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Abstract:  
This study proposed a novel division operation over Intuitionistic Fuzzy Sets to assess its decision-making properties. The 
study extends Intuitional Fuzzy Sets (IFS) by integrating temporal properties to perform operational functions in order to 
enhance the decision-making process. We modeled different causes of corrosion using Intuitionistic Fuzzy Set (IFS) to 
predict the corrosion type within four chosen villages (𝐷₁, 𝐷₂, 𝐷₃, 𝐷₄). We estimated the normalized Hamming distances 
among different corrosion profiles and its causes to quantify which type of corrosion pose serious threat to the village. The 
results show that TIFSs effectively resolve uncertainties in decision-making, particularly in cases where traditional fuzzy 
set methods produce ambiguous outcomes, where FS failed to distinguish between wind and water corrosion for village 𝐷3, 
the TIFS-based approach provided a clear classification. Our findings suggest that TIFS-based framework is robust to 
address the ecological risks paving way for management interventions. However, fuzzy sets representing membership values 
and intuitionistic fuzzy sets for connection and non-connection value fail to yield consistent outcomes.  
Keywords: Intuitionistic Fuzzy Sets, Temporal Fuzzy Sets, Temporal Intuitionistic Fuzzy Sets (TIFS), Environmental 
management, Ecological Modelling, Corrosion. 
 
1. INTRODUCTION 
Fuzzy sets are commonly applied in Engineering, Science, Health, Technological sectors. [21] developed the 
concept of fuzzy sets, a subdivision of crisp sets by maximizing its membership values from the binary options 
of 0 or 1 to any value within the continuous interval [0,1]. In this framework, function𝜇𝐴map the elements 
from a non-empty set X to [0, 1] for any    𝑥 ∈ 𝑋, 𝜇ₐ(𝑥) represents the degree of membership, while 1 – μₐ(x) 
indicates the degree of non -membership degrees. K. T. Atanassov [3] proposed IFS with membership and 
non-membership degrees. If 𝑥 ∈ 𝑋, an IFS is defined by the functions μₐ(x) and νₐ(x) such that 0 ≤ 𝜇ₐ(𝑥) +
𝜈ₐ(𝑥) ≤ 1. 
The concept of TIFS was first proposed by [4, 5] in 1991, as an advancement of temporal fuzzy sets integrated 
with IFSs. TIFSs enable accurate estimation of the real time processing with the ability to trace the changes 
of the item over time. Temporal intuitionistic fuzzy sets are defined using the entire operations along with 
operators for IFSs. In 1999, [19] introduced several measures to compare IFSs. Later, [9] defined level 
operators, max-min insinuation operator, and 𝑃𝛼,𝛽 , 𝑄𝛼,𝛽  operator [8] for the TIFSs in 2009.[20] introduced 
a new level operator in 2014. Studies conducted by [7] focused on various detachment appraise and inclusion 
measures for TIFSs in 2016.The concept of multi-parameter temporal IFSs was initially proposed by [10] in 
2016. In 2018, [13] proposed an entropy measure for temporal TIFs, and introduced fuzzification function 
for TIFSs in 2019. 
Temporal IFS of Second Type (TIFSST) theory was initially proposed by [14] in 2016. After its introduction, 
[15, 16] established the concept of Certain Level Operator and various distances measures among TIFSST in 
2019. [1] investigated on the aggregation of infinite chains of IFS data in 2020. [11, 12] developed the 
morphological operations on TIFS. [17] introduced Interval Valued Temporal Neutrosophic Fuzzy Sets 
(IVTNFS)and measured its efficacy on       E-management [18]. 
Figure-1 demonstrates the list of authors investigated on the Temporal IFSs. Although IFSs may sometimes 
failed to differentiate membership and non-membership values, TIFS play an effective role in decision-making 
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by providing reliable results. They allow non-zero hesitation degree during every assessment. In this article, 
section 1 introduces the IFSs and its chronology, section 2 offers key definitions related to this study. Section 
3 examines the properties of TIFS, with the new division operator, and Section 4 concludes the paper. 
 

 
Figure 1 Research Timeline and Contributions to the Development of Temporal Intuitionistic Fuzzy Set 
(TIFS) Operators in Environmental Assessment 
 
2. PRELIMINARIES 
Here, we provide some essential definitions that are relevant to this study. 
Definition: 2.1 [19] Let us consider set Uis non-empty. An object of the kind is defined like a fuzzy set (FS) 
S within U. 

