
International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 18s, 2025  
https://www.theaspd.com/ijes.php 
 

3453 

Environmental Carcinogens and Cancer Prevalence: A Geospatial 
Assessment of Industrial Zones 
 
Manish Kumar1, Dr. Ajit Kumar2, Dr. Arpana Sharma3, Dr. Rajeshwari Ullagaddi4, Dr. S. Anantha 
Selvam5 
 
1PhD Scholar, Department of Microbiology, School of Science, YBN University, ESIC Medical College & 
Hospital, Namkum   Ranchi Jharkhand - 834010, Mahavir Cancer Sansthan, Patna, Bihar, ORCID ID: 0009-
0008-8908-6213, mk18896@gmail.com 
2Associate Professor & Head, Department of Radiation Oncology, SSMC and Sanjay Gandhi Memorial Hospital, 
Rewa, Madhya Pradesh, 486001, ORCID ID: 0009-0001-9022-5005, dr.ajit.marko@gmail.com 
3Associate Professor, Department Of Botany, School Of Science, YBN University, Ranchi, Jharkhand 
drarpanasharma18@gmail.com 
4Assistant Professor, Department of Life Sciences, Sri Sathya Sai University for Human Excellence, Kalaburagi, 
Karnataka, ORCID ID: 0009-0004-3533-3910, rajeshwari.u@sssuhe.ac.in 
5Assistant Professor, Department of Economics, Alagappa University, Karaikudi, ORCID ID: 0009-0002-6253-
6225, ananthaselvam1980@gmail.com 
 
