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ABSTRACT 
Chronic Kidney Disease (CKD) is a growing global health concern that demands timely and accurate diagnosis to 
prevent severe health deterioration and reduce patient mortality. Traditional diagnostic methods often rely on manual 
assessments and may be constrained by the availability of expert medical personnel. To address this challenge, we 
propose a hybrid machine learning framework that combines the dimensionality reduction capability of an autoencoder 
with the robust classification power of a Random Forest ensemble model. The raw clinical dataset, sourced from the 
UCI Machine Learning Repository, undergoes thorough preprocessing, including missing value handling, feature 
normalization, and categorical encoding. The processed data is then passed through an autoencoder, where the encoder 
compresses the high-dimensional input into a latent space that captures the most informative patterns. These 
compressed features are subsequently used to train the Random Forest classifier for binary classification predicting 
whether a patient is affected by CKD or not. The proposed model achieved an accuracy of 99.8%, significantly 
outperforming traditional approaches and showcasing high potential for early-stage CKD diagnosis. This hybrid 
approach enhances prediction accuracy, reduces overfitting, and offers a reliable solution for integration into real-world 
clinical decision support systems, particularly in scenarios with limited access to specialized healthcare providers. 
 
INTRODUCTION 
The kidneys play a crucial role in keeping the body healthy by removing waste and extra fluids from the 
blood. They also help control blood pressure and maintain the right balance of essential minerals like 
potassium and calcium. Since your research involves analyzing heart diseases and arrhythmias, it's 
important to note that kidney function is closely linked to heart health, as kidney problems can increase 
the risk of cardiovascular diseases [1]. Chronic Kidney Disease (CKD) remained a serious global health 
issue in 2023, affecting millions of people. Nearly 10% of the world's population suffers from this 
condition, making it one of the most widespread medical concerns [2]. It is a slow-growing illness that 
gradually makes a person’s health worse and can seriously damage kidney function over time. It often 
develops due to multiple reasons, such as diabetes, high blood pressure, certain drugs, and excessive 
alcohol intake [3].  
Machine Learning (ML) is a technology that enables computers to learn and improve from experience 
without being explicitly programmed. The term was first introduced in 1959 by an IBM researcher who 
pioneered this field. Over the past decade, ML has advanced rapidly and is now widely applied in various 
fields, including healthcare. Artificial Intelligence (AI), Data Mining, and ML were among the first 
technologies used in healthcare, helping to develop systems that analyze data, recognize patterns, and 
make informed decisions. Their applications have expanded further with advancements in genetic 
research and the growing use of wearable health devices. More recently, Deep Learning (DL), a specialized 
branch of ML, has gained significant attention for its ability to process large datasets and enhance accuracy 
in medical applications[4]. 
Clinical informatics integrates health sciences, computer science, and information science to manage and 
share data for clinical purposes. Information and Communication Technology (ICT), which refers to 
digital tools and systems used to collect, store, and share information, plays a key role in this process. In 
healthcare, ICT tools enable professionals to quickly gather, exchange, and apply data and knowledge, 
improving healthcare delivery and supporting decision-making for both patients and doctors while 
promoting evidence-based medicine. However, traditional methods of managing and analyzing the vast 
amounts of diverse data generated by healthcare providers can be difficult. Machine Learning (ML) and 
Deep Learning (DL) techniques help address this challenge by effectively analyzing data and uncovering 
valuable insights. Furthermore, data from various sources such as genomic information, health records, 
social media, and climate data can be leveraged to enhance healthcare. ML and DL approaches are 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