S =  {< 𝑚, ϕS(𝑚) > |𝑚 ∈ U} 
wherever the degree of membership value of the element 𝑚 ∈ 𝑈 is defined by the functionϕS: U → [0, 1] and 
for each 𝑚 ∈ 𝑈 with the condition 0 ≤ ϕS(𝑚) ≤ 1. 
 
Definition 2.2 [3] An object of the following kind is an IFSs S in U. 

S =  {< 𝑚, ϕS(𝑚), 𝜒𝑆(𝑚) > |𝑚 ∈ U} 
The degree of membership grade and the grade of non-membership part 𝑚 ∈ 𝑈 are defined by the 
functionsϕS(𝑚): U → [0, 1] and 𝜒𝑆(𝑚): U → [0, 1], respectively, and for each 𝑚 ∈ 𝑈. 

0 ≤ ϕS(𝑚) + 𝜒𝑆(𝑚) ≤ 1 
The standard fuzzy set can be articulated asS =  {< 𝑚, ϕS(𝑚), 1 − ϕS(𝑚) > |𝑚 ∈ U} 
 
Definition 2.3[4] The following object of the form is known as Temporal Intuitionistic Fuzzy Sets (TIFS). 

S = {< (k, 𝑦), ϕS(k, 𝑦), 𝜒𝑆(k, 𝑦) > |(k, 𝑦) ∈ U × P} 
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Where 
i) 𝑆 ⊂ 𝑈 is a fixed set. 
ii) ϕS(k, 𝑦) + 𝜒𝑆(k, 𝑦) ≤ 1 For every < 𝑘, 𝑦 >∈ 𝑈 × 𝑃 
Where the functions ϕS(𝑘): U → [0, 1] and𝜒𝑆(𝑘): U → [0, 1], respectively, for all 𝑘 ∈ 𝑈 with the period 
𝑦 ∈ 𝑃 
 
Definition: 2.4 Let U be universe and consider two IFSs defined on U 

S =  {< 𝑘, ϕS(𝑘), 𝜒𝑆(𝑘) > |𝑘 ∈ U} 
And 

T =  {< 𝑘, ϕT(𝑘), 𝜒𝑇(𝑘) > |𝑘 ∈ U} 
Then, the division operation defined as the following form [2] 

𝑅 = {< ϕS(𝑘). 𝜒𝑇(𝑘) + ϕT(𝑘). 𝜒𝑆(𝑘), ϕS(𝑘). ϕT(k) + 𝜒𝑆(𝑘). 𝜒𝑇(𝑘) > |𝑘 ∈ 𝑈} 
 
2.5 [Distance between Temporal Intuitionistic Fuzzy Sets 
Let A and B be two Temporal Intuitionistic Fuzzy Sets (TIFSs) defined on the universe [6] 𝑈 =
{𝑘1, 𝑘2, 𝑘3, … 𝑘𝑛}, we define the following distance measures between them as: 
2.5.1 Hamming Distance 

=
1

2
∑|𝜇𝑐𝑘

(𝑘, 𝑦) − 𝜇𝑣𝑘
(𝑘, 𝑦)| + |𝜈𝑐𝑘

(𝑘, 𝑦) − 𝜈𝑣𝑘
(𝑘, 𝑦)| + |𝜋𝑐𝑘

(𝑘, 𝑦) − 𝜋𝑣𝑘
(𝑘, 𝑦)|

𝑛

𝑘=1

 

2.5.2 Normalized Hamming Distance 

=
1

2𝑛
∑|𝜇𝑐𝑘

(𝑘, 𝑦) − 𝜇𝑣𝑘
(𝑘, 𝑦)| + |𝜈𝑐𝑘

(𝑘, 𝑦) − 𝜈𝑣𝑘
(𝑘, 𝑦)| + |𝜋𝑐𝑘

(𝑘, 𝑦) − 𝜋𝑣𝑘
(𝑘, 𝑦)|

𝑛

𝑘=1

 

2.5.3 Euclidean Distance 

= √
1

2
∑|𝜇𝑐𝑘

(𝑘, 𝑦) − 𝜇𝑣𝑘
(𝑘, 𝑦)| + |𝜈𝑐𝑘

(𝑘, 𝑦) − 𝜈𝑣𝑘
(𝑘, 𝑦)| + |𝜋𝑐𝑘

(𝑘, 𝑦) − 𝜋𝑣𝑘
(𝑘, 𝑦)|

𝑛

𝑘=1

 

