

ResponSync: Real-Time Emergency Response Empowered by Machine Learning

Dr. Madhu B¹ Prof. Pratibha Pujari², Dr. Krishnanarayanan S³, Prof. Vidhyashree B⁴, Dr. Prasanna Lakshmi G S⁵

¹Assistant Professor, Department of CSE, Dr. Ambedkar Institute of Technology, Bengaluru, madhub.cs@drat.edu.in

²Assistant Professor, Department of CSE, Nagarjuna College of Engineering and Technology, Bengaluru, prati.pujar@gmail.com

³Assistant Professor, Department of CSE, MVJ College of Engineering, Bengaluru, krishna.narayanan08@gmail.com

⁴Assistant Professor, Department of CSE, Madanapalle Institute of Technology and Sciences, Madanapalli, vshree56@gmail.com

⁵Associate Professor, Department of CSE, Nagarjuna College of Engineering and Technology, Bengaluru, prasannalakshmigs@gmail.com

Abstract: In today's world, communities face an array of pressing challenges, from the increasing frequency of extreme weather events to the ever-present threat of man-made disasters. Amidst these uncertainties our article emerges as a beacon of hope, offering tangible solutions to alleviate the burdens faced by individuals and communities alike. In an era marked by the unpredictability of natural calamities and human-induced crises, our article stands as a lifeline, harnessing the power of cutting-edge technology to enhance emergency response systems. At its core, ResponSync addresses the pressing need for swift and effective action in the face of adversity. One of the paramount concerns plaguing modern society is the escalating impact of climate change, manifesting in catastrophic events such as floods, forest fires, and earthquakes. These disasters endanger lives along with disruption essential services and infrastructure, plunging communities into turmoil. Here lies the significance of our project. By leveraging advanced geospatial technology, intelligent automation, and machine learning algorithms, ResponseSync offers a proactive approach to disaster management. Through real-time analysis of sensor data, our system can identify early warning signs and vulnerable regions with unprecedented accuracy. This means that communities can receive timely alerts and emergency responders can be mobilized swiftly, potentially saving countless lives and minimizing the devastation wrought by disasters. The ResponseSync helps in detection and alerting of natural calamities. By seamlessly integrating with existing infrastructure and emergency service providers, our platform streamlines communication and facilitates the automated dispatch of alerts to essential facilities. This not only enhances the efficiency of crisis management but also empowers administrators and emergency personnel with actionable insights for informed decision-making. State of art work proved that our work is better than the compared methods in the detection of disasters.

Key Words : *Disaster Management, IoT, Support Vector Machines, Random Forest, Geospatial Technology, Real-time Detection Algorithms, Machine Learning.*

1. INTRODUCTION

The ResponSync provides a solution with a vital response to the escalating frequency and devastating impact of natural and man-made disasters globally. It has been proven for imperative to save lives and protect communities, tackles two primary challenges in disaster management. The first challenge lies in the timely detection and prediction of impending disasters. To address this problem our article leverages an extensive sensor network to gather real-time data on critical environmental parameters, such as atmospheric humidity, temperature, and ground movement. By employing advanced machine learning models, including Random Forest and Support Vector Machines (SVMs), ResponSync is able to analyze this data and accurately predict the likelihood of disasters, such as floods, forest fires, and earthquakes. This predictive capability enables early warning systems and allows for proactive emergency response, positioning the paper as a crucial tool in mitigating the devastating effects of these calamities. The second challenge addresses is the efficient coordination and information sharing during rescue operations. In the aftermath of a disaster, the timely collection and dissemination of critical information are crucial for effective rescue and relief efforts. Our solution addresses this challenge by securely storing sensor data and victim locations in cloud-based platforms, making it readily accessible to designated emergency teams. We are providing user-friendly interfaces empower both general users and emergency departments, allowing the former to access incident information and the latter to initiate alerts and coordinate response

strategies. This seamless integration of technology and emergency services enhances crisis management capabilities, ultimately contributing to a future where technology safeguards lives and fosters resilient communities. To transform emergency response systems, our proposed system will combine advanced geospatial technology, intelligent automation, and machine learning. The platform addresses the urgent issues of catastrophe planning and response by enabling focused and effective crisis management using sophisticated mapping, real-time detection algorithms, and smooth integration with service providers.