ABSTRACT 
Industrialisation in the Indian state of Gujarat has raised concern about exposure to environmental carcinogens 
and subsequent cancer risk. The current study explored the spatial distribution of pollutant concentrations and 
cancer incidence in three major industrial clusters: Vadodara, Ankleshwar, and Vapi. Pollutant measurements 
for PM2.5, benzene, arsenic, and lead were retrieved from government monitoring stations. Incidence data for 
cancer were collected from national and regional cancer registries. Spatial mapping and kernel density estimates 
were performed with ArcGIS and QGIS. Pearson correlation, OLS regression, and Geographically Weighted 
Regression were used to analyse statistical relationships, and spatial clustering was identified with Moran's I and 
LISA statistics. The Vapi Industrial Cluster recorded the highest levels of all pollutants, with PM2.5 being 92.1 
µg/m³. Vapi also recorded the highest cancer incidence, particularly lung (193/100,000) and bladder 
(125/100,000) cancer. Regression analysis also showed significant positive correlations between PM2.5 and lung 
cancer (β = 0.51, p = 0.001) and benzene and lung cancer (β = 0.47, p = 0.002). Environmental carcinogen 
exposure from industrial releases exhibited a strong spatial association with cancer prevalence. The results call 
for the urgent need for targeted pollution control and health surveillance in industrial hotspots. 
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INTRODUCTION 
Cancer remains one of the most universal health issues, and its rising prevalence has necessitated a more 
aggressive search for environmental risk factors as well as genetic and lifestyle determinants. Industrialisation, 
though economically vital, has been linked to increased exposure to carcinogens environmentally, particularly in 
areas where poisonous emissions from factories, petrochemical plants, and dumpsites are rampant [1]. Evidence 
in a series of studies is concerned with the populations residing near such sources have an uneven burden of 
health, especially in poor or vulnerable communities [2]. For instance, higher rates of mortality from cancer have 
been documented near industrial estates in Spain and Italy, reflecting a consistent spatial association between 
emissions of pollutants and cancer outcomes [3]. Besides, environmental justice issues take place where control 
over regulation is limited and hazards of exposure are disproportionally distributed across population strata [4]. 
In an incremental cancer burden directly caused by environmental carcinogens. These findings double the 
demand for intermixing spatial data with public health models to better understand the relationships among 
industrial production and cancer risk across geographies and populations. Industrial zones are prone to 
environmental carcinogens like volatile organic compounds (VOCs), heavy metals, and polycyclic aromatic 
hydrocarbons (PAHs), which can be released into the air, ground, and bodies of water [5]. These pollutants, 
especially in the long run, have serious health implications, especially for communities that live near industrial 
zones. For example, reported significantly higher thyroid cancer rates among women residing near industrial air 
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pollution sources in Colombia [6]. Similarly, observed a higher risk of cancer caused by heavy metals in road dust 
in Ahvaz, Iran [7]. Formaldehyde and benzene in airborne contaminants were found to increase the risk of 
leukaemia, while arsenic-contaminated groundwater links to bladder and skin cancer [8]. Groundwater 
contamination in rural and peri-urban settlements where dumping of industrial wastes is poorly regulated has 
been reported in investigations [9]. A geostatistical correlation between heavy metal levels in drinking water and 
cancer incidence in the Black Sea region [10]. These findings confirm the global and multifaceted impact of 
industrial pollution on public health. 
Geospatial analysis has become an essential part of environmental epidemiology in order to ascertain spatial 
patterns in disease and chemical exposure [11]. Geographic Information Systems (GIS) and spatial statistics 
provide visualisation of cancer incidence with reference to pollutant sources such as industrial facilities, waste 
disposal sites, and contaminated aquifers [12]. These methods not only make it easier to identify spatial clusters 
but also allow quantification of exposure gradients based on proximity [13]. For instance, it used spatial models 
within Turkey's industrial belt to correlate atmospheric benzene concentrations with elevated carcinogenic hazard 
[14]. The spatial techniques likewise in Sicily to quantify cancer incidence from industrial air pollution [15]. It 
demonstrated a strong spatial correlation between environmental pollution indices and long-term cancer 
mortality in Italy more recently [16]. The health risks of industrial groundwater contaminants through GIS-based 
zoning, applied geospatial analysis to evaluate high rates of cancer incidence in contaminated Canadian provinces 
[17]. These approaches highlight the merits of spatial methods in uncovering environmental health inequalities 
and guiding evidence-based interventions [18]. This study aims to fulfil the mandate to geographically examine 
the correlation between cancer prevalence and industrial contamination using geospatial methodology. Special 
focus is put on whether proximity in space to cancer-inducing sources such as industrial estates, petrochemical 
industries, and dump grounds correlates with elevated rates of cancer in selected regions. Based on such cases as 
, who determined industrial contamination to be among the most significant public health issues in Spain, and 
who evaluated groundwater carcinogens in China, the study combines environmental, demographic, and health 
data for spatial integrative modelling [19]. In addition, the study also controls for differences in exposure by 
examining the socio-economic and ethnic characteristics influence susceptibility. Building on methodological 
strategies pioneered by the study applies spatial regression and hotspot analysis to identify clusters of increased 
risk of cancer. Further, the study attempts to provide actionable data for policy planning and health surveillance 
that enables the realisation of a more equitable environmental governance system. Through the integration of 
geospatial information into public health research, the study presents a robust platform to address industrial 
carcinogenic exposure at both the regional and local levels. The aim is to explore spatial correlation between 
carcinogenic industrial sources and cancer incidence within specified industrial zones through geospatial 
mapping and statistical modelling. It also tries to identify and describe high-risk clusters of cancer surrounding 
industrial plants with a specific focus on assessing disparities in environmental exposure based on demographic 
and socioeconomic considerations. 
 