 
2.5.4 Normalized Euclidean Distance 

= √
1

2𝑛
∑|𝜇𝑐𝑘

(𝑘, 𝑦) − 𝜇𝑣𝑘
(𝑘, 𝑦)| + |𝜈𝑐𝑘

(𝑘, 𝑦) − 𝜈𝑣𝑘
(𝑘, 𝑦)| + |𝜋𝑐𝑘

(𝑘, 𝑦) − 𝜋𝑣𝑘
(𝑘, 𝑦)|

𝑛

𝑘=1

 

 
3 TEMPORAL INTUITIONISTIC FUZZY SETS FOR DIVISION OPERATION 
This section introduces a division operation for TIFS. 
Definition: 3.1 Consider two Temporal Intuitionistic Fuzzy Sets (TIFS) defined on a universe U. 

A =  {< (𝑘, 𝑦), μA(𝑘, 𝑦), νA(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
and 

B =  {< (𝑘, 𝑦), μB(𝑘, 𝑦), νB(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
Then, the division operation over TIFS is define as the following form C 

= {
< 𝜇𝐴(𝑘, 𝑦)𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦)𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

Let 𝐴, 𝐵 ⊂ 𝑈. For each element 𝑘 ∈ 𝑈 instance 𝑦 ∈ 𝑃, denote the membership and non-membership grades 
by 𝜇𝐴(𝑘, 𝑦) & 𝑣𝐴(𝑘, 𝑦), respectively. The operation between A and B gives a new set C. 
Theorem: 3.2 A ÷ B = C is a TIFS if A &B be any two TIFSs 
Proof: We will demonstrate that the sum of membership and non-membership degrees does not exceed 1. 
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= (µ𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) +  𝜈𝐴(𝑘, 𝑦). µ𝐵(𝑘, 𝑦)) + (µ𝐴(𝑘, 𝑦). µ𝐵(𝑘, 𝑦) +  𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)) 
= µ𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) +  𝜈𝐴(𝑘, 𝑦). µ𝐵(𝑘, 𝑦) + µ𝐴(𝑘, 𝑦). µ𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) 
= µ𝐴(𝑘, 𝑦)(𝜈𝐵(𝑘, 𝑦) + µ𝐵(𝑘, 𝑦)) + 𝜈𝐴(𝑘, 𝑦)(µ𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦)) 
= (µ𝐴(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)) + (µ𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦)) 
From A, B ∈ TIFS follows that  

µ𝐴(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦) ≤  1 
and 

µ𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦) ≤  1 
Therefore, (µ𝐴(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦))(µ𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦)) ≤ 1 
Hence, 𝐴 ÷  𝐵 =  𝐶 is a TIFSs. 
Theorem: 3.3 The division process is associative if A, B and C are any three TIFSs 
Proof: Let us assume two TIFSs in a universe U 

A =  {< (𝑘, 𝑦), μA(𝑘, 𝑦), νA(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
and 

B =  {< (𝑘, 𝑦), μB(𝑘, 𝑦), νB(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
Then, the division operation over TIFS is define as the following form C 

= {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

Again use the division function that we have between B and A. 

= {
< 𝜇𝐵(𝑘, 𝑦). 𝜈𝐴(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜇𝐴(𝑘, 𝑦),

𝜇𝐵(𝑘, 𝑦). 𝜇𝐴(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜈𝐴(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

= {
< 𝜇𝐴(𝑘, 𝑦)𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦)𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

Consequently, division operator is commutative for any two temporal Intuitionistic fuzzy sets. 
 
Theorem: 3.4 Associative qualities are satisfied by the division operation if A, B, and C are any three 
temporal Intuitionistic fuzzy sets. 
Proof: Let us assume A and B are two TIFSs defined on a universe U 
A = {< (𝑘, 𝑦), μA(𝑘, 𝑦), νA(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃}, 

 B = {< (𝑘, 𝑦), μB(𝑘, 𝑦), νB(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
and 

C = {< (𝑘, 𝑦), μC(𝑘, 𝑦), νC(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
Use the division function that we have between A and B 

= {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

To find (𝐴 ÷ 𝐵) ÷ 𝐶 

= {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} ÷ C 

= {< 𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜈𝑐(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝑐(𝑘, 𝑦) + 
           𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 
           𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦), 
          𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
= {< 𝜇𝐴(𝑘, 𝑦)(𝜇𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦))𝜈𝑐(𝑘, 𝑦) + 
           (𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦))𝜇𝐶(𝑘, 𝑦). 
           𝜈𝐴(𝑘, 𝑦)(𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦)), 
          𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
Using the division function between B and C, to find 𝐴 ÷ (𝐵 ÷ 𝐶) 
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= {
< 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦),

𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

To find 𝐴 ÷ (𝐵 ÷ 𝐶) 

= 𝐴 ÷ {
< 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦),

𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

= {< 𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜈𝑐(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝑐(𝑘, 𝑦) + 
           𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) 
           𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦), 

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
= {< 𝜇𝐴(𝑘, 𝑦)(𝜇𝐵(𝑘, 𝑦) + 𝜈𝐵(𝑘, 𝑦))𝜈𝑐(𝑘, 𝑦) + 
           (𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦))𝜇𝐶(𝑘, 𝑦). 
           𝜈𝐴(𝑘, 𝑦)(𝜈𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜇𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦)), 

          𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦). 𝜇𝐶(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦). 𝜈𝐶(𝑘, 𝑦) > |(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
We conclude that, (𝐴 ÷  𝐵)  ÷  𝐶 =  𝐴 ÷  (𝐵 ÷  𝐶) from 𝐴 ÷ (𝐵 ÷ 𝐶) and (𝐴 ÷ 𝐵) ÷ 𝐶.  
Thus, the associative property is satisfied by the division operation between any three temporal intuitionistic 
fuzzy sets. 
Theorem 3.5 A monoid is formed by the operation division based on the set of all TIFSs.  
Proof: 𝐴 ÷ 𝐵 = 𝐶 forms a TIFS, if A & B be two TIFSs with groupoid structure. 
If 𝐴, 𝐵 & 𝐶are any three TIFSs then the division operation is a semi-group and meets the associative qualities. 
We'll demonstrate that a neutral element exists. 
Assuming X is a neutral element, we get 𝐴 ÷  𝑋 =  𝐴. 
Consequently, 

𝐴 ÷ 𝑋 = {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

            = {< (𝑘, 𝑦), 𝜇𝐴(𝑘, 𝑦), 𝜈𝑋(𝑘, 𝑦) >|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 
              = 𝐴 
The system of equations we have is as follows: 

𝜇𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) = µ𝐴(𝑘, 𝑦) 
𝜇𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) = 𝜈𝐴(𝑘, 𝑦) 

1
st
 case: µ𝐴(𝑘, 𝑦) = 0. 

Hence 
𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) = 𝜈𝐴(𝑘, 𝑦) 

i.e. 𝜈𝑋(𝑘, 𝑦) = 1 and µ𝑋(𝑘, 𝑦) = 0 
Thus, the neutral element is 

𝑋 = {((𝑘, 𝑦), 0, 1)|(𝑘, 𝑦) ∈ 𝑈 × 𝑃}  ≡ 0̅ 
2

nd
 case: µ𝐴(𝑘, 𝑦) ≠  0. 

Hence, 

     
(𝜈𝐴(𝑘,𝑦)(1− 𝜈𝐴(𝑘,𝑦)))

𝜇𝐴(𝑘,𝑦)
= µ𝐴(𝑘, 𝑦), 

 µ𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦)
(𝜈𝐴(𝑘,𝑦)(1− 𝜈𝐴(𝑘,𝑦)))

𝜇𝐴(𝑘,𝑦)
= µ𝐴(𝑘, 𝑦). µ𝐴(𝑘, 𝑦) 

𝜇𝐴
2(𝑘, 𝑦). 𝜈𝑥(𝑘, 𝑦) + 𝜈𝐴

2(𝑘, 𝑦) − 𝜈𝐴
2(𝑘, 𝑦). 𝜈𝑥(𝑘, 𝑦) = 𝜇𝐴

2(𝑘, 𝑦) 
𝜈𝑥(𝑘, 𝑦)(𝜇𝐴

2(𝑘, 𝑦) − 𝜈𝐴
2(𝑘, 𝑦)) = 𝜇𝐴

2(𝑘, 𝑦) − 𝜈𝐴
2(𝑘, 𝑦) 

𝜈𝑋(𝑘, 𝑦) = 1 and µ𝑋(𝑘, 𝑦) = 0. 
Hence the neutral component is again the above set 

