

Thermal Enhancement Of Latent Heat Thermal Energy Storage With Semicircular Tubes Through Experiments And Simulation

Akeel Abdullah Mohammed^{1*}, M.M. Qahtan Ramadan Mohammed²

¹*Mechanical Engineering Department/ College of Engineering / Al-Nahrain University-Iraq,

email: akeelabdullah@yahoo.com

²Assistant Professor, Mechanical Engineering Department/ College of Engineering / Al-Nahrain University-Iraq, email:

qahtan251@gmail.com

Abstract

The escalating global energy demand and environmental concerns associated with conventional energy sources necessitate efficient energy storage solutions, particularly for intermittent renewables like solar energy, latent Heat Thermal Energy Storage (LHTES) systems using Phase Change Materials (PCMs) offer high energy storage density but are often limited by the low thermal conductivity of PCMs, which restricts heat transfer rates, this research investigates a novel approach to enhance LHTES performance by employing semicircular heat transfer tubes instead of traditional circular tubes within a shell-and-tube configuration, a combined experimental and numerical methodology was adopted to comprehensively assess the thermal performance, an experimental LHTES system with a copper semicircular inner tube and paraffin wax as the PCM was designed, fabricated, and tested under varying HTF (water) flow rates and tube orientations, temperature dynamics and phase change (melting and solidification) characteristics were meticulously recorded. Concurrently, a 3D numerical model was developed using ANSYS Fluent, employing the enthalpy-porosity method, and validated against experimental data, the results indicated that the semicircular tube geometry and its orientation significantly influence the internal heat transfer mechanisms, particularly natural convection within the molten PCM, leading to variations in phase change times, temperature stabilization observed in experimental data confirmed the completion of phase change, providing benchmarks for performance evaluation, the study demonstrates the potential of semicircular tubes for thermal enhancement in LHTES systems, offering insights for optimizing future designs.

Keywords: Latent Heat Thermal Energy Storage (LHTES), Phase Change Material (PCM), Semicircular Tube, Heat Transfer Enhancement, Experimental Investigation, Numerical Simulation.

1. INTRODUCTION

The global energy landscape is currently characterized by a significant and escalating demand for energy, which is placing considerable strain on conventional energy sources, these traditional resources are finite, and their consumption is associated with rising fuel prices and pressing environmental concerns (Akgün et al., 2007), projections from the World Energy Council indicate a potential doubling of primary energy demand by 2050, driven by population growth and increased per capita energy use (Du et al., 2018), in response to these challenges, renewable energy sources, such as solar and wind power, have garnered substantial attention as clean, sustainable alternatives (Al Siyabi et al., 2019), also the intermittent nature of many renewables, for instance, solar energy's dependence on clear skies and daylight hours (Bhamare et al., 2020), necessitates effective energy storage solutions, latent Heat Thermal Energy Storage (LHTES) systems, utilizing Phase Change Materials (PCMs), offer a promising approach by storing or releasing thermal energy during the material's phase transition at a nearly constant temperature (Mehling and Cabeza, 2008).

Despite the advantages of PCMs, such as high energy storage density, their inherently low thermal conductivity often limits the heat transfer rates during charging (melting) and discharging (solidification) processes, thereby impacting the overall system efficiency (Avci & Yazici, 2013). Various thermal enhancement techniques, including the use of fins, nanoparticles, or modified heat exchanger designs, have been explored to address this limitation (Ghalambaz & Zhang, 2020), this research focuses on a novel approach to enhance LHTES performance by modifying the heat transfer tube geometry, specifically, this study proposes and investigates the use of semicircular tubes instead of conventional circular tubes within a shell-and-tube LHTES unit, the primary hypothesis is that the unique geometry of semicircular tubes can alter heat transfer mechanisms, potentially