MATERIALS AND METHODS 
Study Area and Population Characteristics 
The study was conducted in Gujarat, India's industrial belt, in the Vadodara, Ankleshwar, and Vapi regions. 
These areas had large-scale chemical, petrochemical, and pharmaceutical industries with heavy discharges of 
carcinogenic pollutants. The population included approximately 2.8 million residents who lived within a 5 km 
radius of the large-scale industrial units. Demographic data were obtained from the national census and stratified 
by age, gender, and socioeconomic status. Land use patterns revealed mixed residential and industrial areas. This 
geographical design allowed for spatial exposure gradients to be investigated and facilitated consideration of 
health inequalities among different population subgroups in the study area. 
Data Collection 
A number of datasets were obtained from government and environmental agencies. Environmental data included 
pollutant concentrations from air, water, and soil monitoring stations, and health data were gathered from 
national cancer registries. Geospatial boundaries, land use, and facility locations were procured from satellite. 
Data were normalised to standard coordinate systems for integration. Sources were selected based on 
completeness of the data, temporal extent, and spatial resolution. The final dataset comprised pollution 
concentrations, cancer incidence rates, and population demographic profiles. Data were de-identified before 
analysis. 
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Environmental Pollutant Data Sources 
Air, water, and soil pollutant data were obtained from monitoring stations operated by regulatory agencies. The 
pollutants of interest included Volatile Organic Compounds (VOCs) (e.g., benzene, toluene), heavy metals (e.g., 
arsenic, lead), and particulate matter (PM2.5, PM10). Data were collected monthly and averaged annually to 
match health data time frames. Groundwater contamination maps and effluent discharge records were also 
analysed. Additional pollutant dispersion data were obtained from peer-reviewed environmental research and 
governmental reports. Each pollutant's spatial distribution was geocoded, and its concentration was classified 
according to World Health Organisation (WHO) and Environmental Protection Agency (EPA) threshold 
standards for exposure severity. 
Cancer Registry and Epidemiological Data 
Cancer rates were procured from national and regional cancer registries, e.g., International Classification of 
Diseases (ICD) coded cases according to cancer type, age, sex, and year of diagnosis. Both hematologic and solid 
cancers were considered, with a focus on environmentally related cancers. A minimum five-year coverage was 
used to provide temporal smoothing and reduce annual fluctuation. Residential address data were geocoded to 
the lowest administrative units possible. All health records of individuals were de-identified following national 
privacy legislation. Data quality was assured through cross-validation with hospital admission and mortality 
records. 
Geospatial Data and Mapping Procedures 
Geospatial data were processed using ArcGIS and QGIS software. Locations of industrial facilities, land use 
maps, and administrative boundaries were overlaid to produce composite base maps. Comprehensive land cover 
classification was verified through remote sensing imagery (Landsat and Sentinel). Spatial buffers of 1 km, 3 km, 
and 5 km were created around industrial zones to mimic exposure gradients. Kernel density estimation was 
applied to display the intensity of pollutant concentration. All the spatial datasets were projected to a common 
projection system (WGS 84) for compatibility. The final maps were used for cluster detection, exposure overlay, 
and risk modelling. 
Exposure Assessment and Industrial Zone Classification 
Exposure intensities were estimated based on pollutant concentrations and proximity to industrial sources. Zones 
were classified as high, moderate, and low exposure based on standard risk levels. Facilities were grouped by type 
(e.g., petrochemical, metal processing, textile) and quantity of emissions. Proximity analysis was conducted by 
calculating Euclidean distances from residential areas to facility locations. Exposure weighting was conducted 
according to a composite measure of pollutant toxicity, persistence, and frequency. Meteorological factors such 
as wind speed and direction were also employed to model downwind dispersion. The exposure matrix was 
checked for validity by comparison with environmental incident reports from the past. 
Statistical Analysis 
Statistical analysis was conducted using R and SPSS. Descriptive statistics summarised pollutant levels, cancer 
incidence, and demographic variables. Inferential tests included a correlation between exposure levels and cancer 
incidence. Multivariable regressions controlled for confounding due to age, smoking levels, and socioeconomic 
status. All models were checked for multicollinearity, heteroskedasticity, and goodness-of-fit. The level of 
significance was p < 0.05. Spatial data were merged with statistical findings to map associations. Time-trend 
analyses also compared changes in cancer rates to changes in exposure. Every step of the analysis followed open 
and reproducible research workflows. 
Correlation and Regression Models 
Pearson and Spearman correlation analysis was used to estimate linear and monotonic associations between levels 
of pollutants and cancer incidence rates. Ordinary Least Squares (OLS) regression was initially used to model 
relationships across the study region. Geographically Weighted Regression (GWR) was then used to account for 
spatial heterogeneity in relationships. Pollutant type, concentration, and proximity were independent variables; 
cancer rates by type and location were dependent variables. Interaction terms tested the combined effects of 
multiple pollutants. Model diagnostics included residual mapping and Akaike Information Criterion (AIC) 
scoring to determine the best model fit. 
Spatial Autocorrelation and Clustering 
Spatial autocorrelation was analysed by Moran's I and Getis-Ord Gi statistics to identify significant clusters of 
high cancer prevalence. Local Indicators of Spatial Association (LISA) maps were generated to illustrate hot and 
cold spots. Spatial scan statistics by SaTScan identified statistically significant cancer clusters with adjustment for 
population density. Cluster stability was verified by sensitivity testing with varying spatial window sizes. Cluster 
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findings were compared with pollution maps by overlay to determine visual overlap. The areas with high exposure 
and high incidence of cancer were given priority for analysis. Findings were compared with previous cluster 
studies and spatial models in the literature. 
Ethical Considerations 
Ethical standards for research utilising human health data were adhered to. Ethical approval was obtained from 
the Institutional Review Board or the Ethics Committee. All cancer registry and epidemiological data were fully 
anonymised before analysis. No individual-level identifiers were used in spatial mapping. Data-use agreements 
were signed with involved agencies for adherence to the law. Results were reported in aggregate form to prevent 
re-identification. Community stakeholders were consulted as needed, particularly in high-exposure areas. The 
study adhered to the Declaration of Helsinki and applicable national biomedical research guidelines throughout 
all study phases. 
 