𝑋 = {((𝑘, 𝑦), 0, 1) | < 𝑘, 𝑦 >∈ 𝑈 × 𝑃}  ≡ 0̅ 
Division, for example, is a monoid in TIFSs. We shall now demonstrate that divide does not create a group 
as there is no opposite element. 
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Assume that element X is the opposite of constituent A. 
i.e. A ÷ X = 0̅ 

= {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

= {((𝑘, 𝑦), 0, 1)| < 𝑘, 𝑦 > ∈ 𝑈 × 𝑃} 
Therefore, we have the following system of equations: 

𝜇𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) = 0 
𝜇𝐴(𝑘, 𝑦). 𝜇𝑋(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) = 1 

1
st
 case: µ𝐴(𝑘, 𝑦) = 0. Hence, 

𝜈𝐴(𝑘, 𝑦). µ𝑋(𝑘, 𝑦) = 0 and 𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) = 1, 
But 
𝜈𝐴(𝑘, 𝑦) ≤ 1 and 𝜈𝑋(𝑘, 𝑦) ≤ 1, 
Therefore, 

𝜈𝐴(𝑘, 𝑦) = 𝜈𝑋(𝑘, 𝑦) = 1 
thus so, 

µ𝐴(𝑘, 𝑦) = µ𝑋(𝑘, 𝑦) = 0. 
Therefore, the opposite element of {< (𝑘, 𝑦), 0, 1 > | < 𝑘, 𝑦 >∈ 𝑈 × 𝑃} is same. 
i.e. {< (𝑘, 𝑦), 0, 1 > | < 𝑘, 𝑦 >∈ 𝑈 × 𝑃} 
2

nd
 case: µ𝐴(𝑘, 𝑦) ≠ 0. 

Hence, 

𝜈𝑥(𝑘, 𝑦) =
𝜈𝐴(𝑘,𝑦).𝜇𝐴(𝑘,𝑦)

𝜇𝐴(𝑘,𝑦)
, 

But, 
𝜈𝑥(𝑘, 𝑦) ≥ 0 

Therefore, 
𝜈𝐴(𝑘, 𝑦). µ𝑥(𝑘, 𝑦) = 0. 

From case 1: 𝜈𝐴(𝑘, 𝑦) = 0 
i.e. µ𝐴(𝑘, 𝑦). µ𝑋(𝑘, 𝑦) = 1 
but, 
µ𝐴(𝑘, 𝑦) ≤ 1 and µ𝑋(𝑘, 𝑦) ≤ 1 
Therefore, 

µ𝐴(𝑘, 𝑦) = µ𝑋(𝑘, 𝑦) = 1 
Therefore 𝜈𝑋(𝑘, 𝑦) =  0 and so the opposite element of {< (𝑘, 𝑦), 1, 0 > | < 𝑘, 𝑦 >∈ 𝑈 × 𝑃} is {<
(𝑘, 𝑦), 0, 1 > | < 𝑘, 𝑦 >∈ 𝑈 × 𝑃}. 
From case 2: 
𝜈𝐴(𝑘, 𝑦)  ≠  0 (i.e)  µ𝑥(𝑘, 𝑦) = 0. 
Therefore 
𝜈𝐴(𝑘, 𝑦). 𝜈𝑋(𝑘, 𝑦) = 1, 
But, 𝜈𝐴(𝑘, 𝑦) ≤ 1 and 𝜈𝑋(𝑘, 𝑦) ≤ 1 
So, 

𝜈𝐴(𝑘, 𝑦) = 𝜈𝑋(𝑘, 𝑦) = 1 
As a result, 
µ𝐴(𝑘, 𝑦) = 0. 
This contradicts the second case requirement that, µ𝐴(𝑘, 𝑦) = 0.Thus, our hypothesis proved as false, and 
the common situation has no competing elements. The TIFSs (division) forms a monoid structure rather 
than a group.  
 
Theorem 3.6 For each of TIFS A and B, we have the following, assuming X is a nonempty set: 
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𝑨 ÷ 𝑩 =  ¬𝑨 ÷ ¬𝑩. 
Proof: Let A and B be any two TIFS, then division of A and B is 

𝐴 ÷ 𝐵 = {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃}........ (i) 

and the complement of 𝐴 ÷ 𝐵 is 

= {
< 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦),

𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) >
| < 𝑘, 𝑦 > ∈ 𝑈 × 𝑃} 

         = {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃}........ (ii) 

From equation (i) and (ii) 
𝐴 ÷ 𝐵 =  ¬𝐴 ÷ ¬𝐵. 