2. RELATED WORK

Aarthi[1] suggested an IoT-Based Disaster Management System to sense and mitigate atmospheric hazard. The method uses actuators like fans and sprinklers and transmits data to a cloud server for centralized monitoring. The system's real-time awareness and remote control capabilities enable swift responses to disasters, while the stored data facilitate future risk prediction. The main challenges are vulnerability and cyber threats due to reliance on IoT technology. Asma[2] conducted a research on integrating artificial intelligence (AI) into disaster management strategies. They advocate for leveraging AI to address the increasing frequency of extreme meteorological events. Highlighting AI's roles in forecasting, preparation, mitigation, and response phases, they emphasize its potential for enhancing disaster management through predictive analytics and real-time monitoring.[3] author has suggested machine learning using K Means Clustering Algorithm and proved with the best results. The system utilizes IoT devices to transmit location and weather data to a cloud platform for streamlined rescue operations. By employing K-means clustering, the system categorizes data based on risk factors, aiding in prioritizing rescue efforts. Fan [4] proposed a method for automatically mapping disaster events and their locations from social media posts during crises. The approach integrates various machine learning techniques, including Named Entity Recognition, location fusion, fine-tuned BERT model classification, and graph-based clustering, to enhance situational awareness for disaster management efforts. Dwarakanath [5] proposed a review of academic research on using machine learning for disaster response via social media. Articles were categorized into early warning, post-disaster coordination, and damage assessment phases. The review highlights the trend towards automated ML approaches for extracting insights from social media to aid emergency teams in decision-making and coordination efforts. Adel Rajab [6] developed a study of forecasting of flood with Machine Learning concepts. The research emphasizes accurate rainfall forecasting's importance in mitigating flood disasters. By analyzing historical meteorological data and employing machine learning algorithms like polynomial regression and LSTM, they aim to predict rainfall trends effectively. The results show promising performance, especially with polynomial regression and LSTM models, highlighting their potential to enhance disaster management strategies. Linardos [7] reported the role of Deep learning in the disaster management along with the prediction, risk assessment and response efforts. Demonstrating ML's ability to forecast floods, storms, and earthquakes, it underscores its potential for enhancing disaster management strategies. Khan[8] given a framework using Convolutional Neural Networks for early fire detection utilizing fine-tuned CNNs in CCTV cameras. Their system autonomously identifies fires in various environments, enabling swift response through adaptive camera prioritization and dynamic channel selection based on cognitive radio networks. Experimental results validate its higher accuracy compared to existing methods, highlighting its potential for enhancing fire disaster management. As an extension the disaster is predicted using online news [9][10]. They scraped news and filtered out key information to classify disaster events with 70% accuracy. This could improve disaster response by using real-time news data. Bhushan[11] reported flood and water Monitoring System for Effective Disaster Management outlines an implementation aimed at monitoring floods, fires, sparks, and landslides in real-time. The system employs sensors, microcontrollers, and GSM modules for detection, issuing timely alerts via text messages and calls to prevent losses during disasters. Leveraging IoT technologies, it enables real-time monitoring, data analysis, and transfer to cloud servers for future reference. Wei[12] reports Location-Aided flooding technique with IoT Networks. The mechanism adjusts timers based on unreach neighbors to improve success ratio and reduce delivery delay. By incorporating location-aided strategies, it ensures efficient data dissemination within community-based IoT networks. Narayan[13] integrated Arduino UNO and GSM for Smart Fire Security System. It integrates sensors for fire detection, sending live footage and alerts to the owner and fire department, and activating sprinklers for extinguishing fires. Advantages include comprehensive detection and real-time communication, while potential disadvantages include sensor dependency and the need for regular maintenance. Qinggong[14] reports urban waterlogging prevention system explores a system to prevent urban waterlogging using IoT. Structured with five layers incorporating RFID, Zigbee,

sensors, and video monitoring, it offers functions like drainage management and early warning capabilities, enhancing flood control and drainage. Angeline[15] reported disaster management using Business Continuity Information Network(BCIN). BCIN employs spatial clustering algorithms and dynamic query forms for streamlined disaster information management, enhancing collaboration and mobile support, yet facing technical complexities and platform dependence. Syed [16] integrates Big Data Analytics and IoT for reliable data transmission networks and smart city infrastructure. While advantages include a comprehensive approach and coverage of various data analytics types, potential disadvantages may involve technical complexity and limited accessibility for non-expert readers. Zheng[17] data mining approach for the above issue. The method introduces unified framework for multi-party coordination in disasters. It incorporates structured information extraction, hierarchical summarization, and user recommendation techniques to support complex needs in disaster management, aiming to enhance communication efficiency and provide tailored information delivery. While advantages include efficiency improvement and diverse expertise, potential disadvantages may involve system complexity, requiring specialized knowledge. Amutha [18] used ImageData for decentralized flood detection method leveraging image data for early warnings. It employs threshold-based image division and morphological-based smoothness for enhanced detection effectiveness, incorporating modules for human detection and object removal. Advantages include early warning capability and enhanced accuracy, with considerations for developing countries, but potential disadvantages encompass technical complexity, scalability limitations, and dependencies on image data quality and environmental conditions. Rajiv [19][20] reports Wildfire Detection in IoT Platform. With advanced notification and early extinguishing capabilities, the system aims to mitigate damages and reduce injuries resulting from wildfires, offering early detection, visualized data comprehension, and timely response capabilities. Anusha [21] reviewed on flood detection with IOT. It highlights challenges in mega cities, advocating for systematic drainage management and IoT application. The study presents experimental results of an IoT-based flood control system, showcasing its effectiveness in urban drainage management. Chang [22] web-based decision support system for sustainable management of an Urban River System. The method uses map-guide and a client-server DBMS, the DSS manages storm water impacts, water quality variations, and land use programs, aiming to enhance managerial efficiency and support urban regeneration efforts. Kaljot [24] reported disaster management [24] framework using Internet of Things-Based Interconnected Devices. It examines applications in managing floods, landslides, traffic incidents, and terrorism, showcasing IoT's versatility in emergency situations. The comprehensive literature survey and references to related studies contribute to a holistic understanding of IoT's applications in disaster management. Ellen [25] reports necessity of weather radar networks the collaboration between CASA and emergency managers to design weather radar networks for emergency management. Through interviews and surveys, it uncovers specific requirements such as weather products for high and low bandwidth users, improved visualizations, and enhanced training, facilitating tailored solutions for emergency management needs.

