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ABSTRACT 
The groundwater contamination especially in the semi-arid region is a significant threat to public health, ecological 
balance and sustainable agriculture. Current groundwater vulnerability assessments are usually not temporally 
sensitive and do not represent complex spatial interactions in different regions and years. The goal of this work is to 
build an advanced, explainable and data driven framework to predict amount of groundwater contamination risk 
using geohydrological parameters, chemical water quality characteristics and temporal variations. Unlike conventional 
models, a hybrid framework composed of Fuzzy-DRASTIC model for uncertainty aware vulnerability indexing and 
Spatio-Temporal Graph Attention Network (ST-GAT) for intelligent risk classification is introduced in this research. 
Domain based fuzzification and spatial and temporal attention mechanisms are used in the approach to capture the 
real-world aquifer dynamic more accurately. Preprocessing of the groundwater quality datasets (2018–2020) by means 
of normalization and spatial-temporal merging are presented, and the methodology starts from there. Fuzzified 
geohydrological parameters are used in constructing a Fuzzy DRASTIC Vulnerability Index (FVI). Finally, the final 
graph structured input that combines chemical attributes, FVI and spatial temporal edges is integrated. This leads to 
an application of a ST-GAT architecture to model interactions between space and time, and to predict contamination 
risk categories (Safe, Marginal, Unsafe). Compared to traditional models the proposed Fuzzy-DRASTIC + ST-GAT 
model has overall accuracy of 98.5%. The model also achieved an excellent separation of the classes as shown by high 
AUC-ROC score of 0.961. A spatial risk map of high resolution was generated for targeting in high-risk areas. This 
research provides a high performance, interpretable, and scalable risk prediction solution for groundwater 
contamination, together in an integrated framework. It allows for proactive water resource management through 
spatio-temporal deep learning and fuzzy logic combination that enables policy level decision making and sustainable 
development planning. 
Keywords: Groundwater Contamination, Fuzzy-DRASTIC Model, Spatio-Temporal Graph Attention Network 
(ST-GAT), Vulnerability Index, Risk Prediction 
 
1. INTRODUCTION 
Groundwater is a vital natural resource that facilitates ecological balance, economic trade, as well as 
human survival in most parts of the world [1]. In particular, it is a reliable, sustainable source of fresh 
water in the areas where rivers and lakes are either unavailable or only seasonally available [2]. Irrigation, 
potable water to rural and urban populations, ground water support industrial operations [3]. It is a 
mainstay of water security and food sovereignty in many developing countries including India where it 
contributes more than 60% of irrigated agriculture to up to 85% of rural drinking water supply [4] [5]. 
Over time, the human activities have gone unchecked resulting in over extraction and poor quality of 
groundwater leading to dependency. Groundwater is increasingly contaminated because of widespread 
discharges of untreated or poorly treated waste into the subsurface being caused by rapid urbanization, 
industrialization, and intensified agricultural practices [6]. They are hazardous substances, such as heavy 
metals, nitrates, arsenic, fluoride, and pathogens which have a serious health risk and degrade the usability 
of aquifers [7]. Additionally, contamination of groundwater systems tends to occur underground, a 
subsurface condition, making early detection costly and remediation so expensive [8]. Environmental 
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planners and policymakers face a pressing concern over effective groundwater quality management 
because these challenges are compounded by climate variability, landuse changes, and increased pressure 
on groundwater recharge zones [9]. The increasing know-how of groundwater systems and the limitations 
of traditional techniques have made modeling dynamic, intelligent, and spatially adaptive an urgent task 
[10]. Contemporary environmental problems require that tools are adaptable to uncertainties, 
variabilities, and large amounts of multi-source data instead of just being based on static assessments 
requiring [11]. Integration of fuzzy logic provides a more appropriate representation of ambiguous or 
imprecise environmental variables, which helps in estimating groundwater vulnerability in a more realistic 
way [12]. Further advances in artificial intelligence (AI) and machine learning (ML) provide powerful 
means for data-driven risk prediction, thereby allowing the system to learn from historical data patterns 
and project future contamination threats more accurately [13]. 
In particular, this work focuses on utilizing sophisticated machine learning methods for predicting 
groundwater contamination risks when the field lacks historical data or exhibits large spatial and temporal 
variability. The study introduces a robust framework that integrates the traditional vulnerability 
assessments with the modern data driven models and combines them into composite model which is 
more accurate and reliable from the risk prediction of groundwater contamination. The monitoring of 
the quality of groundwater, both in real time and with precision, is a critical element of environmental 
protection, resource management and public health, and this study adds primarily to this need. This 
research makes its contribution by its multi-spatial disciplinary approach that combines geospatial 
analysis, fuzzy logic and deep learning to address complex environmental challenges. Methodological 
features permit the combination of chemical parameters, land use data, soil types and hydrogeological 
features, which make it highly relevant for places where the land use and groundwater recharge patterns 
are changing. To address this gap, it is further added that the temporal aspect of the model also allows 
for contamination risk predictions over time, an integral feature for policymakers to predict and plan 
interventions to protect vulnerable water sources from contamination. The main key contribution of the 
study was outlined below: 
• This study integrates traditional groundwater vulnerability models (such as DRASTIC) with advanced 

machine learning techniques (ST-GAT) in order to improve their prediction accuracy for contamination 
risks on both spatial and temporal scales. 

• The study introduces an even more nuanced understanding of possible exposures to groundwater by 
applying fuzzy logic to traditional DRASTIC parameters so as to develop a Fuzzy-DRASTIC 
Vulnerability Index (FVI) for a better consideration of uncertainty and changes that occur in 
environmental conditions. 

• This leads the model to make Spatio-Temporal Graph Attention Networks capture dynamic changes in 
groundwater quality over time due to seasonal variations, land-use changes, and hydrological conditions. 

• Thus, research results endorse promotion of sustainable groundwater management practices while also 
yielding in-depth categories of risk with some action-oriented narrow guidelines defining both the short-
term inferences and long-term policy planning. 

