate High Risk
R9 Small High Severe High Risk

R10 Medium Low Mild Medium Risk
R11 Medium Low Moderate Medium Risk
R12 Medium Low Severe High Risk
R13 Medium Moderate Mild Medium Risk
R14 Medium Moderate Moderate High Risk
R15 Medium Moderate Severe High Risk
R16 Medium High Mild High Risk
R17 Medium High Moderate High Risk
R18 Medium High Severe High Risk
R19 Large Low Mild High Risk
R20 Large Low Moderate High Risk
R21 Large Low Severe High Risk
R22 Large Moderate Mild High Risk
R23 Large Moderate Moderate High Risk
R24 Large Moderate Severe High Risk
R25 Large High Mild High Risk
R26 Large High Moderate High Risk
R27 Large High Severe High Risk
CASE STUDY

Let us consider a Patient P; with inputs
MRI Tumor Size = 3.8 cm
Edema Volume = 48 ml
Symptom Severity = 6.5 / 10
1.  Fuzzification:

Hrs(3.8) = 20 = 20 = 0.4667
up(48) =22 =~ =035
uss(65) === =2 =025
nss(6.5) = =2 = 22 = 0.125
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Table 3: Non-zero memberships summary
Variable Set u
Tumor Medium 0.4667
Edema Moderate 0.35
Severity Moderate 0.25
Severity Severe 0.125

2. Inference (Mamdani, min-max): Using the rule base you approved, the only rules that fire (non-zero
L) are:
R14: If Tumor = Medium AND Edema = Moderate AND Severity = Moderate — Risk = High
Firing Strength = min(0.4667,0.35,0.25) = 0.25
R15: If Tumor = Medium AND Edema = Moderate AND Sewverity = Severe — Risk = High
Firing Strength = min(0.4667,0.35,0.125) = 0.125

Both consequents are High Risk — aggregated High Risk clipped at

max(0.25,0.125) = 0.25

So the only active output set is High Risk (60,100, 100), clipped at 0.25.
3. Defuzzification (Centroid): Let y(x) = min{,uHigh(x), 0.25} where

Hrign(¥) = =2 for 60 < x < 100 and 1 at 100.

The clip level 0.25 is reached at % =025=x=70
Thus, On 60 — 70: ramp from 0 to 0.25
On 70 — 100:flatat 0.25

100
Jo  xy(dx _ 72083
L y@ax 875

Centroid (center of area): x* = =82.38%

RESULTS AND DISCUSSION

The results of the fuzzy logic-based early brain tumor detection model demonstrate its ability to effectively
integrate multiple clinical parameters—tumor size, edema volume, and symptom severity—to generate a
quantified risk percentage. The model outputs reveal distinct patterns, such as consistently high risk values for
large tumors regardless of other factors, and sharp increases in predicted risk when symptom severity exceeds
moderate levels, particularly in the presence of significant edema. These findings highlight the nonlinear
interactions between the input variables, where certain combinations amplify risk more than others. The
discussion of these results suggests that fuzzy logic provides a flexible and interpretable framework for medical
decision-making, capable of handling the inherent uncertainty in clinical assessments. Moreover, the model’s
outputs align well with expected clinical reasoning, indicating its potential applicability as a decision-support

tool for early detection and prioritization of brain tumor cases.
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The Figure (5) presents a 3D fuzzy inference-based risk assessment model, where the x-axis represents Edema
Volume (ml), the y-axis represents Tumor Size (cm), and the z-axis shows the computed Risk (%). The severity
level is held constant at a moderate value (5 out of 10) to isolate the interaction between tumor size and edema
volume. The stepped color bands correspond to different fuzzy risk levels, ranging from low risk (740%) in
the blue region to high risk (T 100%) in the red region. The surface demonstrates that risk increases non-
linearly as either tumor size or edema volume grows, with sharp transitions at certain threshold values due to
the fuzzy membership function boundaries. The wave-like variations along the surface result from the
interaction of triangular membership functions and the rule base, creating regions where moderate edema or
tumor values can sharply escalate risk, even when the other factor is relatively low. This visualization highlights
how combined pathological indicators influence the overall risk in a fuzzy decision-making model.