 
Theorem 3.7 Assuming X is a nonempty set, we have the following for each TIFS A and B 

¬ (𝑨 ÷ 𝑩) = ¬𝑨 ÷ ¬𝑩. 
Proof: Let A and B be any two TIFS, then the division operation of A and B is 

𝐴 ÷ 𝐵 = {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃}........ (i) 

and the complement of 𝐴 ÷ 𝐵 is 

= {
< 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦),

𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) >
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃} 

= {
< 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦)
|(𝑘, 𝑦) ∈ 𝑈 × 𝑃}……..(iii) 

The complement of A and B defined as 
¬ A = {< 𝑚, 𝑠 >, νA(𝑚, 𝑠), μA(𝑚, 𝑠) > | < 𝑚, 𝑠 >∈ 𝑈 × 𝑃} 

and 
¬ B =  {< 𝑚, 𝑠 >, νB(𝑚, 𝑠), μB(𝑚, 𝑠) > | < 𝑚, 𝑠 >∈ 𝑈 × 𝑃} 

Apply the division operator among the complement of A and B we have 
¬ 𝐴 ÷ ¬B = {< 𝑘, 𝑦 >, νA(𝑘, 𝑦), μA(𝑘, 𝑦) > | < 𝑘, 𝑦 > ∈ 𝑈 × 𝑃} ÷ 

{< 𝑘, 𝑦 >, νB(𝑘, 𝑦), μB(𝑘, 𝑦) > | < 𝑘, 𝑦 > ∈ 𝑈 × 𝑃} 

      = {
< 𝑘, 𝑦 >, 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦),

𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) >
| < (𝑘, 𝑦) >∈ 𝑈 × 𝑃} 

      = {
< 𝑘, 𝑦 >, 𝜇𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦),

𝜇𝐴(𝑘, 𝑦). 𝜇𝐵(𝑘, 𝑦) + 𝜈𝐴(𝑘, 𝑦). 𝜈𝐵(𝑘, 𝑦) >
| < (𝑘, 𝑦) >∈ 𝑈 × 𝑃}…….(iv) 

From equation (iii) and (iv) 
¬ (𝐴 ÷  𝐵) = ¬ 𝐴 ÷ ¬ 𝐵. 

4. Application of TIFSs in Ecological Administration 
In this section, we are exploring the applications of TIFSs in the ecological management systems. Let A 
represent different causes for corrosion in village settings, C denote various types of corrosion, and V signify 
a different village. Understanding corrosion and its underlying causes allows us to identify, which kind of 
causes are strongly associated with types of corrosion in village settings. Each type of corrosion has a unique 
cause that indicates a certain level of connection, denoted as µ, and a level of disconnection, represented as 
ν. We will apply TIFSs to develop a decision making to this ecological problem. This approach essentially 
consists of three key phases: 
(i) Identification of the source; 
(ii) Development of ecological knowledge based on TIFSs principles; 
(iii) The administration is assessed using the n-Hamming detachment among the sets C and V. 
We first established a theoretical scenario for this problem before demonstrating its application. The distance, 
denoted as 𝑑𝑁𝐻, between a village &types of corrosion in relation to their causes is defined, 
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=
1

2𝑛
∑|𝜇𝑐𝑘

(𝑚, 𝑠) − 𝜇𝑣𝑘
(𝑚, 𝑠)| + |𝜈𝑐𝑘

(𝑚, 𝑠) − 𝜈𝑣𝑘
(𝑚, 𝑠)| + |𝜋𝑐𝑘

(𝑚, 𝑠) − 𝜋𝑣𝑘
(𝑚, 𝑠)|

𝑛

𝑘=1

 

where 𝑐𝑖 ∈ 𝐶 and 𝑣𝑖 ∈ 𝑉 and n represents total number of causes. Each village assumed to have a specific 
type of corrosion, if the distance, 𝑑𝑇𝐼𝐹𝑆𝑛𝐻𝐷(𝐶, 𝑉), between the cause and the village be minimal. 
4.1 Investigational exemplar 
Let us choose four villages and it’s denoted as a set 𝐷 =  {𝐷1, 𝐷2, 𝐷3, 𝐷4} that are surveyed for different 
corrosion types denoted as C in the corrosion type we choose water corrosion its refer to degradation of land 
by flow of water and the second corrosion is tunnel corrosion likely it refers the degradation of soil leading 
to the formation of tunnels, the next corrosion is gully corrosion it can lead to soil loss, increased 
sedimentation in waterways and decreased agricultural productivity and the final corrosion is wind corrosion 
it refers the degradation of land caused by wind, which have the set of causes. Further, we analyzed the 
environmental factors like farming, graze, poor management rude, flow of water, reduced plants in terms of 
TIFSs. 