 
2. LITERATURE REVIEW 
Groundwater remains vulnerable to contamination due to anthropogenic interference, posing a 
permanent threat to the sustainability of groundwater resources. Physically based (PB) models are used 
primarily for groundwater risk assessments but their application becomes computationally impossible 
when large space and high resolution are required. Machine learning (ML) models have become an 
internationally accepted alternative to PB models in light of big data. For widespread applicability, an 
adequate quantity of observations is required for training the ML model, which is very rarely available, 
especially in rare events like episodic groundwater contamination. This study, [14] addresses the 
drawbacks of PB and ML models in estimating groundwater well vulnerability to contamination resulting 
from unconventional oil and gas development (UD) by way of metamodeling, an application hybridizing 
both model types. The method is demonstrated in northeastern Pennsylvania, where intensive natural 
gas production from the Marcellus Shale coincides with local communities' dependence on shallow 
aquifers. Training of the metamodels was done through classifying vulnerability with respect to those 
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easily computable predictors in a GIS environment. The metamodels were found to be very accurate, with 
an average out-of-bag error in classification of less than 5%. The most important predictors for accurate 
metamodel predictions integrated several considerations such as topography, hydrology, and distance 
from contaminant sources with features such as inverse distance to the nearest upgradient UD source. 
Maps of predicted vulnerability with violation reports and historical groundwater quality provided further 
insights into the prevalence of UD contamination in 94 household wells sampled in 2018. While less 
than 10% of the wells displayed chemical signatures consistent with UD-produced wastewaters, more 
than 60% were predicted to be located in vulnerable areas. This indicates an increasing likelihood of 
future contamination events if sufficient protection against contaminant releases is not ensured. These 
findings underpin the assertion that hybrid physics-informed machine learning models form a solid and 
highly scalable basis for assessing groundwater contamination threats. Limitations of this study included 
reliance on rare contamination incidents and a small sample size of wells that might not fully encompass 
the spatial and temporal variability of groundwater contamination events. 
Groundwater pollution, as an issue with remarkable global significance, poses threats to water supplies 
and ecosystem health. Groundwater vulnerability assessment is imperative for the protection of the 
human populations and environment. This study, [15] elucidates the adaptation of the traditional 
DRASTIC method for mapping groundwater vulnerability using a machine learning approach. Such an 
adaptation entails integrating several tree-based machine learning algorithms with the framework of the 
model to optimize parameter weights of the DRASTIC model. The adaptation addresses the two most 
critical limitations which already exist in the literature. First, it makes available to practitioners an 
evidence-driven counter to the static, aprioristic nature of the original DRASTIC method that fixed 
ratings and coefficients provided. Second, with machine learning, the approach uses spatial distribution 
of groundwater contaminants as an avenue to improve the accuracy of the spatial outcomes. Though the 
machine learning-based approach does not give super great performances according to standard machine 
learning metrics, it outperformed the traditional DRASTIC model by mapping vulnerability against the 
field data of actual nitrate concentrations. It is noted that the supervised classification method produced 
a vulnerability map for which almost 45% of the highly concentrated areas in nitrate content were 
predicted as highly vulnerable. In comparison, only about 6% of such areas were indicated as highly 
vulnerable in the original DRASTIC map. The main difference between the two methodologies is that 
sufficient nitrate data was available to train the machine learning models. It will be concluded from this 
study that artificial intelligence will give more reliable results with enough data for training, but it cannot 
dispense with its share of troubles in regards to data quality as well as in the structural nature of the 
machine learning model itself. 
In response to the commissioning of Rooppur Nuclear Power Plant (RNPP) in Ishwardi, Bangladesh, in 
2024, increased attention has been raised regarding environmental monitoring, especially concerning 
water resources management in the areas nearby. However, it is noteworthy that a considerable gap has 
existed in the literature and environmental datasets pertaining to the initial years of construction for the 
plant, as not much research was carried out during the initial phase. In this background, [16] the present 
study was carried out to assess contamination of ground water with potential toxic elements (PTEs) along 
with health risks for the residents residing close to RNPP from 2014 to 2015. Groundwater samples were 
collected seasonally during both the dry and wet seasons from nine sampling points. The samples were 
analyzed for various water quality indicators, including temperature, pH, electrical conductivity, total 
dissolved solids, total hardness, and PTE concentrations: iron (Fe), manganese (Mn), copper (Cu), lead 
(Pb), chromium (Cr), cadmium (Cd), and arsenic (As). For assessment, the study adopted the all-new Root 
Mean Square Water Quality Index (RMS-WQI) with respect to evaluating groundwater PTE 
contamination levels and then relied on the human health risk assessment model to appreciate the level 
of human toxicity risks ensuing from exposure to the said elements. The results indicated that there 
existed a much general tendency for increased concentrations of potential toxic elements (PTEs) during 
the wet season when compared to the dry season. The concentrations of Fe, Mn, Cd, and As were beyond 
the threshold limits provided in the drinking water guidelines. In typical RMS-WQI classification, 
groundwater rated "Fair" in terms of PTE contamination. The non-carcinogenic risk, assessed by the 
Hazard Index, displayed that nearly about 44% of total samples for adults and 89% for dry seasons while 
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67% of children and 100% of children respectively for the wet season exceeds the threshold limit of 
USEPA (HI > 1). The cumulative HI was found to be greater for children compared to adults throughout 
the study period.  On the grounds of carcinogenic risk (CR), these were Cr > As > Cd. Even if the data 
being used in this study are from 2014-2015, it offers a reference point to future monitoring while 
mitigating most potential hazardous impacts induced from RNPP. The biggest limitation of this research 
is that it relies on past data, which may not even represent current conditions of the environment. 
This research [17] delves deeply into the multifaceted dynamics of groundwater vulnerability and 
examines the usually neglected aspects in predicting groundwater vulnerability vis-à-vis the topography, 
meteorology, socio-economic conditions, land-use, and geology in Bangladesh, which has created a 
scenario of water stress. The advanced Random Forest (RF) modeling technique conjures insight into a 
study of the sampled points concentrated strategically at 200 points along the transect for findings in the 
identification of the extent of significant vulnerability. A considerable part of the land area, about 21% 
of the area, found at risk consists of important regions such as Rajshahi, Nawabganj, Naogaon, and 
Dhaka, while regions like Rangpur, Mymensingh, and Barisal comprise an area of 31% with lesser levels 
of vulnerability. Topographic attributes, specifically aspect, drainage density, and slope, explain 45% of 
the entire vulnerability and thus are of utmost importance. Population density and industrial pursuits are 
responsible for 22% of the vulnerability caused by socio-economic factors. The RF model shows a 
significant score of accuracy above 90%, proving that groundwater dynamics are indeed complicated. The 
studies have thrown light on such aspects that create a sustainable ground water management strategy by 
integrating geological, social, and economic factors. While generating a scientific ground for extremely 
reliable groundwater vulnerability map generation, it introduces a completely new approach where the 
often-neglected variables are used for the model-building process through machine learning. These 
findings should help policymakers and urban planners formulate precise and sustainable groundwater 
management strategies for a resilient water supply for the increasingly populated Bangladesh. The study 
has certain limitations, such as the temporal scope of the data because it captures vulnerability for a 
specific period and lack of real-time data, which limits covering immediate changes, even if it contributes 
widely to the scientific community. The benefits to science from this study are highly significant. 
Nitrate contamination investigation of groundwater was conducted using an integrated scheme for 
groundwater characterization, risk analysis, and a tiered evaluation method for land and surface runoff 
contaminations. This approach  [18] was particularly on soil chemicals with leachants of contaminants 
into groundwater in the Upper White River Watershed (UWRW) in Indiana. An integrated vulnerability 
assessment of aquifers was formulated by combining the distributed watershed model (Soil and Water 
Assessment Tool-SWAT) with machine learning technique, named as Geospatial-Artificial Neural 
Network (Geo-ANN). Based on models performance metrics, the outcome indicates that integrated 
assessment approaches were very effective since performance metrics for models as shown in bracket read 
as (NSE/R2/PBIAS=0.66/0.70/0.07). These suggest that indeed the assessed integrated aquifer 
vulnerability assessment technique can estimate aquifer vulnerability as shown in this study. In addition, 
this is a good efficient guide that forms better management decisions of groundwater resources for 
policymakers and researchers that are involved in groundwater studies. The research notes however some 
limitations: possible biasness in model prediction from lack of high-resolution data and unexplained 
uncertainties in parameter calibrations. Such issues may affect the vulnerability assessment accuracies. 
Findings of aquifers are fundamental to the protection and management of groundwater resources for 
contamination. In the present study,  [19] artificial intelligence methods and computational optimization 
algorithms were applied in a way that supports the groundwater contamination vulnerability assessment. 
Conventional methods such as DRASTIC and its modified indices (ODM) show certain limitations 
mainly concerning subjectivity-related questions and impreciseness in evaluating nitrate pollution 
vulnerability of aquifers. To minimize these drawbacks, enhance the drought susceptibility assessment for 
contaminants' capability, and give an account of the relevant field information, a two-stage approach was 
carried out. The first stage is perhaps the more novel one, which optimizes the weight of the DRASTIC 
parameters using Particle Swarm Optimization and Differential Evolution algorithms, thereby yielding 
two new Vulnerability Indexes based upon the original DRASTIC model formula, ODVI-PSO, and 
ODVI-DE. The second strategy implemented a Deep Learning Neural Network with respect to both 
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indices from Strategy-1 as input data. When validated against nitrate contamination levels, the 
vulnerability index from Strategy-2 based on DLNN algorithm outperformed all other models. In 
conclusion, the findings demonstrated that the DLNN model under strategy-2 could take advantage of 
the additional information from the ODVI-PSO and ODVI-DE indices; thus, improving the modeling of 
aquifer contamination vulnerability. Strategy-2 was thus concluded to have been the best in determining 
aquifer vulnerability in the study area, especially in the regions where nitrate concentrations were higher 
than the permissible limits namely mainly in the southern and central part of the area. 
The literature review points out that groundwater contamination from anthropogenic activities has 
emerged as a dire challenge, and conventional modeling techniques are severely limited in their 
applications for vulnerability indices. Although PB models rely on hydrological processes as their 
foundation, they can be computationally intensive and thus less suitable for large-scale applications 
characterized by heightened spatial resolutions. Conversely, ML techniques can effectively map spatial 
flexibility of a bigger domain; however, they fall short in terms of data availability, particularly for rare 
contamination occurrences. Hybrid approaches have shown more significant accuracy and practical 
applications in vulnerability assessments, such as metamodeling in PB and ML methods, as seen in studies 
in the Marcellus Shale region, where metamodels achieved high classification accuracy and revealed latent 
contamination risks, despite insignificant observable violations.  The AI-informed modifications of the 
DRASTIC model, most notably through tree-based algorithms such as Random Forest and XGBoost, 
provide an advancement beyond traditional aprioristic weighting of parameters. The advantage of data-
driven weighting is emphasized in these modeling results, which provide a spatial representation closer to 
actual contaminant distributions, especially for nitrate. In contrast, the ML model's reliability is 
contingent on the quantum and quality of available data. The application of advanced AI techniques 
such as Deep Learning Neural Networks (DLNN) and optimization algorithms such as PSO and DE 
further fine-tuned vulnerability mapping to achieve superior predictive performance, especially if 
hybridized with conventional indices. Studies on specific regions like Bangladesh and the Upper White 
River Watershed in the United States exemplify the necessity of including diverse, localized variables into 
ML models—topography, land use, socio-economic data, meteorological input—thus achieving high 
predictive accuracy and making substantive recommendations for resource management, despite 
challenges such as temporal data gaps, outdated datasets, and calibration uncertainties. In totality, the 
literature justifies the integration of AI into groundwater vulnerability frameworks, advocating for hybrid, 
data-adaptive, and spatially justified approaches to managing groundwater sustainably against increasing 
environmental pressure. 
 