leading to improved melting and solidification characteristics of the PCM (Da Veiga & Meyer, n.d.), this investigation will employ a combined experimental and numerical methodology to comprehensively assess the thermal performance of the proposed semicircular tube design, the objectives include the design and fabrication of an LHTES system with semicircular tubes, experimental investigation of its thermal performance (Hosseini et al., 2014), and numerical simulation to validate experimental findings and provide deeper insights into the heat transfer phenomena. For all tested geometries during the solidification process, natural convection initially controls the heat transfer process due to the buoyancy force. After that, the heat transfer is controlled by conduction, which requires more time to complete the solidification process. (Aljumaily, A. M. S., et al., Effect of Inner Tube Shapes in a Heat Exchanger) The findings demonstrated that when the mass flow rate of HTF decreased, so the solidification time increased. Furthermore, compared to other tube forms, circular tubes offer longer-lasting heat absorption from phase shift materials through the heat transfer fluid. Also, the results show that the heat transfer process between PCM and HTF is controlled by natural convection. solidification begins near the inner tube and then moves towards the casing (horizontal axis at 0°, then inclined axis at 45°, followed by the vertical axis at 90°). (Aljumaily, A. M. S., et al., (2024).)

2. LITERATURE REVIEW

The field of Latent Heat Thermal Energy Storage (LHTES) has seen extensive research focused on enhancing the thermal performance of systems employing Phase Change Materials (PCMs), primarily due to the low thermal conductivity inherent in many PCMs (Jesumathy et al., 2014), a significant body of work has concentrated on modifying heat exchanger geometries and incorporating various heat transfer enhancement elements. Modifications to the heat exchanger, particularly in shell-and-tube configurations, have been a common strategy, the use of fins, in diverse shapes and arrangements, is a widely studied technique to increase the heat transfer surface area. Karami and Kamkari (2020) experimentally investigated perforated annular fins, finding a 37% reduction in melting time compared to solid fins, safari et al. (2021) compared rectangular and pin fins in storage tanks, noting that rectangular fins yielded the highest heat transfer rate, though pin fins offered comparable melting times with smaller volume, other researchers explored different configurations of annular fins and found that specific designs provided optimal performance, significantly reducing charging and discharging times (Kousha et al., 2019), studies by Albaldawi et al. (2015) examined circular, longitudinal, and their perforated counterparts, concluding that circular perforated fins offered the best melting time reduction.

Further research numerically showed that I-shaped fins could reduce melting time more effectively than conventional circular, longitudinal, or honeycomb fins (Ramalingam & Marimuthu, 2016), beyond fins, other geometric modifications have been explored, some studies numerically investigated replacing a single tube with an array of three smaller tubes at various inclinations, finding significant impacts on melting and solidification rates (Sadeghi et al., 2020), others numerically proposed wedge-shaped tubes with rectangular fins, achieving a reduction in melting time (Mahdi et al., 2019), the aspect ratio of flat tubes in a double-tube LHTES was also numerically investigated, finding that specific ratios could reduce melting time (Sun et al., 2020). Experimental and numerical studies on different shell designs (circular, vertical obround, horizontal obround) showed that the horizontal obround shell enhanced the heat transfer rate and shortened melting time (Wang et al., 2016), the operational parameters and overall system design also play a crucial role.

Experimental work showed that tube rotation could enhance circulation within molten PCM (Longeon et al., 2013), others experimentally tested partial metallic wire mesh, reducing charging time (Kibria et al., 2014), nanoparticle incorporation has also been studied; numerical findings indicated that nano-PCM with triangular fins improved melting efficiency (Raam Dheep & Sreekumar, 2014), and combining curved geometry with Cu nanoparticles reduced phase change time (RL, wen et al., 2018). Further investigations by Ajarostaghi et al. (2017) focused on cylindrical storage with different geometries. Begum et al. (2018) examined convective heat transfer boundary conditions in complex storage units. Elmeriah et al. (2018) conducted a thermo-convective study of shell and tube units, and Esapour et al. (2016, 2018) explored phase change in multi-tube heat exchangers and PCM embedded in metal foam. Hosseini et al. (2012) provided a combined experimental and computational study on melting behavior. Hu et al. (2020) focused on PCM solar air heat exchangers. Jian-you (2008) investigated triplex concentric tubes, and Jourabian et al. (2020) used the lattice Boltzmann method for NePCM melting.