A Farming Graze 
Poor 
Management 

Flow of Water 
Reduced 
Plants 

Wind 
Corrosion 

(0.8,0.1,0.1) (0.7,0.2,0.1) (0.3,0.5,0.2) (0.5,0.3,0.2) (0.5,0.4,0.1) 

Tunnel 
Corrosion 

(0.2,0.7,0.1) (0.9,0,0.1) (0.7,0.2,0.1) (0.6,0.3,0.1) (0.7,0.2,0.1) 

Gully 
Corrosion 

(0.5,0.3,0.2) (0.3,0.5,0.2) (0.2,0.7,0.1) (0.2,0.6,0.2) (0.4,0.4,0.2) 

Water 
Corrosion 

(0.1,0.7,0.2) (0.3,0.6,0.1) (0.8,0.1,0.1) (0.1,0.8,0.1) (0.1,0.8,0.1) 

 
Table 1 - IFS-Based Representation of Environmental Conditions Observed Across Selected Villages  
Based on survey data, Table 1 lists each type of corrosion along with its causes using Temporal Intuitionistic 
Fuzzy Set (TIFS) values. The causes 𝐴𝑖 in Table 1 are characterized by three values: membership, non-
membership, and uncertainty boundary. Pro control measures, we assume that the survey outcome be 
gathered from the village and analyze; the findings are displayed as obtained results in table 1. 

C Farming Grazing Rude Plan Water Flow 
Reduced 
Plants 

Wind 
Corrosion 

(0.6,0.2,0.2) (0.4,0.4,0.2) (0.2,0.7,0.1) (0.5,0.3,0.3) (0.3,0.5,0.2) 

Tunnel 
Corrosion 

(0.3,0.5,0.2) (0.6,0.2,0.2) (0.5,0.3,0.2) (0.4,0.5,0.1) (0.7,0.1,0.2) 

Gully 
Corrosion 

(0.2,0.6,0.2) (0.3,0.3,0.4) (0.7,0.1,0.2) (0.3,0.6,0.1) (0.3,0.5,0.2) 

Water 
Corrosion 

(0.4,0.4,0.2) (0.4,0.2,0.4) (0.1,0.6,0.3) (0.5,0.4,0.1) (0.4,0.5,0.1) 

 
Table 2. IFS-Based Representation of Environmental Conditions Observed Across Selected Villages 
Utilizing the previously mentioned normalized Hamming distance of FS (only for membership values), we 
calculated the distance (normalized hamming) among every village in the (Table-2) and each one of corrosion 
type in first table concerning every cause, resulting in the following tables presented below. 

𝑑𝑛𝐻𝐹𝑆(𝐶, 𝐴) 
Wind 
Corrosion 

Tunnel 
Corrosion 

Gully 
Corrosion 

Water 
Corrosion 

𝐷1 0.08 0.11 0.18 0.1 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 6, 2025 
https://theaspd.com/index.php  
 

1148 
 

𝐷2 0.19 0.08 0.13 0.17 
𝐷3 0.06 0.13 0.1 0.06 
𝐷4 0.18 0.17 0.06 0.18 

Table 3 Normalized Hamming Distances Between Villages and Corrosion Types Using Membership 
Values (FS-Based)  
 

 
Figure 2 Membership degree for Corrosion Types across villages 
According to the table 3, the village 𝐷1 needs to be manage for wind corrosion, the town 𝐷2 should focus on 
tunnel corrosion management, the town 𝐷3 is concentrate wind as well as water corrosions, and town 𝐷4 
must manage gully corrosions (Fig. 2). There is an uncertain situation in village 𝐷3 because, there is an 
uncertain situation to predict the problem that is wind and water corrosions are same values; therefore, we 
move to temporal Intuitionistic fuzzy sets concepts. 