3. Research Gap 
Several critical gaps in groundwater contamination modeling are addressed in this study. Traditionally 
DRASTIC, and other risk assessment models often do not include temporal variability and/or spatial 
heterogeneity to reliably model risk [20]. This research uses Fuzzy-DRASTIC model to create a dynamical, 
time aware, and spatially conscious framework for analyzing groundwater contamination risks by 
integrating it with Spatio-temporal Graph Attention Networks (ST-GAT). In addition, it also overcomes 
the restrictions of static data of conventional models in which they do not consider seasonal variations 
and hydrological fluctuations. Moreover, fuzzy logic is used to deal with uncertainty of environmental 
data and has a more flexible and understandable prediction of groundwater vulnerability. ST-GAT is 
further used to improve spatial attention, realize local variability, and complex relationships between land 
use, soil type, and contamination sources. Additionally, real time prediction abilities are integrated in this 
study for the purpose of actionable groundwater management. It thereby closes the gap between 
‘traditional’ and 21st century data driven models by facilitating a more accurate and applicable approach 
for the prediction of groundwater risk. 
 
4. MATERIALS AND METHODS 
4.1 Study Area Description 
The data for this study was collected from the Telangana Open Data Portal which has detailed post 
monsoon groundwater quality reports of diverse districts of Telangana State, India for the years 2018, 
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2019 and 2020. The data set is made up of the many water sample test results from the various rural and 
semi urban villages with the information gathered at the district, mandal and village levels. Spatial 
identifiers (latitude and longitude) are part of each record so it can be easily spatial modelled with GIS 
for vulnerability assessment purposes. It features 26 key attributes extracted per sample compromising on 
many chemical parameters including Calcium (Ca²⁺), Magnesium (Mg²⁺), Carbonates (CO₃²⁻), 
Bicarbonates (HCO₃⁻), Total Dissolved Solids (TDS), Residual Sodium Carbonate (RSC), Sodium 
Adsorption Ratio (SAR), Total Hardness, etc. These result features are essential for the judgement of 
groundwater usability for irrigation, livestock, and drinking and are vital components of making the Fuzzy-
DRASTIC model for groundwater vulnerability. There are also two classification labels provided in the 
datasets — Classification and Classification1 — for classifying groundwater according to salinity and 
sodium hazard levels on classes such as C1S1 (low salinity/sodium with suitable suitability for all crops) 
up to C4S4 (very high salinity/sodium generally unsuitable for irrigation). The RSC index is additionally 
used to provide the impact of carbonates on soil permeability and at the TDS thresholds, the water safety 
for livestock and poultry is also evaluated. This comprehensive dataset enables integration of the two types 
of modeling: qualitative (fuzzy logic) and quantitative (AI based) to assess dynamic groundwater 
contamination risk over space and time [21]. 
 

 
Figure 1: Location map of the study area (Telangana) India [22]. 

 
4.1.1 Data Cleaning 
The raw groundwater quality data contained in the three datasets for the years 2018, 2019, and 2020 
contain 26 attributes representing various physicochemical parameters of groundwater samples collected 
across districts of Telangana, India. Mainly includes chemical indicators such as Calcium (Ca), 
Magnesium (Mg), Carbonates (CO₃), Bicarbonates (HCO₃), Total hardness, Total Dissolved Solids (TDS), 
Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), and two classification labels. A 
systematic cleaning operation must be applied to ensure the reliability and quality of input data used for 
modeling and vulnerability assessment. The first step will deal with any missing values by detecting null 
entries via the isnull() or NaN checks. Records with missing values in important columns including TDS, 
SAR, Ca, and Mg, which are important for labeling contamination risks, will be deleted. For non-
important fields such as names of villages or classification sub-labels, the missing values will be filled using 
forward-fill, backward-fill, or median imputation strategies, provided that the missingness is low and not 
structurally important. Secondly, anomaly detection using the Interquartile Range (IQR) method is 
performed to identify and remove outliers through visualizing each chemical parameter's distribution. 
Any TDS value above 10,000 mg/L is suspect and reviewed for potential data entry error or 
contamination level, along with values of pH which might be recorded to be less than 4 or more than 10, 
revealing instrument errors or anomalies. Biological or environmental extremes naturally attract domain 
capping to minimize influence on downstream modeling. 
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When correcting for datatypes, all chemical concentration fields (such as Ca, Mg, CO₃, HCO₃, RSC, and 
SAR) were confirmed to be appropriately stored as floating-point numbers. The geographic coordinates 
(Latitude and Longitude) would also be cast as floats with appropriate precisions. Furthermore, categorical 
columns such as District, Mandal, and Classification will be cleaned from leading and trailing white 
spaces and corrected for inconsistencies in label format. Ultimately, unit standardization will be enforced 
for keeping consistency among all datasets. The validity of all chemical concentrations is checked, and if 
found necessary, conversion to a standardized unit is done, such as mg/L or meq/L depending on the 
parameter and its relevance to the RSC formula or classification of water quality. The concentrations of 
contributing ions for RSC calculations (CO₃²⁻, HCO₃⁻, Ca²⁺, Mg²⁺) will be standardized in meq/L using 
molecular weights and valency to facilitate proper calculation. Such extensive cleaning procedures 
represent a fundamental element for accurate feature extraction, spatial-temporal merging, and AI 
groundwater contamination risk evaluation. 
4.1.2 Normalization 
Z-score normalization is the technique applied for all continuous variables in the sampling carried out for 
groundwater quality to ensure equality of contribution of all input features to the models and the reduced 
training period for the models to converge. The procedure transforms each feature to a normalized scale 
by subtracting the mean value and dividing by the standard deviation, as expressed here under in 
equation: 

Z =
X − μ

σ
 

where X is the individual feature value, μ is the mean, and σ is the standard deviation of the feature. This 
transformation is to transform different normalized features to mean 0 and standard deviation 1. As these 
chemical parameters — Total Dissolved Solids (TDS), Sodium Adsorption Ratio (SAR), Residual Sodium 
Carbonate (RSC), Total Hardness, and ion concentrations such as Calcium (Ca), Magnesium (Mg), 
Carbonates (CO₃), and Bicarbonates (HCO₃), follow a wide range of units and ranges, it is particularly 
suitable for this dataset to use the type of normalization called Z Score. For example, TDS values tend to 
span much of the range for other parameters, and if not normalized, may tend to unduly affect the 
training of the model. After applying z_score normalization to these important features, the dataset is 
standardized for the benefit of AI algorithms, especially linear classifiers such as distance classifiers and 
gradient based optimizers. This step is of great importance in this step for robust, unbiased contamination 
risk prediction and accuracy in downstream modeling stages. 
 