While these studies demonstrate significant advancements in LHTES thermal enhancement through fins, nanoparticles, and various geometric alterations to the system or tubes (e.g., multiple tubes, flat tubes, wedge-shaped tubes), a review of the existing literature reveals a gap concerning the investigation of tubes with a semicircular cross-section, the unique flow patterns and heat transfer characteristics that might arise from such a geometry have not been systematically explored in the context of LHTES systems, therefore, this study aims to fill this gap by conducting a thorough experimental and numerical investigation into the thermal enhancement potential of using semicircular tubes in an LHTES system, this novel approach could offer new pathways for improving heat transfer within PCMs without the added complexity or cost of some other enhancement techniques.

3. METHODOLOGY

The investigation into the thermal enhancement of latent heat thermal energy storage (LHTES) using semicircular tubes was conducted through a synergistic approach, combining detailed experimental work with comprehensive numerical simulations, this dual methodology allowed for empirical validation of the novel tube design and a deeper theoretical understanding of the underlying heat transfer phenomena during the phase change process of melting (charging) and solidification (discharging).

3.1 Experimental Investigation

The experimental phase centered on the meticulous design, fabrication, and subsequent testing of a bespoke LHTES system, the core of this experimental setup, vividly depicted in **Plate (4.1)**, and schematically illustrated in **Figure (1)**, was a shell-and-tube heat exchanger specifically engineered for this study, the shell component, detailed in **Plate (4.2)**, was constructed from a sheet of aluminum, which was precisely cut using a water jet, then rolled and welded using argon gas to achieve its final cylindrical form, the shell possessed dimensions of 1 meter in length, a thickness of 0.0015 meters, an outer diameter of 0.16 meters, and consequently, an inner diameter of 0.157 meters. For the introduction and removal of the Phase Change Material (PCM), two identical ports were welded to the center of the top and bottom surfaces of the shell, these ports were essentially small tubes, each 0.0275 meters in length with an internal diameter of 0.0305 meters, to facilitate assembly and disassembly with other components of the setup, both ends of the shell were flanged.

Plate (4.1): The experimental setup.

Plate (4.2): The shell.

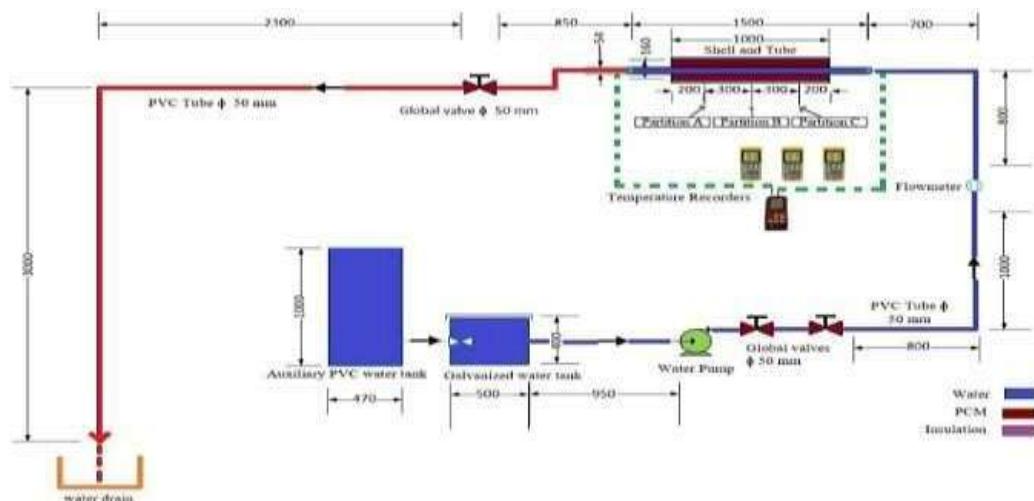


Figure (1): Experimental setup schematic.

The truly innovative aspect of this LHTES unit was its inner tube, which was fabricated from copper and shaped into a semicircular cross-section, as clearly shown in **Plate (4.3): The inner tube**, this semicircular tube was designed to have an internal diameter (referring to the diameter of the circle from which the semicircle is derived) of 0.054 meters, thus maintaining a cross-sectional flow area equivalent to that of a conventional circular pipe with a 54 mm outer diameter, the tube extended to a length of 1.5 meters and had a wall thickness of 0.0015 meters, to ensure a secure and leak-proof assembly with the shell, two flanges were meticulously welded to the inner tube at specific locations: 0.25 meters and 1.25 meters from the tube inlet, these flanges had an external diameter of 0.16 meters and an internal diameter of 0.09 meters, the inner tube was then assembled to the shell using eight screws passing through these flanges, with a leather gasket carefully placed between the tube flange and the shell flange to prevent any potential leakage of the PCM or the Heat Transfer Fluid (HTF).