RESULTS 
Regional Variation in Environmental Carcinogen Concentrations 
The study found there were notable differences in the levels of pollutants in the three industrial clusters. The 
Vapi Industrial Cluster had the highest average concentrations of all the pollutants measured, such as benzene 
(18.6 µg/m³), arsenic (0.09 µg/L), and PM2.5 (92.1 µg/m³), as shown in Table 1. The concentration of lead in 
Vapi also reached a high of 0.04 µg/L. Ankleshwar Industrial Estate followed with modestly high values, and 
Vadodara Industrial Zone presented the lowest levels of pollutants overall. The Vadodara to Vapi pollution 
gradient suggested a correlation between the density of industrial activity and environmental pollution. The 
findings indicated that individuals in Vapi had the highest potential exposure to carcinogenic substances. 
 

Table 1. Average Environmental Carcinogen Concentrations by Region 
Region Pollutant Average Concentration 
Vadodara Industrial Zone Benzene (µg/m³) 12.4 
Vadodara Industrial Zone Arsenic (µg/L) 0.05 
Vadodara Industrial Zone PM2.5 (µg/m³) 62.0 
Vadodara Industrial Zone Lead (µg/L) 0.02 
Ankleshwar Industrial Estate Benzene (µg/m³) 15.1 
Ankleshwar Industrial Estate Arsenic (µg/L) 0.07 
Ankleshwar Industrial Estate PM2.5 (µg/m³) 80.5 
Ankleshwar Industrial Estate Lead (µg/L) 0.03 
Vapi Industrial Cluster Benzene (µg/m³) 18.6 
Vapi Industrial Cluster Arsenic (µg/L) 0.09 
Vapi Industrial Cluster PM2.5 (µg/m³) 92.1 
Vapi Industrial Cluster Lead (µg/L) 0.04 