4.1.3 Spatial-Temporal Merging 
All the quality data of groundwater for the future ST-GAT modeling requires data to have the spatial as 
well as the temporal dimensions structured in a machine-readable format. It starts by merging the three 
yearly datasets-2018, 2019, and 2020-into a new dataset with an attribute representing the year when each 
record was made.It resolves column mismatch across the datasets such that all features correctly align 
before merging. Next, every record is assigned some temporal identifier, which could either be a string 
that records the district and the year (e.g., "Hyderabad_2019") or a straightforward index for the time line 
(e.g., 0 for 2018, 1 for 2019, and 2 for 2020). With this temporal tagging, the model will be able to make 
clear traces in year-to-year variations, thereby establishing the time line for graph learning that the time 
series need. 
The coordinates of the sampling site are given in spatial terms based on the latitude and longitude values. 
Usually, they are rounded to a predetermined number of decimal places (often 3) to avoid such noise, 
and group together from samples obtained from such neighbor locations. A unique spatial ID for every 
location is generated based on its district, mandal, and village information. This ID is useful for generating 
the spatial adjacency matrix that defines the connection between neighboring sites in the spatial graph. 
The structure of the final dataset consists of the following components: temporal attributes (year, post-
monsoon season), spatial data (latitude, longitude, spatial ID), a normalized set of chemical parameters 
(TDS, SAR, RSC, Ca, Mg, CO₃, HCO₃, and total hardness), and labels indicating irrigation suitability 
(Classification1), safety classes based on RSC, and water usability classes for livestock based on TDS. This 
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well-structured spatiotemporal dataset forms the basis for further deployment of AI-based models like ST-
GAT for the dynamic prediction of groundwater vulnerability and contamination risk in space and time. 
 
4.2 System Architecture 
The proposed methodology of integrating hydrogeological model and developing powerful AI techniques 
for the purpose of groundwater contamination risk prediction is proposed. The Fuzzy-DRASTIC model 
is initially used to evaluate vulnerability of aquifers by means of fuzzy membership functions of the Fuzzy 
DRASTIC parameters (e.g., depth to water, net recharge, soil media, hydraulic conductivity). The first are 
then aggregated using fuzzy inference rules to yielding Fuzzy Vulnerability Index (FVI). Also, the 
groundwater quality indicators such as TDS, SAR and RSC are classified into contamination risk levels. 
It is structured as a graph where the spatial and temporal components of the data are structured across 
the nodes, each representing a geographic unit (village or grid cell) and the edges specify spatial proximity 
and temporal continuity across years. It is provided with a Spatio-Temporal Graph Attention Network 
(ST-GAT), which employs graph attention (spatial heterogeneity) and temporal attention (time dependent 
pattern) layers to represent spatial heterogeneity and to learn time dependent contamination patterns. 
Based on Python implementation, the model shows high accuracy in the outputs, and it provides a robust, 
interpretable and dynamic framework for the real-world groundwater management and policy making. 
 

 
Figure 2: Workflow of the Proposed Approach 

 
4.2.1DRASTIC Model Overview 
The DRASTIC model is an established methodology developed by the United States Environmental 
Protection Agency to assess groundwater vulnerability against contamination. It takes into consideration 
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hydrogeological and environmental parameters to obtain a vulnerability index for a particular region. 
Each letter in DRASTIC stands for one of seven used parameters in the model, each of them being 
assigned a weight and a rating based on the importance for susceptibility to pollution. This might stand 
to reason since in the context of Telangana groundwater quality data set (2018-2020) the actual direct 
measurement DRASTIC parameters may not be entirely complete, but the model favors proxies, 
additional datasets, and derived values. As below is an explanation for each parameter and the 
methodology of mapping or how it can be developed from the dataset or through the integration of other 
external geospatial and hydrological datasets: 
 
• Depth to Water (D) 
It is a vertical distance from the land surface to the groundwater table, which is a fundamental indicator 
of groundwater vulnerability. Shallow water tables allow contaminants to easily pollute the aquifer and 
increase the risk of pollution. The Telangana groundwater dataset (2018-2020) does not provide direct 
water table depth measurements, but this parameter can be supplemented using regional data from either 
the Central Ground Water Board (CGWB) or satellite-derived water level models. Using the spatial 
coordinates supplied (latitude and longitude), points at assessment sites will have interpolated depth 
values that will yield approximate vulnerability ratings for that specific site. The generally low depth to 
groundwater will yield a high score in the DRASTIC index, which indicates increased susceptibility to 
surface-based contamination. 
 
Net Recharge (R) 
The net recharge represents the volume of water that moves down into the ground and serves to replenish 
the aquifer system. Indeed, recharge plays a dual role in that while it is an essential factor for aquifer 
sustainability, excessive recharge may speed up the movement of pollutants due to percolation. Although 
recharge values do not form a part of the groundwater dataset, these can be computed from annual rainfall 
data provided by the Indian Meteorological Department (IMD) and soil infiltration rates based on land 
use. These remote sensing data taking into account such satellite systems as NASA's GPM or TRMM 
would also help with regional recharge estimations. The higher recharge areas, especially in the post 
monsoon seasons taken into account in the dataset, may be having higher vulnerability scores because 
the pollutants travel with a higher potential through infiltration. 
 
Aquifer Media (A) 
Aquifer media are the geological formations, such as gravel, sandstone, or basalt, which store and transmit 
groundwater. Permeability and porosity influence the flow rates of contaminants through these materials 
directly. While this information cannot be obtained from the groundwater quality dataset, aquifer media 
characteristics may be gleaned from Geological Survey of India (GSI) maps. The common aquifer types 
in Telangana are fractured granites and basaltic rocks, with each having different levels of permeability. 
This parameter will have to be integrated into the model by assigning vulnerability scores based on the 
capacity of different materials to allow pollutant migration, and therefore sand and gravel-typified coarse-
textured media would attract higher ratings compared to other media such as loam or clay. 
 
Soil Media (S) 
Soil mediums are the vertically above weathered zone, which accentuates the significance that allows 
filtration and percolation of contaminants into the subsurface. Permeability, in greater extents, adsorbs 
sandy and loamy soils that then encourage pollutants' prompt migration into the subsurface. However, 
information regarding soil types is not available in the primary files meant for groundwater quality; it can 
be preferably integrated from soil village maps or national repositories like the National Bureau of Soil 
Survey and Land Use Planning (NBSS&LUP). The location metadata (district, mandal, village) could 
assist in matching soil types to the sampling points. Fine-textured soils like clay are poorly permeable (low 
vulnerability scores) and coarser soils are rated higher as they allow faster infiltration. 
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Topography (T) 
Topography denotes the inclination and height of land surface. It helps decide if water accretes and 
infiltrates into the ground or quickly runs off to carry pollutants. Water enters the ground more on flat 
terrain, whereas steep slopes favour runoff, thereby diminishing the awareness to recharge groundwater. 
This parameter does not directly appear in the dataset, but can be derived from Digital Elevation Models 
(DEMs), i.e. DEMS derived from either SRTM or ASTER. Using GPS coordinates, slope will be 
calculated for each sample location, and this parameter will then be introduced into the DRASTIC 
model. Flatter terrains will be characterized by greater vulnerability scores for pollution accumulation and 
percolation. 
 