340 
 

particularly useful in improving key areas of healthcare, including prognosis, diagnosis, medication, and 
clinical workflow [5]. 
Many databases store personal information, including health-related data, which makes them difficult to 
access. Sharing such identifiable documents is tricky because organizations must follow strict rules. 
Researchers and analysts face ongoing challenges when trying to obtain important datasets. Accessing 
data often requires a data usage agreement, approval of a detailed research plan, completion of a data 
request form, an ethical review, and sometimes high costs for datasets that are not publicly available [6].  
Prediction has always been a part of healthcare, as doctors are skilled at evaluating risk factors and making 
data-driven forecasts. However, machine learning methods can offer more accurate predictions compared 
to traditional regression models [7]. A prediction model helps assess a patient's risk of a disease outcome. 
As these models become more common, questions arise about when, what, and how to use them. 
Depending on the organization's requirements, these models can be trained over time to adapt to new 
information or viewpoints [8]. 
When patients are unable to accurately describe their medical issues based on lab results, it can lead to 
errors. Healthcare providers may also face difficulties in diagnosing illnesses due to a lack of expertise in 
certain areas. To address this challenge, it's important to develop a disease prediction system that 
combines medical knowledge with a holistic approach to achieve the best outcomes and benefit society 
[9]. 
The World Health Organization (WHO) states that non-communicable diseases (NCDs) are the leading 
cause of death globally, responsible for 71% of all annual deaths. While self-awareness of illness is vital 
for controlling diseases, it is difficult to achieve, especially since NCDs are often chronic, hidden, and 
irreversible. Among the deadliest NCDs are cardiovascular diseases (CVD), cancers, respiratory diseases, 
liver diseases, and chronic kidney disease (CKD). Diabetes also leads to other health issues, including 
high and low blood pressure, nerve damage, and bone problems, which are common in both CVD and 
CKD. Research shows that diabetes, high blood pressure, and CVD are significant risk factors for CKD. 
Artificial Intelligence (AI) has emerged as a promising approach for developing computer-aided 
diagnostics (CAD) in healthcare. AI can help uncover hidden links between the development of CKD 
and its symptoms, enabling early detection of patients who are at risk [10-14]. In this study, we used a 
publicly available dataset, the chronic kidney disease dataset from the UCI Machine Learning Repository. 
It includes 400 records with 24 features such as age, blood pressure, and blood glucose levels. Collected 
over two months, this dataset helps in predicting chronic kidney disease [15].  
 