3. PROPOSED SYSTEM

Our proposed work entails two primary phases: the design of the IoT device and the development of the machine learning model.

3.1 IoT Device Design Phase: In this phase, we focus on designing hardware components and establishing their connections, selecting a secure data storage platform, and coding for seamless data transmission to and from the cloud. Utilizing an A ESP8266 WiFi module for connectivity, we integrate modules for capturing weather parameters such as temperature and humidity, along with location-tracking capabilities. Cloud platforms like MYSQL database serve as repositories for storing the gathered device data, requiring tailored ESP code for efficient interaction with the chosen cloud service.

3.2 Machine Learning Model Development Phase: This phase centers on crafting an algorithm that leverages data from the IoT device and additional parameters from the device's location to predict the 'Risk Factor' for individuals. Initial data parameters are collected from the device, supplemented by latitude and longitude data retrieved from the cloud platform. Our model implementation involves employing Support Vector Machines (SVM) and Random Forest algorithms for predictive analysis, ensuring robust disaster management capabilities. To achieve optimal accuracy, several crucial methodologies are adopted:

3.3 Data Preprocessing: Categorical values within the dataset are converted into numerical formats to enhance the efficiency of model training.

3.4 Normalization: Given the disparate ranges of values within the dataset, normalization plays a crucial role in standardizing data into a uniform scale, thereby enhancing model performance.

3.5 Feature Engineering: Feature engineering techniques are applied to identify and select the most relevant data features, optimizing the model's predictive capabilities. Upon completing these preparatory steps, our SVM and Random Forest models are trained and fine-tuned using the processed dataset, enabling precise prediction of the 'Risk Factor' and facilitating effective disaster management strategies. To generate predictions, our machine learning (ML) model combines the Random Forest and Support Vector Machine (SVM) methods. An ensemble learning method called Random Forest builds a large number of decision trees during training and produces a class that is the mean prediction (regression) or the mode of the classes (classification) of the individual trees.

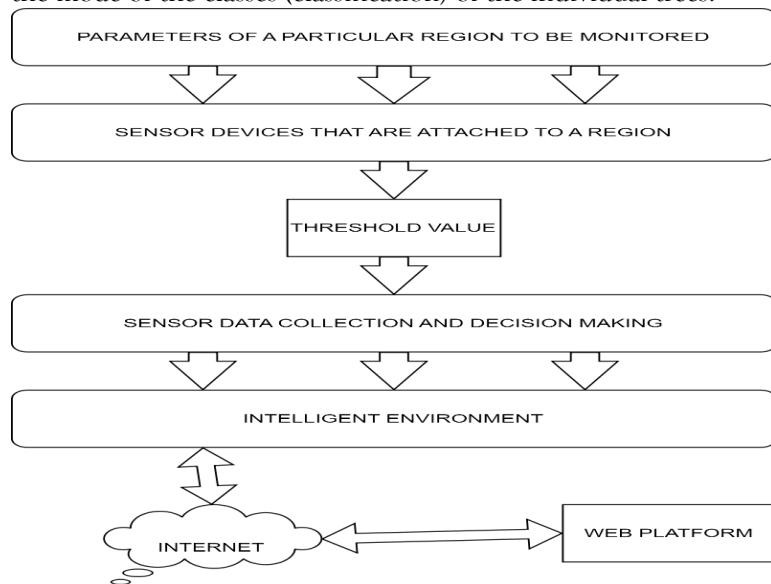


Figure 1 .Architecture of the proposed system

Figure 1 illustrates the proposed architecture of the system. It comprises three primary blocks: the IoT device, Cloud platform, and ML model. The IoT device integrates various hardware components and communication protocols for seamless interaction with the Cloud platform. Key components utilized in this system include:

- Sensors: Capable of measuring both moisture and air temperature, providing essential data for assessing environmental conditions during disaster events.
- ESP8266 Module: An UART-WiFi transparent transmission module offering low power consumption and self-contained Wi-Fi networking capabilities, enabling wireless communication with the Cloud platform.
- GPS Module NEO06MV2: A stand-alone GPS receiver featuring the u-blox 6 positioning engine, providing accurate location data crucial for disaster monitoring and response.