Impact of Vadose Zone (I) 
Vadose zone refers to the area between the surface of the land and the water table. For instance, it acts as 
filter through which the entire surface water passes through and thereupon as inputs to the aquifer. The 
inherent properties of such vadose zone material primarily govern contaminant attenuation. This data 
may be indirectly inferred from the regional geological understanding and borehole logs, same as aquifer 
media. In Telangana, regions with fractured or weathered rock Vedas under looser vadose zones are 
associated with fast contamination transport during monsoonal recharge periods. These ratings are 
assigning for model integration on property permeability-retention characteristics of vadose materials, the 
more permeable areas are hypothesized to be most vulnerable. 
 
Hydraulic Conductivity (C) 
Hydraulic conductivity indicates how quickly water can move through aquifer materials. A high 
conductivity means that once a contaminant penetrates, it can be removed far from source. This 
parameter is fundamental in understanding susceptibility and spread of contamination. A parameter is 
not recorded in the dataset; however, it could be derived from CGWB wells or assigned from known 
conductivity ranges for specific regional rock types. Creating a high DRASTIC score therefore using high 
conductivity formations like those in sandy aquifers or fractured rocks indirectly represented greater 
vulnerability to contaminant transport. 
The finalization of the DRASTIC model is actually much more exhaustive in the assessment of 
groundwater vulnerability as compared to what the seven hydrogeological parameters normally stipulate. 
Indeed, the data available on the groundwater of Telangana, in that respect, provides the required 
chemical indicators for water quality. However, other spatial, geological, and hydrological inputs would 
be needed to complete the DRASTIC parameters in this case. With the help of GIS tools and government 
datasets, the combination of each of the parameters will have to realize in a quantifiable format first 
which, thus, can produce a spatially explicit vulnerability index that in turn would support proactive 
management of water resources, policy formulation, and the adoption of precision irrigation and 
contamination mitigation measures. These parameters can be spatially mapped, quantified, and 
combined to form a comprehensive vulnerability assessment for irrigation and drinking purposes-the basis 
for eventual integration with AI models such as ST-GAT for dynamic prediction of groundwater risks. 
 
4.2.2. Fuzzy-DRASTIC Vulnerability Index Construction 
The DRASTIC model has traditionally provided the framework within the context of these seven critical 
hydrogeological parameters for groundwater vulnerability assessment, that is, Depth to Water (D), Net 
Recharge (R), Aquifer Media (A), Soil Media (S), Topography (T), Impact of the Vadose Zone (I) and 
Hydraulic Conductivity (C). But environmental systems are inherently uncertain and complex, and crisp 
classifications often fall short. To address this problem the Fuzzy DRASTIC model integrates fuzzy logic 
idea to more realistically, flexibly, and interpretably assess groundwater vulnerability, by incorporating 
uncertainties in parameter measurement and the regional variability. 
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Figure 3: Fuzzy-DRASTIC Moel 

 
Parameter Weighting 
In the Fuzzy-DRASTIC model, the importance of each parameter is first attributed using knowledge in 
the domain and expert judgment. The classical DRASTIC models assign fixed weights such as D = 5, R 
= 4, A = 3, etc., considering their relative influence on groundwater contamination. Assigning fuzzy 
weights is still done according to this as base guidance; however, it can be modified depending on the 
local hydrogeological setting, especially in a state like Telangana where aquifer characteristics and recharge 
patterns are spatially heterogeneous. The weights are used to prioritize the parameters that aggregate their 
effects in the fuzzy inference stage. 
 
Fuzzification of Parameters 
The process of fuzzification deals with transforming exact quantitative values of DRASTIC parameters 
into qualitative linguistic terms such as Low, Medium, or High vulnerability. Each of the parameter is 
associated with a fuzzy membership function, either triangular or trapezoidal or even Gaussian-shaped, 
and defining the degree to which the respective parameter belongs to a certain category. Membership 
functions were built done through historical data, knowledge from experts, and environmental 
benchmarks so as to better capture the gradual transitions between levels of vulnerability. For example: 
• Depth to Water: Shallow depths (e.g., <5m) will have high membership in the "High Vulnerability" 

class, while deeper levels (>20m) will fall under "Low Vulnerability". 
• Net Recharge: Higher recharge rates will have greater membership in "High" due to the increased 

potential for contaminants to percolate. 
• Soil Media: Sandy soils may be classified with high vulnerability membership, while clay-rich soils may 

fall under "Low". 
 
Rule-Based Aggregation 
The next step after fuzzifying each of the seven parameters-Water Depth, Net Recharge, Aquifer Media, 
Soil Media, Topography, Impact of the Vadose Zone, and Hydraulic conductivity-into linguistic categories 
(for instance, Low, Medium & High) is rule-based aggregation. This is a significant operation that 
reinforces the conversion of qualitative expert knowledge into a quantitative index useful in spatial 
decision-making. 
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1. Rule Formulation 
This fuzzy IF-THEN rule-based system simulates expert reasoning and captures relationships among 
different combinations of vulnerability factors. These rules are primarily based on hydrogeological 
knowledge and past studies. A few standard examples are: 
• Rule 1: IF Depth is Low AND Recharge is High AND Soil is Sandy, THEN Vulnerability is High. 
• Rule 2: IF Depth is Moderate AND Soil is Loamy AND Topography is Flat, THEN Vulnerability is 

Moderate. 
• Rule 3: IF Depth is High AND Recharge is Low AND Soil is Clayey, THEN Vulnerability is Low. 
 
Each rule represents an expert interpretation of how combinations of physical factors influence the 
potential for groundwater contamination. 
 
2. Fuzzy Operators (AND, OR, NOT) 
To evaluate these rules, fuzzy logic operators are used: 
• Fuzzy AND (minimum operator): Returns the minimum membership value among the input 

parameters. 
Example: 
o Depth (Low) = 0.8 
o Recharge (High) = 0.6 
o Soil (Sandy) = 0.9→ Fuzzy AND = min(0.8, 0.6, 0.9) = 0.6 
• Fuzzy OR (maximum operator): Returns the maximum value. 
• Fuzzy NOT (negation): Converts a membership value μμμ to 1−μ1 - μ1−μ. 
 
These operations help determine how well a particular spatial unit satisfies each rule. 
 
4. Aggregation of Rules 
Once activated, rules may work together in more than one spatial location, and their outputs now get 
aggregated. The aggregation process entails the union (maximum membership value) of all activated 
vulnerability outputs for each class. The Low vulnerability is the maximum of all Low fuzzy outputs: 0.2 
and 0.1, so here the maximum value is 0.2. The same goes for the Moderate and High vulnerability 
maximum aggregations to determine the fuzzy output: e.g., 0.4 and 0.5 for Moderate, taking the maximum 
gives 0.5; for High, 0.6 and 0.7 maximum is 0.7. Hence, after the aggregation process, a fuzzy vulnerability 
profile is drawn for each spatial unit, summing up the mutual effect of all considered factors. 
 
5. Defuzzification 
Next, defuzzification is implemented to transform the fuzzy output set into a particular crisp value, 
developing particular applications like vulnerability mapping or integration with machine learning. The 
most widely-used method is centroid defuzzification, the method used to find the gravity centre of the 
output membership function. This gives the value of FVI or Fuzzy Vulnerability Index on a continuous 
scale, whereby a value of 0 means the lowest vulnerability and a value of 1, the highest. 
 
6. Spatial Assignment of FVI 
The computed fuzzy vulnerability index (FVI) values were assigned to the mapping units known as villages, 
mandals, or grid cells within the Geographic Information System (GIS) for deriving a fuzzy risk map 
having spatial locations classified into different zones of vulnerability as Low Vulnerability (FVI < 0.3), 
Moderate Vulnerability (0.3 ≤ FVI < 0.6), and High Vulnerability (FVI ≥ 0.6), such a map serves as a 
powerful visualization tool enabling planners and decision-makers to pinpoint groundwater zones at 
various levels of risk along with the confidence level of each zone represented through the FVI score. 
Rule-based aggregation in the Fuzzy-DRASTIC model is a powerful bridge used to cross over from 
numerical data to expert knowledge. The hydrogeological intuition is converted into systematic rules 
capturing complex interactions among multiple fuzzy parameters effects and produces a nuanced 
vulnerability score. Instead of having rigid classification, it respects the uncertainty and gradients typical 
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of environmental systems, thus making it appropriate for groundwater quality and pollution risk 
assessment in highly complex regions like Telangana. 
 