𝑑𝑛𝐻𝑇𝐼𝐹𝑆(𝐶, 𝐴) 
Wind 
Corrosion 

Tunnel 
Corrosion 

Gully 
Corrosion 

Water 
Corrosion 

𝐷1 0.19 0.26 0.38 0.22 
𝐷2 0.41 0.2 0.3 0.36 
𝐷3 0.13 0.28 0.26 0.2 
𝐷4 0.43 0.38 0.2 0.42 

Table 4. Decision Outcomes for Corrosion Management Based on Minimum Distance Analysis Using 
TIFS 
 
RESULTS AND DISCUSSIONS 
This study assesses the application of TIFS to classify the villages based on largely affected by its corrosion 
type and causative factors. We systematically determined which kind of corrosion demands immediate 
attention by estimating the hamming distance between corrosion causes and corrosion condition observed in 
four village.  
Comparison of Hamming Distances  
We used normalized Hamming distance on FS, accounting only membership values. Table 3 demonstrates 
the computed distances, where lower values indicate a stronger association between a village and a specific 
type of corrosion. Based on these results, village D1 exhibited the highest proximity to wind corrosion, D2 to 
tunnel corrosion, D3 to both wind and water corrosion (with equal distance values), and D4 to gully 
corrosion. However, D3 showed identical distance values for wind and water corrosion, making it difficult to 
determine the dominant corrosion type. To address this limitation, we extended the analysis using TIFSs, 
which incorporate both membership and non-membership values along with time-dependent factors (Fig. 3). 
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Table 4 presents the revised hamming distances computed using Temporal IFSs. This approach provided 
more precise results, resolving the ambiguity in village D3. The refined outcomes confirmed that D1 remains 
most affected by wind corrosion, D2 by tunnel corrosion, D3 by wind corrosion (resolving previous 
uncertainty), and D4 by gully corrosion. 

 
Figure 3. Normalized Hamming Distances Between Villages and Corrosion 
Effectiveness of TIFS-Based Analysis 
The comparison between the FS-based and TIFS-based distance measures demonstrates that TIFSs offer more 
reliable decision-making support in ecological assessments. Unlike standard fuzzy set methods focusing only 
membership values, TIFSs uses both non-membership and hesitation degrees to achieve comprehensive risk 
assessment. This distinction is particularly significant in real-world environmental management, where 
corrosion effects fluctuate over time and require dynamic assessment models. Additionally, our results 
confirm that the proposed TIFS-based framework improves decision-making by providing a structured 
methodology to assess the severity of corrosion issues in different villages. This approach enhances predictive 
accuracy with targeted ecological interventions using temporal and intuitionistic fuzzy sets. 
Implications for Ecological Management 
The findings suggest that local authorities should prioritize mitigation efforts based on the identified 
corrosion risks (Figure 4). For instance, village D1 requires immediate measures to address wind corrosion, 
such as afforestation and soil stabilization. Similarly, village D2 must implement erosion control strategies for 
tunnel corrosion, while D4 should focus on preventing gully formation through better land management. 
The case of D3 highlights the advantage of TIFS-based methods in resolving decision-making uncertainties 
that arise in conventional fuzzy set approaches. 

 
Figure 4 Relationship Between Villages and Corrosion Types Based on TIFS-Driven Environmental 
Analysis  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 6, 2025 
https://theaspd.com/index.php  
 

1150 
 

5. CONCLUSION AND FUTURE WORK 
This study demonstrates that Temporal Intuitionistic Fuzzy Sets provide accurate and reliable approach for 
identifying and managing corrosion risks in villages. TIFSs improve decision-making in uncertain 
environments using membership and non-membership values with hesitation degrees. Our results confirm 
that TIFSs outperform traditional fuzzy set methods by resolving ambiguities and capturing dynamic changes 
in ecological conditions. This method enables local authorities to prioritize mitigation efforts effectively. 
Future research will extend this approach to larger datasets and explore additional distance measures to 
further refine corrosion risk assessments. 
Future research will focus on several key areas to enhance the applicability and accuracy of this approach. 
First, we plan to extend this model to larger datasets, incorporating additional villages and a broader range of 
corrosion types to improve generalizability. Second, we will explore alternative distance measures, such as the 
Euclidean and Hausdorff distances, to compare their effectiveness against the normalized Hamming distance 
used in this study. Third, integrating machine learning techniques with TIFSs could enhance predictive 
capabilities, enabling automated decision-making for ecological management. We will apply this framework 
to real-time environmental monitoring systems will allow for dynamic updates in risk assessment, making it 
more responsive to changing ecological conditions. Finally, future studies will explore the applicability of 
TIFSs in other domains, such as climate change analysis, resource allocation, and sustainable land 
management. These advancements will further establish TIFSs as a powerful decision-making tool for 
complex environmental and industrial challenge 
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