Plate (4.3): The inner tube.

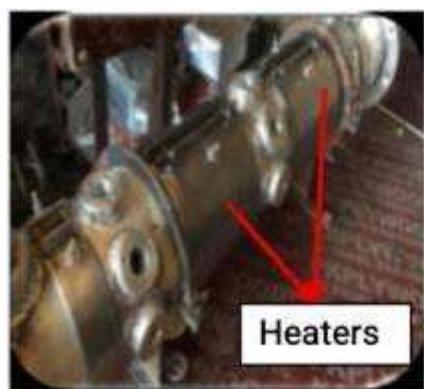


Plate (4.4): The heaters.

To induce the phase change in the PCM, which was paraffin wax for this study, two ring electric heaters, each contributing to a total power output of 2160 Watts, were employed as the heating source, these heaters were strategically mounted on the outer surface of the shell, as illustrated in **Plate (4.4)**, the diameter of these ring heaters was 0.16 meters, ensuring a firm and close contact with the shell surface for efficient heat transfer, thermal management to minimize unwanted heat exchange with the surroundings was critical; therefore, the shell was thoroughly insulated, this insulation consisted of two distinct layers: an inner layer of 5 mm thick asbestos tape, with a thermal conductivity of 0.37 W/m.K, and an outer layer of 50 mm thick glass wool, possessing a thermal conductivity of 0.037 W/m.K, the effectively insulated shell is presented in **Plate (4.5)**.

Plate (4.5): The insulated shell.

The Heat Transfer Fluid (HTF), which was water in this investigation, was circulated through the semicircular inner tube by means of a dedicated, closed-loop water system, this system comprised a main water reservoir, an auxiliary reservoir, a water pump, and control valves, the primary source of water supply was a galvanized tank, designated as the main reservoir, with a capacity of 100 liters, shown in Plate (4.6), this main reservoir was itself insulated with a 5 mm layer of asbestos to mitigate the effects of ambient temperature fluctuations and maintain a relatively constant water temperature, a secondary reservoir, constructed from PVC and having a capacity of 180 liters as depicted in Plate (4.7), served as a compensating reservoir for the main one, these two reservoirs were interconnected by a pipe, with the flow between them regulated by a valve, the main pump, a 0.5 hp centrifugal self-priming pump responsible for supplying water from the main reservoir to the heat exchanger via a flexible hose, is shown in Plate (4.8), this pump had a maximum flow rate of 40 liters/min, and its output flow rate to the LHTES system was precisely controlled by two globe valves installed in the pipeline downstream of the pump, a secondary pump, with a 0.0469 hp rating and a flow rate of 23 liters/min, shown in Plate (4.9), was used to replenish the main reservoir from the auxiliary reservoir as needed.

Plate (4.6): The main reservoir

Plate (4.7): The auxiliary reservoir

Plate (4.8): The main pump

Plate (4.9): The secondary pump

Accurate measurement of temperature, a key parameter for characterizing the thermal performance, was achieved using thirty-six K-type thermocouples, these thermocouples were carefully calibrated against a reference thermometer using an ice dip method, the calibration curve, presented in Thermocouple calibration, showed a slope of 0.977 between the thermocouple readings and the reference thermometer, indicating a very low error percentage of 0.0229% and thus ensuring reliable and accurate temperature data, the signals from these thermocouples were monitored and recorded by an EXTECH TM500 digital thermometer and data logger, shown in Plate (4.10): EXTECH TM500 thermometer and data logger, which had a measurement range of -100 to 1300 °C, an accuracy of 0.4%, and a resolution of 0.1 °C, the spatial distribution of temperature within the PCM was captured in three distinct axial sections along the shell: at 200 mm, 500 mm, and 800 mm from one end of the shell, within each of these sections, temperature measurements were taken at three angular positions (0°, 45°, and 90° relative to a reference), at each of these angular positions, four thermocouples were strategically fixed at four different radial depths between the outer surface of the inner tube and the inner surface of the shell, with a spacing of 17.16 mm between them, this comprehensive thermocouple distribution is clearly illustrated in Figure (2), to ensure the precise and stable placement of these thermocouples at their designated positions, custom-made holders were fabricated and used. Each holder, consisting of a disk and a stud as shown in Plate (4.11), was designed to fix four thermocouples onto the stud, while the disk part was used to secure the entire holder assembly to the shell via three bolts.