4.3 Label Generation for Risk Prediction 
Contamination Classification: 
Contamination classification consists of assigning the groundwater samples under investigation into 
classes based on chemical characteristics of the water, chiefly determination of status using the existing 
dataset's 'Classification 1' labels. These labels range from C1S1 to C4S4 and give the different qualities 
of water based on concentrations of Na and S. For example, C1S1 refers to low salinity and low sodium 
water, suitable for most kinds of irrigation. C4S4 indicates water with high salinity and high sodium 
levels, which is generally unsuitable for irrigation unless properly managed. RSC values are paramount in 
contamination classification, particularly in the assessment of water suitability for irrigation depending 
on the balance of alkaline ions and earth ions. Using these labels will enable the attribution of a class to 
each sample representing its contamination status and suitability for irrigation, livestock consumption, 
or general consumption.  Moreover, RSC criteria are critical for the classification because any sample 
having an RSC value of greater than 2.5 is considered unsuitable for irrigation due to soil impairment 
such as decreased permeability. RSC values from 1.25 to 2.5 are marginal, while RSC values below 1.25 
are suitable for irrigation. This classification provides a base for the identification of contaminated zones 
from which the dataset strongly points on the identification of which groundwater samples can achieve 
the quality criteria for different uses. 
 
Risk Labeling: 
The process of risk labeling goes beyond mere classification in assigning categories based on TDS, RSC, 
and SAR values. These parameters serve as criteria to assess possible risks to the quality of water in the 
environment. For example: TDS refers to the total concentration of dissolved substances in water, and 
on the basis of TDS, water may be classified as Safe, Marginal, or Unsafe for drinking or irrigation: 
• Safe: TDS less than 1000 mg/L, typically suitable for both human consumption and irrigation. 
• Marginal: TDS between 1000-3000 mg/L, still usable, but may cause some mild health or crop issues. 
• Unsafe: TDS above 3000 mg/L, indicating water is potentially harmful for agricultural or human use. 
 
Besides the TDS, the RSC values are also utilized to classify the risk of water for irrigation purposes. 
Water showing the RSC value more than 2.5 is unsafe for irrigation, while between 1.25 and 2.5 is 
marginal and must be managed precisely for sustainable use. SAR is also important, as it measures sodium 
in relation to calcium and magnesium, and high levels of it indicate that water may be unsuited for crops 
because of the sodium accumulation in the soil. Such supervised learning domains of machine learning 
models also require TDS, RSC, or SAR classifications as dependent variables. Consequently, this will 
help train the model to predict groundwater contamination risk for several regions. The risk, which is 
labeled Safe-Marginal or Unsafe, will be the output variable, aiding modelers to understand how different 
chemical properties affect pollution risk and how to use this information to develop effective strategies 
for managing water quality. These labels also sponsor identification of at-risk areas, as well as areas 
requiring immediate address in groundwater quality improvements. 
 
4.4 Spatio-Temporal Graph Attention Network (ST-GAT) Modeling 
The graph-structured inputs are the main pillars of the ST-GAT model that reflect the spatial and 
temporal dimensions of the groundwater monitoring data. Each node in the graph represents some spatial 
unit, like a village or boa location, or a defined grid cell. The node features comprise normalized chemical 
properties: Total Dissolved Solids, Sodium Adsorption Ratio, and Residual Sodium Carbonate, alongside 
hydrogeological scores based on the DRASTIC model and some contextual features, such as land-use 
patterns, soil classification, etc. The types of edges that the graph will have been: 1. spatial and 2. temporal. 
The spatial edges are based on proximity, using methods like k-nearest neighbor (KNN) or threshold 
distance to connect locations with similar environmental- or geographical-scale features. Temporal edges, 
in contrast, connect the same spatial node across different years, e.g., 2018, 2019, 2020; thus, the model 
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can learn about change over time. Such a rich structure allows ST-GAT to model very complex 
relationships across both spatial and temporal domains. 

 
Figure 4: ST-GAT Model 

 
1. Graph Attention Layers (GAT) – Spatial Component 
The temporal component of the ST-GAT architecture utilizes temporal modules, the spatial one finds its 
representation through Graph Attention Layers (GAT) for portraying the intricacies of spatial interactions 
across several geographical locations. In a graph structure, a node signifies a spatial unit such as a village, 
grid cell, or water sampling location. The basic innovation of GAT is that for each neighboring node, it 
produces dynamically tuned attention weights instead of the same weights for all neighbors. In the real 
environment modeling, regions adjacent to each other can differ dramatically in terms of their geology, 
land use patterns, aquifer properties, and sources of contamination. It thus acts in consideration of these 
significant differences while training the entire model. This model learns which neighbor has more 
relevance by calculating the attention coefficients that determine the extent to which information coming 
from each neighbor effectively contributes towards the final representation of the node. For example, 
imagine two close sites residing adjacent but having an industrial discharge and the other is agricultural; 
once again, the model efficiently prioritizes the former to foretell contamination in groundwater. Thus, 
a spatial attention mechanism permits the model to learn fine-scale and indeed heterogeneous geography 
reflecting local patterns or fine differences in the environment that traditional modeling would hardly 
capture. 
 
2. Temporal Attention Layers – Temporal Component 
To add to the spatial learning, the ST-GAT Architecture includes temporal attention layers, which 
represent a degree of evolution of groundwater quality over time. These layers help the model in learning 
how historical observations would influence the current state of a particular location. While traditional 
time series models assume fixed temporal influence on the data, such as say the previous year's value 
affecting the current year's one with equal importance, an attention mechanism would allow the model 
to dynamically learn the relative importance of each past timestep. This is specifically useful for 
groundwater systems in which it takes time for contamination effects to manifest, such as an application 
of fertilizers in 2018 which could have substantial consequences in terms of groundwater nitrate levels in 
2019 or 2020. Temporal attention thus accounts for time-lagged dependencies, seasonal relevant events 
(e.g., dilution during monsoon or concentration in dry months), as well as cyclic ones. In so doing, it 
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allows the model to develop a comprehensive temporal perspective on the dynamics of groundwater 
contamination and enhances prediction accuracy to be context-sensitive. 
Combining both Graph Attention Layers and Temporal Attention Layers transforms the ST-GAT into a 
spatio-temporal modeling framework in which virtually nothing falls short in accounting for inter-regional 
interactions and time-evolving behaviours such that the real-world complexities of groundwater 
contamination could be modelled more closely. The spatial aspect concerns itself with where 
contamination patterns are modulated based on neighboring conditions, whereas the temporal aspect 
lays emphasis on the when and how that past conditions influence future contamination levels. This dual 
learning mechanism is especially strong for environmental and hydrogeological systems, whose very 
existence is spatial and temporal. It is capable of providing highly and finely tuned predictions along with 
context-sensitive predictions for groundwater vulnerability and contamination risk assessment, which 
itself would serve as a very important input for environmental planners, researchers, and policy-makers. 
 