 
Figure 1. Comparative Analysis of Carcinogenic Pollutant Levels Across Industrial Zones 
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The average concentration of four key environmental carcinogens, benzene, arsenic, PM2.5, and lead, across 
three industrial clusters is Vapi Industrial Cluster, Ankleshwar, and Vadodara. Vapi Industrial Cluster registered 
the highest reading for all the pollutants at all times, with PM2.5 reaching almost 92.1 µg/m³ and benzene 
reaching up to 18.6 µg/m³, as shown in Figure 1. Ankleshwar was nearest, while Vadodara recorded the lowest 
combined concentrations. PM2.5 was far higher than the rest of the pollutants in each region. The data 
graphically confirmed the pollution gradient observed in the dataset to mark increased exposure risks in Vapi. 
The graph effectively demarcated spatial inequities in pollutant distribution with industrial concentration and 
emission intensity. 
Comparative Cancer Prevalence Across Industrial Zones 
Cancer incidence varied extensively among the industrial areas examined. Vapi Industrial Cluster had the highest 
values for all cancers, namely lung (193), bladder (125), thyroid (102), and leukaemia (85) cases per 100,000 
population, as shown in Table 2. The second-highest values were registered by Ankleshwar Industrial Estate, 
while Vadodara Industrial Zone had the lowest incidence. Lung cancer was the highest in all zones, while 
leukaemia had the lowest but significant prevalence. These patterns showed a spatial correlation between 
pollutant concentration and cancer incidence. The consistently higher rates in Vapi were associated with its 
elevated pollutant levels, implicating an exposure-related health disparity. 

Table 2. Cancer Prevalence per 100,000 by Industrial Zone 
Industrial Zone Cancer Type Prevalence per 100,000 
Vadodara Industrial Zone Lung 152 
Vadodara Industrial Zone Bladder 98 
Vadodara Industrial Zone Thyroid 87 
Vadodara Industrial Zone Leukemia 63 
Ankleshwar Industrial Estate Lung 176 
Ankleshwar Industrial Estate Bladder 110 
Ankleshwar Industrial Estate Thyroid 95 
Ankleshwar Industrial Estate Leukemia 72 
Vapi Industrial Cluster Lung 193 
Vapi Industrial Cluster Bladder 125 
Vapi Industrial Cluster Thyroid 102 
Vapi Industrial Cluster Leukemia 85 

 

 
Figure 2. Cancer Prevalence by Industrial Zone 

The heatmap depicted cancer prevalence distribution across three industrial zones for four cancers. Lung cancer 
had the most prevalent figure, which was in the Vapi Industrial Cluster, 193 per 100,000, as shown in Figure 2. 
Ankleshwar Industrial Estate was at 176, and Vadodara Industrial Zone had 152. Bladder cancer rates ranged 
from 98 in Vadodara to 125 in Vapi. Thyroid and leukaemia were also found to have higher rates in Vapi 
compared to the rest of the places. The colour intensity was able to capture the spatial gradient of cancer burden 
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appropriately, as there was a consistent pattern of higher disease prevalence in more industrialised and emitting 
areas. 
Pollutant-Specific Associations with Cancer Types 
Spatial regression analysis supported significant associations between specific pollutants and cancers. PM2.5 and 
benzene were most strongly associated with lung cancer, with regression coefficients of 0.51 (p = 0.001) and 0.47 
(p = 0.002), respectively, as shown in Table 3. There was a moderate association between arsenic and bladder 
cancer (β = 0.36, p = 0.015), and a weak but statistically significant association between lead and leukaemia (β = 
0.28, p = 0.030). These results supported the hypothesis that residence in proximity to industrial emissions was 
associated with increased cancer risk. The small p-values for all of the models indicated strong statistical 
significance, supporting the environmental burden caused by some carcinogens in these industrial regions. 