LITERATURE REVIEW 
This section explores the recent applications of AI and ML techniques in detecting and diagnosing 
chronic diseases. Predicting which features are most significant can be challenging, as data is typically 
collected by documenting occurrences in detail before identifying the most relevant factors. These 
approaches are particularly useful in the context of chronic disease detection and diagnosis. 
Aljaaf et al [16]. conducted a study using various machine learning algorithms, including RPART, SVM, 
LOGR, and MLP, to predict chronic kidney disease (CKD) outcomes. While the study demonstrated 
strong results, including high accuracy for certain models, it faced limitations such as a small dataset size, 
which could lead to potential overfitting. This reduced the generalizability of the findings, as smaller 
datasets may not capture the full variability seen in a larger, more diverse population. 
Xiao et al [17]. explored CKD prediction by utilizing machine learning models such as Elastic Net, Lasso, 
Ridge, and LR. Their research focused on blood and demographic parameters to build predictive tools. 
However, one limitation of their study was the restricted feature set, which was limited to clinical and 
demographic factors, excluding other potential important parameters. The lack of feature diversity may 
have affected the model's ability to generalize across different populations or scenarios. 
Ekanayake and Herath[18] evaluated several machines learning models, including Decision Trees (DT), 
Random Forest (RF), XGBoost, extra trees, AdaBoost, and Neural Networks (NN), for CKD prediction. 
While they achieved impressive results, especially in terms of accuracy, the study's limitation was the 
limited generalizability of the models. Some algorithms showed tendencies to overfit on specific datasets, 
which may affect their performance when applied to different real-world data sets or in broader healthcare 
settings. 
Bhattacharya et al [19]. leveraged a GAN-based CNN approach to predict CKD and improve disease 
classification in medical imaging. Their innovative approach tackled data imbalance issues and attempted 
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to reduce overfitting by using generative adversarial networks (GANs) to augment training data. However, 
one key limitation of their work was the imbalance in the data used for training, which, despite the GAN 
method, could still lead to overfitting and may limit the model's performance when deployed in real-
world clinical environments. 
Ifraz et al [20]. focused on traditional machine learning models such as Logistic Regression (LR), Decision 
Trees (DT), and K-Nearest Neighbors (KNN) for CKD prediction. While these models performed well, 
the study's limitations stemmed from its reliance on more basic, traditional algorithms, which may not 
fully leverage the capabilities of more advanced machine learning techniques. This reliance on traditional 
methods could have restricted improvements in predictive accuracy that could be achieved with more 
complex models. 
Ahmed et al [21]. investigated the use of several machine learning algorithms, including KNN, SVM, DT, 
RF, NB, and LR, to predict CKD based on a comprehensive dataset with clinical records and demographic 
features. Although the study achieved promising results, one major limitation was related to data 
collection errors and issues with the dataset's quality, which could have influenced the performance of 
the algorithms. Additionally, these data quality issues could reduce the reliability of the model predictions 
in real-world applications. 
Manju et al [22]. utilized a Decision Tree-based Explainable AI model to predict CKD risk, using clinical 
data from the UCI Machine Learning Repository. The study's key advantage was its focus on 
explainability, but it had limitations, particularly due to the reliance on a limited feature set. The decision 
tree model, although effective, may not capture the complexities of CKD progression as well as more 
advanced or hybrid models that consider a broader range of features. 
Dritsas and Trigka[23] explored various machine learning algorithms, including Bayesian Networks, 
Naive Bayes, SVM, LR, ANN, KNN, and more, to predict CKD risk. Their study highlighted the 
importance of class balancing techniques like SMOTE and used a wide variety of models to evaluate 
performance. However, the study faced limitations due to the high complexity of the models used, which 
could result in overfitting on smaller datasets and increase the difficulty of model interpretation and 
deployment in clinical practice. These shown in Table 1. 
 
Table 1. Existing Papers for CKD Detection 
 
 

Machine Learning Algorithms Limitations 

Aljaaf et al. [16] RPART, SVM, LOGR, MLP Small dataset, potential 
overfitting. 

Xiao et al. [17] Elastic Net, Lasso, Ridge, LR Limited to blood and 
demographic parameters. 

Ekanayake and Herath [18] DT, RF, XGBoost, extra trees,  
AdaBoost, NN 

Limited generalizability, may 
overfit on certain datasets. 

Bhattacharya et al. [19] GAN-based CNN Data imbalance and 
overfitting in GAN model. 

Ifraz et al. [20] LR, DT, KNN Limited to traditional 
models. 

Ahmed et al. [21] KNN, SVM, DT, RF, NB, LR Data collection errors, 
dataset quality issues. 

Manju et al. [22] DT-based Explainable AI Limited feature set, reliance 
on DT model. 

Dritsas and Trigka [23] Bayesian Networks, Naive Bayes,  
 

High model complexity, 
overfitting in some models. 

 
METHODS AND MATERIAL  
This study proposes a Hybrid Autoencoder–Random Forest Framework for the robust early detection of 
chronic kidney disease (CKD). The proposed model shown in Figure 1, integrates the dimensionality 
reduction capability of Autoencoders with the classification strength of the Random Forest algorithm. 
This hybrid approach enhances predictive accuracy, reduces model complexity, and mitigates the risks of 
overfitting associated with high-dimensional clinical data. 
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Figure 1. Proposed Pipeline Architecture 
About Dataset 
The dataset used in this study is the chronic kidney disease (CKD) dataset obtained from the UCI 
Machine Learning Repository. It contains 400 instances with 24 attributes, capturing a diverse set of 
clinical and physiological parameters relevant to kidney function. The features include age, blood 
pressure, specific gravity, albumin levels, sugar levels, red and white blood cell counts, hemoglobin, packed 
cell volume, serum creatinine, blood urea, and various health indicators such as diabetes mellitus, 
hypertension, and appetite. The target variable is a binary class indicating the presence (ckd) or absence 
(notckd) of chronic kidney disease. The dataset includes both numerical and categorical attributes, some 
of which contain missing values. These missing entries necessitate careful preprocessing, including 
handling of nulls and normalization of data, to ensure the quality and reliability of predictive modeling. 
Due to its real-world clinical relevance and feature diversity, this dataset is widely adopted for 
benchmarking CKD prediction models, especially those leveraging hybrid machine learning approaches 
for improved accuracy and robustness. The dataset details are shown in Figure 2. 