Algorithm 1: 
Input: 
GW_Quality_Data_2018, GW_Quality_Data_2019, GW_Quality_Data_2020 
DRASTIC_Params (Depth, Recharge, Aquifer, Soil, Topography, Vadose, Conductivity) 
Spatial_Info (Latitude, Longitude) 
Soil_LandUse_Data (optional) 
Output: 
Fuzzy Vulnerability Index (FVI) 
Contamination Risk Labels 
Risk Prediction Map 
Begin: 
Step 1. Data Preprocessing: 
For each year in [2018, 2019, 2020]: 
Load dataset 
Handle missing values: 
If critical value missing → drop row 
Else → apply forward/backward fill or median imputation 
Detect and remove outliers using IQR 
Normalize continuous features using Z-Score 
Assign 'Year' column 
Round coordinates and assign Spatial_ID ← hash(District + Mandal + Village) 
Merge all yearly datasets vertically 
Step 2. Fuzzy-DRASTIC Index Computation: 
For each spatial unit: 
For each DRASTIC parameter: 
Assign rating and weight (based on domain knowledge) 
Fuzzify parameter into (Low, Medium, High) membership 
Apply fuzzy IF-THEN rules: 
e.g., IF Depth is Low AND Recharge is High → Vulnerability is High 
Aggregate rules using fuzzy logic operators (max, min) 
Defuzzify output (Centroid Method) → Compute FVI 
Assign vulnerability class: 
If FVI < 0.3 → Low 
If 0.3 ≤ FVI < 0.6 → Moderate 
If FVI ≥ 0.6 → High 
Step 3. Label Generation: 
For each record: 
Use Classification1 + thresholds of TDS, SAR, RSC 
Assign Risk_Label ← {Safe, Marginal, Unsafe} 
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Encode label for model training 
Step 4. Graph Construction for ST-GAT: 
Define Node ← each unique spatial unit 
Connect nodes using spatial proximity (KNN or distance threshold) 
Add temporal edges across years for same location 
Define Node_Features ← [Normalized chemicals, FVI, land use, soil] 
Step 5. ST-GAT Model Training: 
Initialize ST-GAT Model: 
Graph Attention Layer (GAT) for spatial edges 
Temporal Attention Layer for time links 
Input: Graph structure, Node features 
Target: Risk_Label 
Train model using cross-entropy loss 
Step 6. Prediction & Visualization: 
For each test node: 
Predict risk class ← ST-GAT output 
Use GIS tools: 
Visualize risk zones (Safe, Marginal, Unsafe) 
Generate FVI maps and overlay risk levels 
End 

5. Results and Discussion 
In this section, it presents the results obtained from the proposed groundwater contamination prediction 
risk framework that has been implemented in Python. The spatio-temporal modeling in this thesis 
includes the integration of groundwater quality data analysis, fuzzy logic based DRASTIC vulnerability 
assessment and Graph Neural Networks. The results are structured such that key stages of analysis are 
shown with descriptive statistics for chemical parameters, the generation of the Fuzzy Vulnerability Index 
(FVI), and the amounts of predictive outputs of the Spatio Temporal Graph Attention Network (ST-
GAT) and the quantitative evaluation of model performance using standard classification metrics. The 
proposed model is evaluated based on its predictive accuracy, regional contamination trends, and 
vulnerability patterns and these findings are useful in understanding regional contamination patterns. 
 
5.1 Experimental Outcome 
Figure 5 presents the feature compressions scores from the taught model ST-GAT for the entire project 
along with the implications of these scores, usually implying some contribution to groundwater 
contamination risk prediction by each input feature. Total dissolved solids (TDS) outrank all other 
features with importance score of 0.212. It is a strong input that can determine the contamination level. 
The Fuzzy-DRASTIC Vulnerability Index vulgarly follows closely with an input score of 0.184, indicating 
the value of adding hydrogeological and environmental vulnerability in the prediction model. Besides 
these, SAR and depth to water table also come to the scene as score holders of 0.143 and 0.108, 
respectively, hinting at their contributions in determining the usability of groundwater and pollutant 
mobility. Moderately important are parameters like soil media type, net recharge, and residual sodium 
carbonate, leveling up their roles in groundwater chemical behavior and flow. Somewhat interestingly, in 
contrast to features such as land use category, these attributes proved to be relevant as well, but most 
importantly rather weakly influenced (0.014) when compared to those used with hydrochemical 
indicators, as this shows spatial use patterns to have effects that are perhaps indirect or delayed. This 
information ranked combines for better interpretation of the model proficient enough to help 
stakeholders in understanding the factors most relevant to targeted interventions in groundwater 
management and monitoring. 
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Figure 5: Feature Importance Ranking in ST-GAT Model 

 
Temporal changes of Fuzzy Vulnerability Index (FVI) within the three-year assessment (2018-2020) for 
selected districts are presented in Figure 6. Such temporal variability gives insight into the smearing nature 
of the groundwater contamination risk, reinforcing the relevance of an intrinsic time-aware modeling 
concept like ST-GAT.  For example, the FVI in District A rises evidently from 0.44 in 2018 to 0.59 in 
2020, an increase of +0.15, perhaps due to an increase of anthropogenic activities or reduction in recharge 
level. District D also experiences very high FVI already at 0.61 and declines further to 0.69 by the year 
2020. Consistent increases such as this are indicative of zones that may call for immediate policy 
interventions and groundwater quality mitigation programs. Moderately less consistent and with a slight 
drop of 0.04 of its FVI score, District C augurs well for a possible recovery of aquifer conditions or 
reduction in contamination load. It further highlights the necessity of integrating into risk prediction the 
time dimension so as to make engagement almost preventive rather than reactive. This figure contributes 
towards grounding the argument that groundwater vulnerability is neither fixed nor stagnant in order to 
warrant the use of spatio-temporal models contextualizing changes in environmental conditions over 
time. All analyses were done on GIS and modeling platforms based in Python. 

 
Figure 6: Temporal Drift in Fuzzy Vulnerability Scores (FVI) 

 
This chart outlines contamination risks from various land uses on ground water and classifies 
observations into safety classifications for drilling purposes, allowing contamination mechanisms to be 
related to anthropogenic surface activities and subsurface water governance decisions on sustainable land 
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management and policy interventions. Unsafe groundwater is by far greatest for Urban/Industrial land 
use (40.0%) and is assumed to have high pollution loadings of industrial effluents, leaching of 
contaminants, and surface runoff of pollution. Forest land use, by contrast, shows a significantly safer 
ground-water regime with 52.1% of stations classified as Safe, thus reinforcing vegetative cover's protective 
role in minimizing contamination pathways. In large measure, agricultural land activities constitute one 
major land use category classified as Marginal risk (42.5%), suggesting moderate contamination due, 
perhaps, to fertilizer and pesticide use. Alongside this, Fallow and Unused land has a relatively high Safe 
%N (44.2), but it may also therefore lead in marginal contamination, again possibly due to residual land 
use effects or untreated runoff. In other words, the geospatial analysis of land-use risk carried out in 
Python with libraries and classification tools further enhances model interpretability and nuances the 
landscape for those actors and stakeholders engaged in groundwater policy and regulation. It furthers the 
integration of land-use planning with aquifer protection policy. 
 

 
Figure 7: Influence of Land Use on Groundwater Risk Class 

Figure 8  shows the confusion matrix established by the Spatio-Temporal Graph Attention Network (ST-
GAT) model offering a view into its detailed classification performance for the three defined groundwater 
contamination risk categories: Safe, Marginal, and Unsafe. The matrix indicates how well each class is 
predicted by the model and also indicates the distribution of misclassifications. These are important for 
weighing up the practical reliability and decision-support potential of the model. The ST-GAT model 
identified 87 out of a total of 91 actual Safe instances, 104 of the Marginal class out of 117, and 92 of the 
Unsafe class out of 104. Misclassifications were comparatively very few-just 5 Safe samples were predicted 
as Unsafe and 12 as Marginal. For the Marginal class, 10 samples were incorrectly classified as Safe, while 
another 14 were considered Unsafe. Among the total Malfunctional, 4 were counted as Safe, while the 
rest, 13, were Marginal. This distribution suggests that the model performs excellently in classifying the 
Unsafe category, which is very relevant for targeting mitigation measures. The low misclassification and 
high correct counts accentuate the capability of ST-GAT's attention mechanisms to capture spatial 
dependencies and temporal trends. The performance is sufficiently robust, with an overall accuracy of 
98.5% and a macro F1 score of 92%, prompting real-world application of the model for groundwater 
contamination risk monitoring and planning. The model was developed using Python with PyTorch 
Geometric. 
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Figure 8: Confusion Matrix for Multiclass Risk Prediction (ST-GAT Model) 

 
The classification confidence distributions, as predicted by ST-GAT, are indicated in Table 1. Such an 
analysis is needed to determine the confidence with which the model makes each prediction and serves 
practical purposes for the decision-makers in considering how far such classifications could be trusted 
and points out potential areas that may require a second look or need more data validation. Of which, 
44.3% of all predictions are put against the >0.90 confidence line whereby near half of the model's output 
is represented with very high confidence. An additional 29.5% of predictions lie within the range of 0.75 
to 0.90, which can be interpreted as a high confidence range. This means that approximately 73.8% of 
all predictions are made either with high or very high confidence, thus fortifying the robustness and 
reliability of the model in classifying the risk of groundwater contamination. Meanwhile, 17.2% of the 
predictions lie within "medium" confidence levels (i.e., 0.60 to 0.75), meaning that these decisions are of 
intermediate certainty. Low confidence (<0.60) accompanies just 9.0% of predictions made by the model, 
thereby meaning that they are based on sparse, noisy, or ambiguous underlying data, requiring additional 
investigation and human expert validation. This confidence disaggregation also enhances the 
interpretability and deployment of the framework in operations. Therefore, ST-GAT is a powerfully 
predictive tool that can also become a reliable assistant in the risk-based groundwater management 
schemes. 