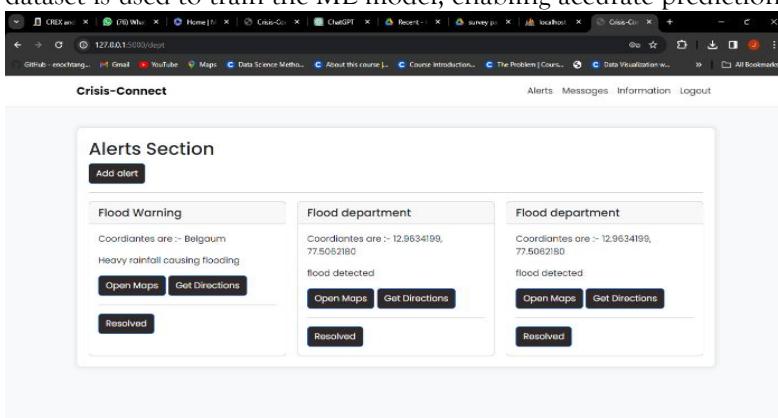
4. EXPERIMENTS AND RESULTS

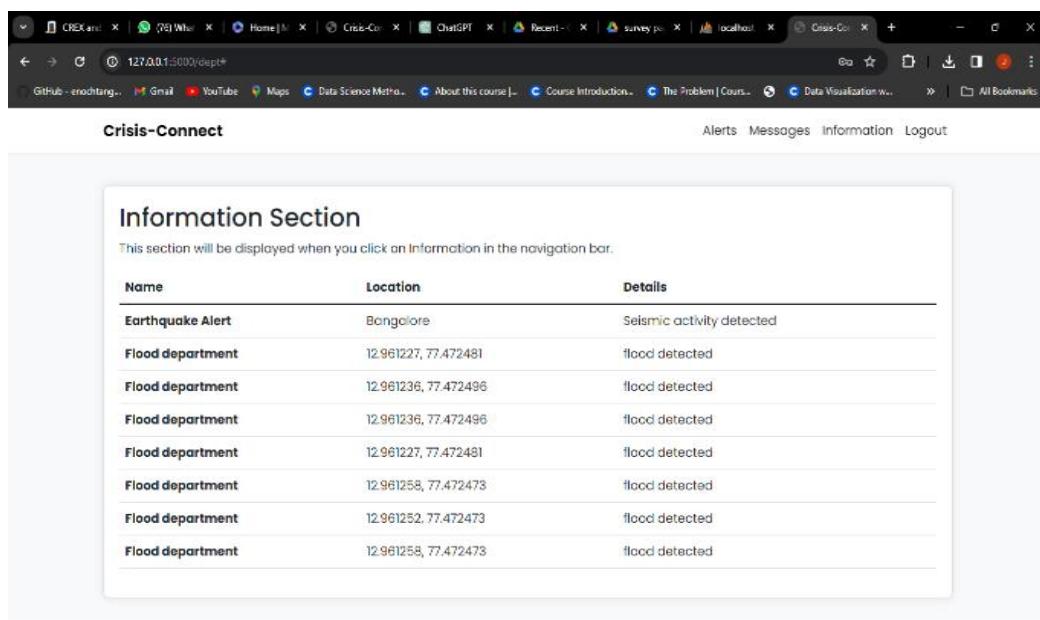
We are using Support Vector Machine (SVM) as a pivotal component in our machine learning model designed for earthquake prediction, complementing existing disaster management techniques. Initially, we import a dataset containing crucial earthquake features from a CSV file, including axisx, axisy, and axisz, alongside their corresponding output labels. These features provide vital insights into seismic activity recorded by sensors, enhancing our understanding of earthquake patterns. Following data extraction, we isolate the features to serve as input (X) for the SVM model, while the output labels (output) act as the target variable (y) during training. The SVM model is instantiated with a linear kernel using the SVC(kernel='linear') function, fitting well with the linearly separable nature of earthquake prediction data. We then train the SVM model using the input features (X) and output labels (y) through the svm_model.fit(X, y) method, allowing it to learn underlying patterns and relationships. Once trained, the SVM model makes predictions on the dataset to evaluate its performance, using svm_model.predict(X) to generate predictions. Additionally, we introduce new data points for real-time prediction, forecasting their output labels (new_prediction) using the trained SVM model. To assess the SVM model's efficacy, we compute key metrics such as accuracy and F1 score using functions like accuracy_score and f1_score from the scikit-learn library. Furthermore, we calculate the confusion matrix using confusion_matrix to

provide a detailed breakdown of the model's performance, including true positives, true negatives, false positives, and false negatives. These metrics offer valuable insights into the SVM model's ability to accurately classify seismic events based on input features, demonstrating its superiority over previously invented disaster management techniques.