 
Figure 2. CKD Dataset Details. 
The input data X 
It is used in this study comprises the raw clinical records from the chronic kidney disease (CKD) dataset. 
This raw dataset includes a mix of categorical and numerical features that represent various medical test 
results, patient demographics, and observed symptoms. These features serve as the foundation for 
building a predictive model and include indicators such as age, blood pressure, specific gravity, red blood 
cell count, sugar level, serum creatinine, hemoglobin, and other laboratory values. Since the dataset 
originates from real-world clinical scenarios, it contains missing values and inconsistencies, which require 
thorough preprocessing. The raw input data is essential for capturing the underlying patterns related to 
CKD progression and serves as the starting point for feature extraction, dimensionality reduction, and 
classification in the proposed hybrid learning framework. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

343 
 

Data Pre-Processing 
The data preprocessing phase plays a critical role in preparing the raw CKD dataset for effective modeling. 
Given that the dataset contains several missing values due to incomplete clinical records, the first step 
involves handling these missing entries through imputation techniques such as mean, median, or mode 
substitution, depending on the feature type. This ensures that no valuable instances are discarded while 
maintaining the integrity of the dataset. Following this, normalization is applied to the numerical features 
to scale them to a common range, typically between 0 and 1. This step is crucial for eliminating biases 
caused by differences in feature magnitudes and for improving the performance of machine learning 
algorithms, especially those sensitive to feature scales. Additionally, categorical variables such as 'red blood 
cells' or 'hypertension' are encoded into numerical representations using techniques like label encoding 
or one-hot encoding. This transformation makes the data compatible with the learning algorithms, which 
require numerical input. Together, these preprocessing steps enhance the dataset’s quality and ensure 
consistency and readiness for the next stages in the hybrid modeling pipeline. 
Auto Encoder 
An autoencoder is employed in this study as a powerful unsupervised learning technique for 
dimensionality reduction and feature extraction. It consists of two main components: the encoder and 
the decoder. The encoder compresses the high-dimensional input feature space into a lower-dimensional 
representation known as the latent space. This compressed set of features captures the most relevant 
patterns in the data while discarding noise and redundancy, making it highly effective for improving 
classification performance. The decoder, although part of the autoencoder architecture, is used only 
during the training phase to reconstruct the input data from the latent space, ensuring that the encoding 
process retains the essential structure of the original data. Once trained, only the encoder is retained and 
used to transform the preprocessed input data into compressed feature vectors. These latent features are 
then passed on to the classifier, enhancing the model's ability to generalize and reducing computational 
complexity by focusing on the most informative components of the dataset. 
Random Forest Classifier 
Following feature extraction through the autoencoder, the Random Forest classifier is applied to the 
latent feature space for final prediction. Random Forest is a robust ensemble learning algorithm that 
constructs a multitude of decision trees during training and outputs the mode of their predictions for 
classification tasks. By training the model on the compressed latent features, the classifier benefits from 
reduced dimensionality and enhanced data representation, which leads to improved generalization and 
prediction accuracy. Each decision tree in the ensemble is trained on a random subset of features and 
data instances, introducing diversity and reducing the risk of overfitting. The final decision is made by 
aggregating the outputs of all individual trees, which ensures high stability and resilience to noise in the 
data. This ensemble strategy makes the Random Forest particularly suitable for medical diagnosis tasks 