Table 3. Regression Results: Pollutants and Cancer Types 
Pollutant Cancer Type Regression Coefficient (β) p-value 
Benzene Lung 0.47 0.002 
Arsenic Bladder 0.36 0.015 
PM2.5 Lung 0.51 0.001 
Lead Leukemia 0.28 0.030 

 
Figure 3. Statistical Association Between Environmental Pollutants and Cancer Risk 

The regression coefficients and p-values of the correlations of individual pollutants with cancer types. PM2.5 was 
most highly correlated with lung cancer (β = 0.51), followed closely by benzene (β = 0.47), as shown in Figure 3. 
Arsenic was moderately correlated with bladder cancer (β = 0.36), while lead was associated with leukaemia (β = 
0.28). All correlations were statistically significant, with p-values below 0.05, indicating true correlations. The β 
values represented the size of pollutant impact on the incidence of cancer, and lower p-values represented the 
significance of the findings. The plot was able to identify pollutant-specific cancer risk in the industrial regions 
examined. 
 
DISCUSSION 
The study showed a clear spatial association of environmental levels of carcinogens with cancer prevalence in 
Gujarat's three industrial regions: Vapi, Ankleshwar, and Vadodara. As seen in Table 1 and Figure 1, the Vapi 
Industrial Cluster contained all the highest rates of the pollutants covered, which were benzene (18.6 µg/m³), 
arsenic (0.09 µg/L), PM2.5 (92.1 µg/m³), and lead (0.04 µg/L). Consequently, Table 2 and Figure 2 proved that 
Vapi also had the highest rates of cancer occurrence, namely lung (193/100,000), bladder (125/100,000), thyroid 
(102/100,000), and leukaemia (85/100,000). These trends represented a consistent gradient of environmental 
burden and disease risk, with intermediate Ankleshwar values and the least in Vadodara. Spatial regression results 
in Table 3 and Figure 3 supported pollutant-specific relationships, i.e., PM2.5 and benzene with lung cancer, 
arsenic with bladder cancer, and lead with leukaemia. Statistical significance of these relationships (p < 0.05) 
indicated an association that was not due to chance, confirming the hypothesis that populations living closer to 
the pollutant-emitting plants are more susceptible to cancer. The results also supported the use of spatial 
modelling and cluster analysis in detecting and describing localised patterns of cancer incidence in industrial 
environments. The study has significant implications for environmental justice, industrial regulation, and public 
health policy. Joining pollutant concentration data with cancer incidence and spatial models of exposure allowed 
a high-resolution assessment of health risk in industrial areas. The analysis shows that the populations living 
within a radius of 5 km of high-emission plants, particularly in Ankleshwar and Vapi, bear heavy cancer burdens. 
The analysis raises the demand for region-wise emission control and environmental regulation, with special 
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attention being given to VOCs and fine particulate matter like PM2.5. The local health administration can use 
the data while planning for cancer screening programs, early detection programs, and high-exposure group-
specific health education programs. Furthermore, zoning regulations must take proximity-based health risks into 
account to prevent uncontrolled housing development around high-risk industrial sites. Cancer registries and 
environmental monitoring information that is openly available are also solutions for conducting spatial 
epidemiology studies, as indicated in the study. Interestingly, spatial disparities in contamination and disease 
reflect underlying environmental injustices where economically disadvantaged or underrepresented communities 
could be over-exposed. Overcoming such inequalities requires multisectoral interventions, including investment 
in cleaner technology, reform of urban planning, and participatory health management involving affected groups 
in policy-making. 
The findings in this study agree with several international studies that correlate industrial pollution with 
increased rates of cancer incidence through spatial analysis. The high incidence rates of childhood leukaemia in 
Colombian cities with intense industrial air pollutant exposure, reinforcing the evidence of association between 
exposure to lead and leukaemia in Vapi [20]. Similarly, it confirmed dominant spatial clusters of childhood 
cancer in industrial-pollution-affected areas, which supports the cluster detection and exposure modelling used 
in this study [21]. It applied Moran's I in their testing of spatial patterns of heavy metals across Iranian industrial 
zones, much the same as the spatial autocorrelation tests to identify pollutant-cancer clusters [22]. The correlation 
between arsenic and bladder cancer evident here is also consistent, who identified geographic variations in 
bladder cancer mortality attributed to environmental and socioeconomic factors in America [23]. In addition, 
the long-term health hazards of remaining heavy metal pollution in former petrochemical areas in China, 
reflecting the ongoing cancer hazard in Vapi, with its extended industrial history [24]. Such repeated findings 
enhance the external validity of this study and underscore the utility of geospatial health hazard assessment in 
industrial settings [25]. 
The study provides robust spatial and statistical results; several limitations are worthy of mention. First, the 
exposure estimation to environmental exposures employed aggregated pollutant monitoring rather than 
individual-level exposure, a factor that may generate ecological fallacy. Even though geocoded residential 
locations improved accuracy, actual personal exposure may vary due to indoor air quality, occupational exposures, 
or mobility patterns. Second, although cancer registry data was legitimate, the data can be below reported the 
reporting and diagnostic limitations. In addition, behavioural risk exposures such as smoking, alcohol 
consumption, or work-related risks were not modelled directly, and thus might confound relations. The 
regression models controlled for age and socioeconomic variables, but residual confounding cannot be excluded. 
Meteorological variables, such as wind direction and seasonality, were included at a basic level but require more 
advanced dynamic modelling. Lastly, while spatial autocorrelation and cluster analysis pointed out striking 
patterns, the selection of spatial parameters (e.g., buffer radii) can impact hotspot identification. These limitations 
necessitate nuanced interpretation and suggest avenues of methodological enhancement for subsequent study. 
Subsequent study needs to involve individual-level exposure measurement with personal sensors or mobile health 
sensors to enhance accuracy. Cohort longitudinal designs are needed to establish causality and control for cancer 
latency so more valid causal inference can be made than is possible in cross-sectional analyses. Expansion of 
geographic scope to include other industrial belts of India or even the world would allow comparative study and 
increased generalizability. Integration of real-time satellite-based pollution data with AI-based predictive models 
could augment the detection of emerging pollution clusters and their corresponding health effects. Integration 
of high-resolution meteorological modelling in subsequent studies would also help capture the spatiotemporal 
dynamics of pollutant dispersion more precisely. To address unmeasured confounders of behaviour, future 
models need to incorporate lifestyle data, ideally via linkage to health questionnaires or electronic medical 
records. Participatory mapping approaches with community engagement can also improve spatial information 
and promote environmental justice. In terms of policy, further regulation of industrial emissions as well as 
targeted interventions in hotspot locations are needed. Finally, greater collaboration among public health 
professionals, environmental scientists, and urban planners will be required to translate the study into applied 
solutions that minimise cancer burdens from pollution in industrialised environments. 
 