The figure (6) is a 3D surface plot showing risk (%) as a function of tumor size (cm) and symptom severity (0-
10), with edema volume held constant. The color gradient ranges from cool blue tones representing lower risk
values (around 20%) to warm red tones indicating the highest risks (approaching 100%). The surface reveals
that both increasing tumor size and higher symptom severity contribute to a rapid rise in risk. In the lower left
region, where tumor size and severity are minimal, the risk remains relatively low. However, as either parameter
increases—particularly when both are large—the surface quickly ascends to its maximum plateau, reflecting a
nonlinear escalation in risk. This pattern suggests that the model captures strong synergistic effects between
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tumor size and symptom severity, where moderate increases in both parameters can push the overall risk into
critical levels.

The figure (7) is a 3D surface plot illustrating the relationship between risk (%) and two parameters—edema
volume (ml) and symptom severity (0-10). The color scale ranges from dark brown/black for low risk values
to bright yellow/white for high risk values, indicating a clear gradient in the severity of risk. The surface shows
that when both edema volume and symptom severity are low, the risk remains minimal. However, as either
factor increases—particularly symptom severity—the risk rises sharply, approaching near-maximum values at
high severity levels and larger edema volumes. The relatively smooth upward slope in both directions suggests
that the model captures an additive effect, where incremental increases in edema volume and symptom severity

contribute cumulatively to risk escalation, with the steepest rise occurring when both parameters are high.

Table 2: Fuzzy Logic Model Outputs
Tumor Size (cm) Edema Volume (ml) Severity (0-10) Predicted Risk (%)

1 10 2 16.76
1 10 5 0

1 10 8 84.57
1 40 2 0

1 40 5 0

1 40 8 84.57
1 70 2

1 70 5

1 70 8 84.57
3 10 2

3 10 5

3 10 8 84.57
3 40 2 0

3 40 5 50
3 40 8 84.57
3 70 2 85.69
3 70 5 85.69
3 70 8 85.69
5 10 2 84.57
5 10 5 84.57
5 10 8 84.57
5 40 2 84.57
5 40 5 84.57
5 40 8 84.57
5 70 2 84.57
5 70 5 84.57
5 70 8 84.57

The table (2) presents the predicted risk (%) outputs from a fuzzy logic model for various combinations of
tumor size (cm), edema volume (ml), and symptom severity (0-10). The results reveal several patterns in the
model’s risk assessment. For small tumors (1 cm), risk remains low or zero in most cases except when severity
is high (8), where risk jumps to about 84.57%, regardless of edema volume. For moderate tumors (3 cm), low
severity (2) generally yields zero risk unless edema volume is high (70 ml), where risk sharply rises to 85.69%.
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At moderate severity (5), a risk of 50% appears when edema volume is 40 ml, increasing further to 85.69% for
higher edema. High severity (8) consistently produces elevated risk (84.57-85.69%), regardless of edema. For
large tumors (5 cm), the model predicts a consistently high risk (~84.57%) across all edema and severity levels,
indicating that tumor size alone can dominate the risk assessment at this stage. This trend suggests that in the
fuzzy logic framework, tumor size and severity interact nonlinearly with edema volume, with larger tumors and

high severity consistently associated with high predicted risk.

CONCLUDING REMARKS

The proposed fuzzy logic-based early brain tumor detection model effectively integrates multiple clinical
variables to produce a quantified risk percentage, offering a transparent and interpretable decision-support
framework. The results indicate that tumor size and symptom severity are dominant factors in risk escalation,
with edema volume acting as a significant amplifier under certain conditions. The system’s rule-based structure
allows for easy modification and expansion as new clinical knowledge emerges, ensuring adaptability to
evolving diagnostic criteria. Moreover, the model’s ability to handle uncertainty makes it particularly valuable
in realworld scenarios where medical data may be incomplete or imprecise. With further validation and
integration into clinical workflows, this fuzzy logic model has the potential to enhance early detection accuracy,
improve patient prioritization, and ultimately contribute to better clinical outcomes in brain tumor
management.
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