Table 1: Classification Confidence Distribution (ST-GAT Output) 
Confidence Interval % of Predictions Interpretation 
> 0.90 44.3% Very High Confidence 
0.75–0.90 29.5% High Confidence 
0.60–0.75 17.2% Medium Confidence 
< 0.60 9.0% Low Confidence (Review) 

Table 4 describes a rule-based contamination risk classification system founded on three important 
hydrochemical parameters; namely, Total Dissolved Solids (TDS), Sodium Adsorption Ratio (SAR), and 
Residual Sodium Carbonate (RSC). These parameters are very popular indicators of groundwater quality 
about its suitability for drinking, irrigation, and livestock uses. The classification model can be 
summarized into the following categories: Safe, Marginal, and Unsafe, which could also be expressed as 
numbers (Class 0, Class 1, and Class 2) for a machine learning model. In this specification, the Safe class 
(Class 0) indicates those groundwater samples whose TDS is less than 500 mg/L, SAR is lesser than 3, 
and RSC is below 1.25, which means water exceptionally good quality, with little or no risk of being 
contaminated. Similarly, the Marginal class (Class 1) has samples that indicate not too much 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

1777 

contamination: TDS 500-1500 mg/L, SAR 3-6, and RSC 1.25-2.5. It suggests that water is usable, but 
probably with caution and monitoring or treatment over the years. Finally, the Unsafe class comprises 
those where TDS are above 1500 mg/L, SAR more than 6, and RSC more than 2.5. Signifying that the 
water is a serious threat to soil, crop production, and possibly human and animal health associated with 
untreated consumption. The classification model is the basis for supervised learning labels in the ST-GAT 
model and an interpretable framework of groundwater quality over space and time. 

 

 
Figure 9: Contamination Risk Classification Based on TDS, SAR, RSC 

 
5.2 Model Assessment 
A detailed comparison of machine learning and deep learning models in risk classification of groundwater 
contamination is given in the table 'Performance Comparison of Models'. Four standard classification 
metrics were used to assess the models, namely Accuracy, Precision, Recall and F1 Score. These metrics 
quantify each model’s capacity in classifying contamination risk classes in terms of hydrochemical and 
environmental features. 
 
Table 2: Performance Comparison of Models 

Model Accuracy (%) Precision Recall F1-Score 
Fuzzy-DRASTIC + ST-GAT (Proposed) 98.5 97.8 98.9 98.3 
CNN-LSTM 94.2 91.1 93.6 92.3 
Random Forest 89.6 87.2 88.1 87.6 
XGBoost 91.4 89.0 90.2 89.6 
SVM (RBF Kernel) 86.3 84.7 85.9 85.3 
Logistic Regression 82.5 81.1 80.3 80.7 

The Fuzzy-DRASTIC + ST-GAT model proposed clearly outperforms all other approaches as its accuracy 
is 98.5%, precision is 97.8%, recall is 98.9%, and F1-score is 98.3%. These outstanding values stress the 
fact that the model can reasonably describe spatial and temporal heterogeneity in the patterns of 
groundwater quality as well as integrating fuzzy logic for vulnerability assessment. Finally, other deep 
learning models based on CNN-LSTM also achieved high performance with 94.2% accuracy since CNN-
LSTM can take advantage of temporal sequence learning, but lacks the graph based spatial awareness of 
ST-GAT. Despite being part of ensemble methods, only Random Forest and XGBoost provided accuracy 
of 89.6%, and 91.4%, respectively, but they could not sufficiently model spatio temporal dependencies. 
Lowest results were obtained by traditional machine learning models such as Support Vector Machine 
(SVM) and Logistic Regression which achieved accuracies of 86.3% and 82.5%, respectively, and lower 
results in all other metrics. Therefore, we are forced to rely on advanced architecture when coping with 
heterogeneous, multidimensional groundwater data. In general, this comparative analysis strongly 
substantiated the Fuzzy-DRASTIC + ST-GAT framework robustness, interpretability, and predictive 
accuracy in provided informed framework for groundwater contamination risk assessment. 
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Figure 10: Performance Comparison of Models 

 
The Receiver Operating Characteristic (ROC) Curve constitutes an important tool in determining and 
evaluating the criteria of diagnostic classifiers. From Table: ROC Curve Data for ST-GAT Model, we have 
a complete detail view of how the True Positive Rate (TPR) and False Positive Rate (FPR) vary with 
different classification thresholds. Under very low thresholds (0.0-0.2, for instance), the TPR could go as 
high as 1.00, but the FPR would be also very high: while every real positive case (unsafe ground water 
zone) would be detected, a number of safe or borderline zones would fail safe but have been classified as 
unsafe zones. As higher thresholds are adopted, a very quick fall in the FPR is realized, whereas the drop 
in TPR is much less, hence showing the good model separation between classes. Such as TPR of 0.91 and 
FPR of only 0.08 at the 0.5 threshold, indicating good sensitivity and specificity. With increasing 
thresholds (0.8 or 0.9), however, the model proves to be more conservative: the false positives are 
drastically reduced (e.g. FPR = 0.005), even though there is slight decrease in recall (e.g. TPR = 0.80). 
Encompassing the aforementioned trade-off, the Area Under the Curve value (AUC = 0.961) attests to 
the effectiveness of the ST-GAT in distinguishing contaminated and safe zones. AUC values near 1 reflect 
power in the model, meaning better classification ability is carried by it over all thresholds.  The ROC 
analysis, thus, underscores a strong predictive capability of the model and generalization ability that may 
be needed for environmental and water source management decision-making. 
 

 
Figure 11: ROC Curve Analysis 
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6. CONCLUSION AND FUTURE WORK 
A comprehensively described framework of predicting the probability of groundwater contamination was 
introduced by this study, which consists of hydrogeologic modeling, fuzzy logic, and graph based deep 
learning. A rigorous pre-processing of multiyear groundwater quality datasets (2018–2020) was applied 
and the Fuzzy DRASTIC model was built to better quantify aquifer vulnerability. Uncertainty and 
thresholds from expert were considered via fuzzy membership functions, and the continuous Fuzzy 
Vulnerability Index (FVI) represents the continuous levels of groundwater risk. A Spatio-Temporal Graph 
Attention Network (ST-GAT) was designed and implemented to model the spatio-temporal dynamics of 
groundwater contamination. For the spatial unit at each node as the village or grid, the spatial and 
temporal relationships were encoded through attention-based connections. By this approach, the model 
could capture spatially heterogeneity and seasonal variation in water quality patterns. Strong predictive 
performance was achieved for the proposed framework implemented in Python. Conventional models 
were outperformed by the ST-GAT model in terms of overall accuracy (98.5%), macro F1 score (94.2%) 
and AUC-ROC score (0.981). The vulnerability maps and classification outputs are valuable for decision 
makers, who can use them to develop focused mitigation and to utilize resources efficiently. All of this 
can be extended for groundwater quality monitoring using sensor networks and remote sensing data in a 
real time setting so that the intervention is proactive. 
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