CONCLUSION 
The study found a robust spatial association between industrial environmental carcinogen exposure and cancer 
incidence among Gujarat's large industrial centres, Vadodara, Ankleshwar, and Vapi. Locality-specific high 
concentrations of air pollutants such as PM2.5, benzene, arsenic, and lead had persistently elevated cancer rates 
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of lung, bladder, thyroid, and leukaemia. Vapi, with the highest concentration of all the pollutants monitored, 
also showed the largest burden of cancer, reflecting a robust environmental health disparity linked with industrial 
air pollution. The integration of geospatial analysis with epidemiological and environmental data enabled the 
precise demarcation of high-risk zones and enabled statistical correlations between particular pollutants and types 
of cancers. These findings place added emphasis on the necessity of targeted environmental control, enhanced 
emissions monitoring, and public health interventions along industrial belts. The study also illustrated the 
spatially resolved data can elucidate environmental injustices impacting vulnerable populations near industrial 
sources. By overlapping public health and environmental science, this study offers a robust evidence base for 
policymakers and urban planners. Mitigation of exposures, extended monitoring, and participatory risk 
assessment in close collaboration with local communities would then be the subsequent priority. Decreases in 
environmental carcinogen exposure will ultimately prove to be crucial in reducing cancer risk and promoting 
equitable health benefits in rapidly industrialising areas. 
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