Figure 2. Implementation of Sensors and Components

The IoT device interfaces with these components via connections to the DHT11 sensor, ESP8266 module, and GPS module, as depicted in Figure 2. Data collected from these sensors is uploaded to the Cloud platform, with platforms like 'Thingspeak' commonly employed. The ML model plays a vital role in predicting the 'Risk Factor,' leveraging unsupervised learning techniques due to the absence of labeled data. Python, with libraries like 'sklearn,' facilitates data preprocessing tasks, including normalization and dimensionality reduction. The ML model utilizes input from the IoT device, supplemented by additional location data, to create a comprehensive dataset. After performing necessary preprocessing steps, the dataset is used to train the ML model, enabling accurate prediction of the 'Risk Factor.'





The screenshot shows a web browser window with multiple tabs open. The active tab is titled 'Crisis-Connect' and displays an 'Information Section'. The section header is 'Information Section' with a sub-instruction: 'This section will be displayed when you click on Information in the navigation bar.' Below this is a table with three columns: 'Name', 'Location', and 'Details'. The data rows are as follows:

Name	Location	Details
Earthquake Alert	Bangalore	Seismic activity detected
Flood department	12.961227, 77.472481	flood detected
Flood department	12.961236, 77.472496	flood detected
Flood department	12.961236, 77.472496	flood detected
Flood department	12.961227, 77.472481	flood detected
Flood department	12.961258, 77.472473	flood detected
Flood department	12.961252, 77.472473	flood detected
Flood department	12.961258, 77.472473	flood detected