like CKD prediction, where interpretability, precision, and reliability are crucial. 
CKD Prediction Output 
The final stage of the proposed hybrid framework is the CKD Prediction Output, where the trained 
Random Forest classifier generates a binary classification result—CKD (chronic kidney disease) or non-
CKD. Based on the analysis of the compressed and refined features obtained from the autoencoder, the 
model provides a precise diagnosis that can assist in early detection of the disease. This output not only 
serves as the conclusion of the data processing pipeline but also as a clinically meaningful decision point. 
By automating the prediction process and improving its accuracy through the hybrid learning approach, 
the system offers an efficient and reliable tool that can support healthcare professionals in identifying at-
risk patients and initiating timely medical interventions. 
Performance Metrics in Machine Learning 
Evaluating the performance of machine learning models is crucial to understand how well they generalize 
to unseen data. The following are widely used performance metrics for classification tasks: 
1. Accuracy 
Accuracy is the ratio of correctly predicted observations to the total observations. It is the most intuitive 
performance measure but may not be the best choice when classes are imbalanced. 
Accuracy = (TP + TN) / (TP + TN + FP + FN) 
- TP: True Positive 
- TN: True Negative 
- FP: False Positive 
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- FN: False Negative 
2. Precision 
Precision is the ratio of correctly predicted positive observations to the total predicted positive 
observations. It is also called Positive Predictive Value. 
Precision = TP / (TP + FP) 
High precision indicates a low false positive rate. 
3. Recall (Sensitivity or True Positive Rate) 
Recall is the ratio of correctly predicted positive observations to all observations in actual class. Recall = 
TP / (TP + FN). High recall indicates that most of the actual positives were identified correctly. 
4. F1-Score 
The F1 Score is the weighted average of Precision and Recall. It is especially useful when class distribution 
is uneven. 
F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 
A good F1 Score means both precision and recall are reasonably high. 
5. Confusion Matrix 
A Confusion Matrix is a summary of prediction results on a classification problem. It shows the ways in 
which your classification model is confused when it makes predictions. 
 Predicted Positive Predicted Negative 
Actual Positive True Positive (TP) False Negative (FN) 
Actual Negative False Positive (FP) True Negative (TN) 
6. ROC Curve and AUC Score 
- ROC (Receiver Operating Characteristic) Curve plots the true positive rate against the false positive rate 
at various threshold levels. 
- AUC (Area Under the Curve) represents the degree or measure of separability. Higher AUC indicates a 
better model at distinguishing between classes. 
 
RESULTS AND DISCUSSION 
This study proposes a hybrid framework combining an Autoencoder for dimensionality reduction with a 
Random Forest classifier for the early prediction of chronic kidney disease (CKD). The model was trained 
and evaluated using the UCI CKD dataset after thorough preprocessing steps, including missing value 
imputation, normalization, and categorical encoding. These transformations ensured consistency and 
quality in the input data, which significantly improved model performance and stability. 
The Autoencoder effectively learned compressed representations of the input features, which were then 
fed into the Random Forest classifier. The model achieved an outstanding accuracy of 99.8% on the test 
set, reflecting its ability to correctly identify CKD and non-CKD cases. The latent space extracted by the 
Autoencoder preserved essential class-distinguishing characteristics, resulting in a highly separable feature 
space for the classifier. 
To evaluate the model performance, we plotted the training and validation loss curves for the 
Autoencoder (Figure 4a). The plots demonstrate a smooth convergence with minimal overfitting, 
indicating that the model learned meaningful patterns from the data without memorizing noise. 
Furthermore, the accuracy curve of the Random Forest classifier over multiple folds (Figure 4b) confirmed 
consistent and high performance across validation sets. 