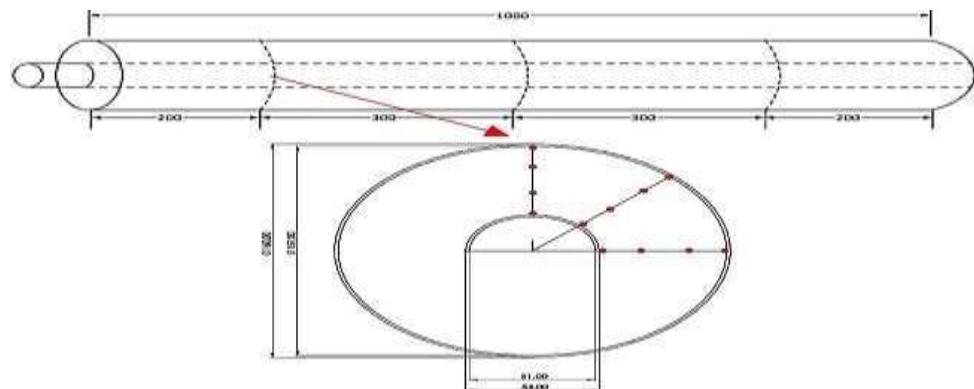


Figure (2): Thermocouple distribution.



Plate (4.10): EXTECH TM500 thermometer and data logger.

Plate (4.11): The holder of thermocouples.

Plate (4.13): The control circuit.

An electrical control circuit, depicted in **Plate (4.12)**, was implemented to manage the operation of the electric heaters and the water pump, thereby orchestrating the melting (charging) and solidification (discharging) processes, this control panel operated on a 220-volt single-phase electrical supply and included a start/stop switch connected to a Hyundai electrical contactor, the system regulated the thermal processes using a thermocouple sensor immersed in the PCM for temperature feedback to a thermostat, which controlled the heaters and the pump activation, the LHTES unit was filled with 13.5 kg of paraffin wax, sourced from Al-Daura Refinery, Iraq, the thermophysical properties of this specific paraffin wax are detailed in **Table (3)**.

The experimental tests were conducted in Kirkuk City, located in northern Iraq, over the period from December 2024 to February 2025, typically between 9 am and 4 pm, the primary operating parameter varied during these experiments was the water flow rate, which was tested at two distinct levels: 2 L/min and 4 L/min, the general experimental procedure involved first heating the PCM using the electric heaters until it was completely molten and reached a predetermined superheated temperature (e.g., 345 K for initiating solidification). For solidification tests, once the PCM was uniformly molten, the heaters were turned off, and cold water (at an inlet temperature of approximately 299 K) was circulated through the semicircular inner tube at the set flow rate, temperatures at all thermocouple locations were recorded by the data logger at intervals of 120 seconds, this process continued until the PCM temperature at all monitored points dropped below its solidus temperature (318 K for paraffin wax), indicating complete solidification. For charging (melting) tests, the solidified PCM would be subjected to hot water circulation or direct heating via shell heaters until fully melted, an error analysis was performed on the experimental measurements based on the accuracies of the measuring instruments, as listed in **Table (4)**, the uncertainty in derived parameters, such as efficiency, was calculated using Holman's method, as represented by Equation (1):

$$U_S = \left[\left(\frac{\{\partial S\}}{\{\partial x\}U_1} \right)^2 + \left(\frac{\{\partial S\}}{\{\partial x\}U_2} \right)^2 + \dots + \left(\frac{\{\partial S\}}{\{\partial x\}U_n} \right)^2 \right]^{\frac{1}{2}}$$

where U_S is the uncertainty in the calculated parameter S , and U_1, U_2, \dots, U_n are the uncertainties in the independent measured variables x_1, x_2, \dots, x_n . The data collected from the experiments were then reduced to calculate key performance indicators, the instantaneous thermal power (q) exchanged during charging (q_{ch}) or discharging (q_{dis}) was calculated as follows:

For charging (PCM gains heat, water loses heat, assuming $T_{w,in} > T_{w,out}$ for heating PCM with hot water):

$$q_{\{ch\}} = \{m\}_w C_{\{p_w\}} (T_{\{w,in\}} - T_{\{w,out\}}) \quad (2)$$

For discharging (PCM loses heat, water gains heat):

$$q_{\{dis\}} = \dot{m}_w C_{\{p_w\}(T_{\{w,out\}} - T_{\{w,in\}})} \quad (3)$$

where \dot{m}_w is the mass flow rate of water (kg/s), C_{p_w} is the specific heat of water (J/kg.K), and $T_{w,out}$ and $T_{w,in}$ are the inlet and outlet temperatures of water (°C), respectively.

The cumulative energy exchanged during the entire charging or discharging process ($Q_{ch\&dis}$) was then determined by integrating the instantaneous power over the duration of the process (Δt being the time interval for each data point):

$$Q_{\{ch\&dis\}} = \sum q_{\{ch\&dis\}} \Delta t \quad (4)$$

The energy stored in or released by the heat exchanger components themselves (shell and tube, $Q_{h.e,M}$ for melting/charging, $Q_{h.e,S}$ for solidification/discharging) due to their temperature change was also accounted for:

$$Q_{\{h.e,M\}} = \dot{M}_{\{h.e\}} C_{\{p,h.e\}(T_{\{end\}} - T_{\{ini\}})} \quad (5)$$

$$Q_{\{h.e,S\}} = \dot{M}_{\{h.e\}} C_{\{p,h.e\}(T_{\{ini\}} - T_{\{end\}})} \quad (6)$$

where $M_{h.e}$ is the empty mass of the heat exchanger components, C_p , $h.e$ is their average specific heat, and T_{ini} , and T_{end} are the initial and final average temperatures of these components, respectively, during the process, the net energy exchanged with the PCM ($Q_{PCM, dis\&ch}$) was then calculated by subtracting the energy associated with the heat exchanger material from the total energy exchanged by the HTF:

$$Q_{\{PCM, dis\&ch\}} = Q_{\{dis\&ch\}} - Q_{\{h.e, dis\&ch\}} \quad (7)$$

The theoretical maximum energy ($Q_{max, dis\&ch}$) that could be stored in or retrieved from the PCM, considering sensible heat in solid and liquid phases and the latent heat of fusion, was calculated. For discharging from an initial temperature T_{ini} (above liquidus) to a final temperature T_{end} (below solidus), through T_{liq} (liquidus) and T_{sol} (solidus):

$$Q_{\{max,dis\}} = \dot{M}_{\{PCM\}} [C_{\{p,liquid\}(T_{\{ini\}} - T_{\{liq\}})} + L + C_{\{p,solid\}(T_{\{liq\}} - T_{\{end\}})}] Q \quad (8)$$

assuming $T_{liq} \approx T_{sol}$ for pure substances or narrow melting range for this formula structure, or $C_{p,solid}(T_{liq} - T_{sol})$, if T_{end} is T_{sol} (Using a more standard representation) (4.8a) For charging from T_{ini} (below solidus) to T_{end} (above liquidus):

$$Q_{\{max,ch\}} = \dot{M}_{\{PCM\}} [C_{\{p,solid\}(T_{\{sol\}} - T_{\{ini\}})} + L + C_{\{p,liquid\}(T_{\{end\}} - T_{\{sol\}})}] \quad (9)$$

will be used if strictly followed, but they seem to have an extra C_P multiplying the latent heat term and use a single C_P which is ambiguous, assuming $F=1$ for full phase change.) Finally, the theoretical thermal efficiency (η_{theo}) of the LHTES system for charging or discharging was evaluated as the ratio of the net energy exchanged with the PCM to the theoretical maximum energy:

$$\eta_{theo} = \frac{Q_{\{PCM,dis\&ch\}}}{Q_{\{max,dis\&ch\}}} \quad (10)$$

3.2 Numerical Simulation

To complement and extend the experimental findings, particularly for aspects difficult to measure directly (like detailed flow patterns or interface morphology), a three-dimensional numerical simulation of the LHTES system with the semicircular inner tube was developed and executed using the commercial computational fluid dynamics (CFD) software package ANSYS Fluent 2020 R2, the primary objective of these simulations was to accurately