Figure 3. User Interface displaying Disaster Data

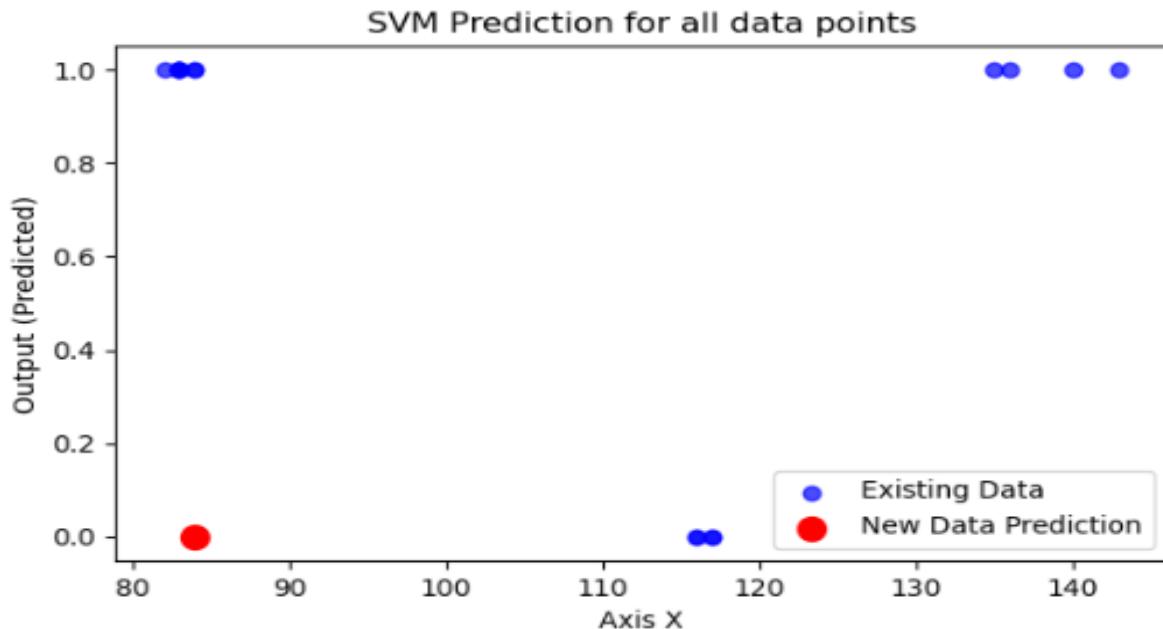


Figure 4 SVM-Based Classification of New Data

Figure 3 and figure 4 illustrate the user interface to display the disaster data and the corresponding classification. The IoT device is designed to be accessible to anyone, particularly during emergency situations such as natural disasters. Upon activation, the device autonomously transmits weather parameters to the designated cloud platform for storage and analysis. Figure 2 illustrates the modules connected to the IoT device, showcasing its versatility and capability to gather crucial data. Dedicated members of the rescue team have access to the cloud platform, where they can view the transmitted parameters in real-time. Given the likelihood of multiple requests during disaster scenarios, it becomes imperative for the rescue team to efficiently handle and prioritize these requests to ensure the safety of all individuals involved. To achieve this, the available data is categorized based on risk levels, necessitating the utilization of a machine learning model. Figure 5 plot shows the relationship between a feature called axisx (likely an earthquake location coordinate) and the predicted output (classification label). Existing data points (from the CSV file) are represented as blue circles. Their actual labels (TRUE or FALSE) are likely not shown here but were used to train the model. A single red circle represents a new data point with values (84, 91, 214) for the features (axisx, axisy, axisz - though only axisx is visible here). The model predicted this new data point to belong to the class represented by the red circle's position on the y-axis (output).

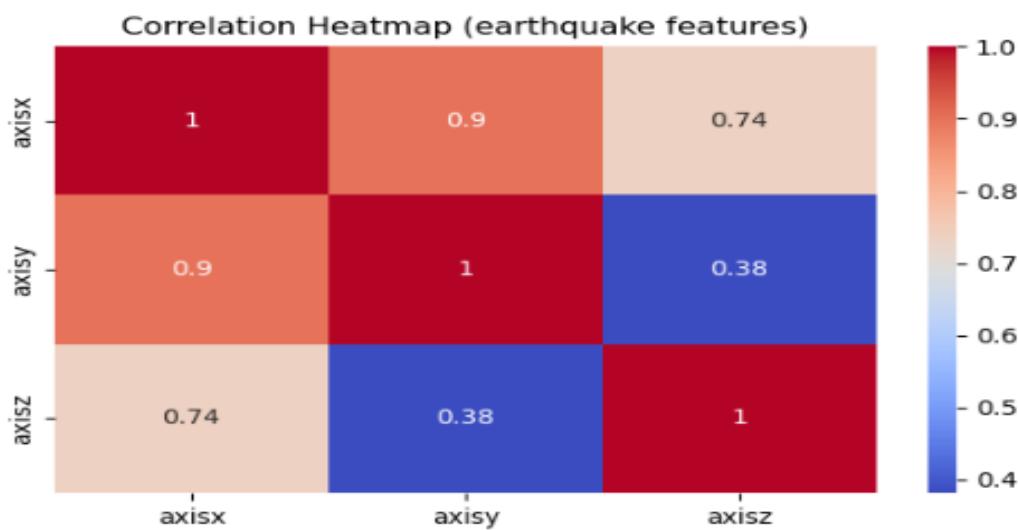


Figure 5 Heat Map predicted by ML model

The color scale at the bottom indicates the strength and direction of the correlation. Here, a darker blue color represents a stronger negative correlation, while a darker red color represents a stronger positive correlation. White squares indicate no correlation. Variables: The labels on the axes (axisx, axisy, axisz) correspond to the features of the earthquake data. It appears these features are related to the position (x, y, and z) of an earthquake event. Data exploration involves getting familiar with the data by looking at its characteristics, identifying missing values, and understanding the relationships between features. Visualizations like scatter plots and histograms are often used at this stage. Heatmaps can be helpful here. They show the correlation between different features in the data. Green color in a heatmap typically indicates a strong positive correlation, while red indicates a strong negative correlation. White usually indicates no correlation. Data preprocessing stage involves preparing the data for the machine learning model. Steps may include: Handling missing values (filling them in or removing rows/columns with them). After preprocessing, the data is split into training and testing sets. The training set is used to train the machine learning model. The model learns patterns and relationships between features and the target variable (e.g., earthquake occurrence). The model's performance is evaluated on the testing set, which it hasn't seen before. This helps assess how well the model generalizes to unseen data. Once satisfied with the model's performance, we can use it to make predictions on new data points.