 
Figure 4a. Accuracy Curve for the proposed model. 
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Figure 4b. Accuracy Curve for the proposed model. 
The confusion matrix (Figure 4c) shows excellent classification capability, with near-perfect true positives 
and true negatives, and minimal or zero misclassifications. This confirms the robustness of the proposed 
method in distinguishing between CKD and non-CKD patients. Additionally, data preprocessing plots 
(Figure 4d) illustrate the transformation of the dataset before and after normalization, encoding, and 
missing value handling. The feature extraction plot (Figure 4e), generated using dimensionality reduction 
techniques such as t-SNE, visually confirms the separation between CKD and non-CKD cases in the latent 
feature space learned by the Autoencoder. 

 
Figure 4c. Confusion Matrix for the proposed model. 
 

 
Figure 4d. Preprocessing output (missing value handling, normalization). 
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Figure 4e. Feature extraction plot (t-SNE of latent features) 
The high classification accuracy, along with stable training behavior and a robust confusion matrix, 
demonstrates the efficacy of the hybrid Autoencoder–Random Forest model. This approach is particularly 
beneficial for clinical decision support systems, where early and accurate CKD detection can significantly 
impact patient outcomes. The model's performance also suggests its potential adaptability to other 
medical diagnosis tasks with high-dimensional data. 
Comparison with Existing Works 
Several previous studies have explored the use of traditional machine learning models for chronic kidney 
disease (CKD) prediction. For instance, Aljaaf et al.  applied models such as RPART, SVM, Logistic 
Regression (LOGR), and Multi-layer Perceptron (MLP), achieving promising results. However, the study 
was limited by a relatively small dataset, which increased the risk of overfitting and reduced the 
generalizability of the models. In another study, Xiao et al.  utilized models like Elastic Net, Lasso, Ridge, 
and Logistic Regression, focusing primarily on clinical and demographic features. While these models 
performed well with an accuracy of around 94%, the limited feature set restricted the model’s ability to 
generalize across broader populations. Similarly, Ekanayake and Herath explored various ensemble and 
neural network models including Decision Trees, Random Forests, Boost, AdaBoost, and Neural 
Networks, attaining an accuracy of approximately 97.5%. Despite their high performance, overfitting 
remained a concern, especially when applied to different datasets. 
On the deep learning front, Bhattacharya et al. introduced a GAN-based CNN model to address class 
imbalance and enhance CKD prediction. While the approach showed innovation and achieved up to 
98% accuracy, imbalances in the training data still posed a threat to real-world applicability. Additionally, 
Ahmed et al. employed multiple classifiers such as KNN, SVM, Random Forest, Naive Bayes, and 
Decision Tree on a comprehensive clinical dataset. Although their model reached an accuracy of around 
95.5%, inconsistencies in data quality and potential errors in data collection reduced its predictive 
reliability. 
In contrast, the proposed model in this study leverages a hybrid approach combining an Autoencoder for 
dimensionality reduction and latent feature extraction with a Random Forest classifier for robust 
prediction. This hybrid model addresses key limitations of previous works by reducing noise, managing 
high-dimensional data efficiently, and improving classification accuracy. Experimental results 
demonstrate that the proposed model achieves a superior accuracy of 99.8%, outperforming all referenced 
models. The integration of deep feature learning with ensemble classification enables enhanced 
generalization, stability, and performance across diverse CKD datasets. These details presented in Table2 
and in Figure 5. 
Table 2. Comparison between Existing and Proposed Methods 
Author(s) Method Accuracy (%) 
Aljaaf et al. [29] RPART, SVM, LOGR, MLP 96% 
Xiao et al. [30] Lasso, Logistic Regression 94% 
Ekanayake & Herath [31] DT, RF, XG Boost, NN 97.5% 
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Bhattacharya et al. [32] GAN + CNN 98% 
Ahmed et al. [33] KNN, SVM, RF, NB, DT 95.5% 

Proposed  
Autoencoder + Random 
Forest 
 
 

 

99.8% 

 
Figure 5. Comparison between Proposed and Existed Papers. 
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