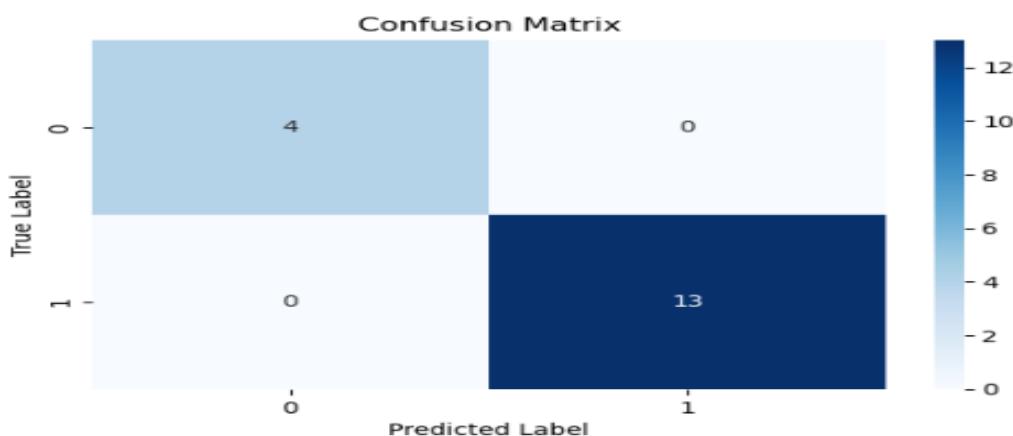


Figure 6. Confusion matrix for the proposed method

Figure 6 represents Diagnostic Matrix for the Proposed Classification Method.

Values in the table: Represent the number of data points in each category. 13: In this case, 13 data points were actually class 0 and the model also predicted them correctly as class 0 (True Negatives). 4: Here, 4 data points were actually class 0 but the model predicted them incorrectly as class 1 (False Positives). Out of the data points that were actually class 0, the model misclassified 4 (False Positives).

Disasters, whether natural or man-made, inflict significant damage to property and result in the loss of lives. Effective disaster management is essential in mitigating these impacts and ensuring the safety and

resilience of communities. Disaster management encompasses proactive planning to identify potential hazards, implementing measures to prevent or minimize their effects, and developing strategies for rapid response and recovery. This comprehensive approach is encapsulated in a disaster management plan, which outlines the risks faced by a business, preventive measures, and protocols for response and recovery. In conclusion, a well-structured disaster management plan serves as a crucial tool for businesses and communities, providing a framework for preparedness, response, and continuity in the face of adversity. It emphasizes the importance of proactive measures, clear communication, and collaborative efforts in safeguarding lives and livelihoods during times of crisis.

5. STATE OF ARTWORK

Sl No.	Year	Protocol	Author	Comments
1.	2023	AI usage in disaster management including forecasting, preparedness, and response.	[2]	Biases in algorithms and the reliance on accurate and up-to-date data, for real-time disaster scenarios.
2.	2020	IoT device leveraging weather data and machine learning, specifically K-means clustering, to optimize disaster management response through risk-based prioritization.	[3]	Disaster relief's IoT dream faces network, device, and data hurdles.
3.	2022	ML analyzes new applications in areas like prediction, risk assessment, and response, highlighting future research directions.	[4]	AI for disaster management faces data, bias, maintenance, and resource challenges.
4.	2019	AI (big data, machine learning) for disaster mitigation, reviewing applications in early warning, damage assessment, and more.	[5]	Tech for disaster relief faces hurdles in data privacy, bias, maintenance, and accessibility.
5.	2025	Tackles rising disaster threats with advanced tech (geospatial, automation, machine learning) for proactive management and community protection.	Ours	It uses real-time sensor data to pinpoint disaster risks, triggering early warnings and faster response for saving lives.

6. CONCLUSION

Disasters, whether natural or man-made, inflict significant damage to property and result in the loss of lives. Effective disaster management is essential in mitigating these impacts and ensuring the safety and resilience of communities. Disaster management encompasses proactive planning to identify potential hazards, implementing measures to prevent or minimize their effects, and developing strategies for rapid response and recovery. This comprehensive approach is encapsulated in a disaster management plan, which outlines the risks faced by a business, preventive measures, and protocols for response and recovery. In conclusion, a well-structured disaster management plan serves as a crucial tool for businesses and communities, providing a framework for preparedness, response, and continuity in the face of adversity. It emphasizes the importance of proactive measures, clear communication, and collaborative efforts in safeguarding lives and livelihoods during times of crisis.

7. REFERENCES

- [1] Aarthi, C., Manish, S. A., Nadarajan, S., & Akashpathi, K. (2011). Disaster Management System Using IoT. Sengunthar Engineering College, Namakkal.
- [2] Asma Salman Alruqi and Mehmet Sabih Aksoy. "The Use of Artificial Intelligence for Disasters." International Journal of Advances in Computer Science and Technology.

[3]Akhil M Anil, Benjamin A Jacob, Ashik Kurian Joseph, Akhil Krishnan, and Chris Chettissery. "Disaster Management using IOT and Machine Learning using K Means Clustering Algorithm." International Journal of Advances in Computer Science and Technology.

[4]Chao Fan, Fangsheng Wu, and Ali Mostafavi. "A Hybrid Machine Learning Pipeline for Automated Mapping of Events and Locations from Social Media in Disasters."

[5]Lokabhiram Dwarakanath, Amirrudin Kamsin, Rasheed Abubakar Rasheed, Anitha Anandhan, and Liyana Shuib. "Automated Machine Learning Approaches for Emergency Response and Coordination via Social Media in the Aftermath of a Disaster: A Review."

[6]Adel Rajab, Hira Farman, Noman Islam, Darakhshan Syed, M. A. Elmagzoub, Asadullah Shaikh, Muhammad Akram, and Mesfer Alrizq. "Flood Forecasting by Using Machine Learning: A Study Leveraging Historic Climatic Records of Bangladesh."

[7]Vasileios Linardos, Maria Drakaki, Panagiotis Tzionas, and Yannis L. Karnavas. "Machine Learning in Disaster Management: Recent Developments in Methods and Applications."

[8]Khan Muhammad, Jamil Ahmad, and Sung Wook Baik. "Early Fire Detection Using Convolutional Neural Networks during Surveillance for Effective Disaster Management."

[9]Lakshmi S Gopal, Rekha Prabha, Divya Pullarkatt, and Maneesha Vinodini Ramesh. "Machine Learning Based Classification of Online News Data for Disaster Management."

[10]John Wellington J Ramesh P. "Role of Internet of Things in Disaster Management."

[11]Bhushan M. Borhade, Kajal G. Date, Pooja U. Kahane, Rutuja B. Rasal, Komal S. Aher. "Flood Detection and Water Monitoring System Using IoT Based on Disaster Management System."

[12]Wei Liu, Kiyohide Nakuchi, Yozo Shoji. "A Location-Aided Flooding Mechanism in Community-based IoT Networks."

[13]Bangar Gauri Narayan, Kamble Gaurav Mohan, Lad Varun Hemant, Shirasath Ashwini Dinesh, Raju Rakshasmare. "Smart Fire Security System Using Arduino UNO and GSM."

[14]Qinggong Ma, Bo Yang, Jipeng Wang. "Application of Internet of Things in Urban Waterlogging Prevention Management System."

[15]B. Angeline Priyadharshini, G. Ilanchezian Pandian. "Automatic Crawling of Information to Address the Disaster Information Management."

[16]Syed Attique Shah, Dursun Zafer Seker, Sufian Hameed, and Dirk Draheim. "The Rising Role of Big Data Analytics and IoT in Disaster Management: Recent Advances, Taxonomy, and Prospects."

[17]Li Zheng, Chao Shen, Liang Tang, Chunqiu Zeng, Tao Li, Steve Luis, and Shu-Ching Chen. "Data Mining Meets the Needs of Disaster Information Management."

[18]R. Amutha, Nischitha D, Neha K Azad, Priyanka B, Sowmya S. "A Decentralised Disaster Detection Approach Using Image Data."

[19]Dr. Rajiv Iyer, Sujal Amin, Riya Gupta, Rohit Kamble, BJ Aiswarya. "IoT Platform for Wildfire Detection."

[20]Partha Pratim Ray, Mithun Mukherjee, and Lei Shu. "Internet of Things for Disaster Management: State-of-the-Art and Prospects." (2017) DOI: 10.1109/ACCESS.2017.2752174

[21]Anusha A, Bharani I, Bharathi J, Hemavathi V, Venkatesan M. "Survey on Flooding Detection System Using Internet of Things."

[22]Y.-C. Chang, N.-B. Chang. "The Design of a Web-Based Decision Support System for the Sustainable Management of an Urban River System."

[23]Esmaeel Dodangeh, Bahram Choubin, Ahmad Najafi Eigdir, Narjes Nabipour, Mehdi Panahi, Shahaboddin Shamshirband, and Amir Mosavi. "Integrated Machine Learning Methods with Resampling Algorithms for Flood Susceptibility Prediction." Open Journal of Applied Sciences, 13(731-738), doi: 10.4236/ojapps.2023.135058

[24]Kaljot Sharma, Darpan Anand, Munish Sabharwal, Pradeep Kumar Tiwari, Omar Cheikhrouhou, and Tarek Frikha. A Disaster Management Framework Using Internet of Things-Based Interconnected Devices. May 2021, Mathematical Problems in Engineering (5):1-21, <https://doi.org/10.1155/2021/9916440>.

[25]Ellen J. Bass, Leigh Baumgart, Brenda Philips, Kevin Kloesel, Kathleen Dougherty, Havidán Rodriguez, William Donner, Jennifer Santos, Walter Diaz, and Michael Zink. "Incorporating Emergency Management Needs in the Development of Weather Radar Networks." in Journal of Emergency Management 7(1), 10.5055/jem.2009.0086