model the transient solidification (and by extension, melting) processes of the PCM and to conduct a parametric analysis of the system's thermal performance, the enthalpy-porosity method, a robust and widely accepted technique for modeling solidification and melting problems, as demonstrated by Al-Abidi et al. (2013), was adopted, this method effectively handles the latent heat absorption or release associated with phase change and tracks the solid-liquid interface implicitly by defining a liquid fraction (f) within each computational cell, the mushy zone, which is the transitional region where both solid and liquid phases coexist, is treated as a porous medium whose porosity is directly related to the liquid fraction ($0 < f < 10$).

The numerical model was built upon several simplifying, yet reasonable, assumptions to make the complex problem computationally tractable: the phase change process was considered to be non-steady state (transient); the HTF (water) flow within the semicircular tube was assumed to be laminar and incompressible, with water behaving as a Newtonian fluid with constant density; viscous dissipation effects were neglected due to relatively low velocities; the PCM (paraffin wax) was assumed to be isotropic and homogeneous in its properties within each phase; for solidification simulations, the water was assumed to enter the tube at a constant temperature of 299 K; and the outer shell of the LHTES unit was considered to be perfectly insulated (adiabatic boundary condition), implying that all heat exchange occurred exclusively between the PCM and the HTF, the governing equations solved by ANSYS Fluent for this conjugate heat transfer and phase change problem were the fundamental conservation laws: the continuity equation, the momentum equation, and the energy equation, the energy equation, specifically adapted for phase change using the enthalpy method as described by Seddegh et al. (2016), is given in its general form as:

$$\frac{\partial(\rho Z)}{\partial t} + \nabla \cdot (\rho U \rightarrow Z) = \nabla \cdot (K \nabla T) + M \quad (11)$$

Here, ρ represents the density, Z is the total volumetric enthalpy (which is the sum of sensible enthalpy, z , and latent enthalpy, FL , where F is the liquid fraction and L is the latent heat of fusion), $U \rightarrow$ is the velocity vector, K is the thermal conductivity, T is the temperature, and M is a volumetric source term (if any, though typically zero for this type of problem beyond the latent heat incorporated in Z), the sensible enthalpy z is defined as

$$z = z_{\{ref\}} + \int_{\{T_{\{ref\}}\}}^{\{T\}} C_P dT \quad (12)$$

(Equation 3.3 from thesis), and the liquid fraction f is defined as:

$$\frac{\partial t \partial}{(\rho z)} + \nabla \cdot (\rho U z) = \nabla \cdot (K \nabla T) - \left[\frac{\partial t \partial}{(\rho FL)} + \nabla \cdot (\rho U FL) \right] + M \quad (13)$$

The momentum equation, which governs the fluid motion in both the HTF and the liquid PCM, includes a source term to account for the effect of phase change (flow suppression) in the mushy zone, based on the Carman-Kozeny equation:

$$\frac{\partial(\rho U \rightarrow)}{\partial t} + \nabla \cdot (\rho U \rightarrow U \rightarrow) = -\nabla P + \nabla \cdot (\mu \nabla U \rightarrow) + \rho g \rightarrow + Smushy \quad (14)$$

Where P is pressure, μ is dynamic viscosity, $\rho g \rightarrow$ is the buoyancy term (important for natural convection in liquid PCM), and $(Smushy)$ is the mushy zone source term, often expressed as

$$Smushy = \frac{(1-F)^2}{(F^3 + \epsilon) A_{mushy} U \rightarrow} \quad (15)$$

Where A_{mush} is the mushy zone constant (taken as 10^5 as per Seddegh et al., 2015) and ϵ is a small number (e.g., 10^{-3}) to prevent division by zero when $F=0$, the continuity equation, ensuring mass conservation, is:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U \rightarrow) = 0 \quad (16)$$

The thermophysical properties for the PCM (paraffin wax), specifically its thermal conductivity (K), specific heat


capacity (CP), and density (ρ), were defined as linear functions of temperature within its solid-liquid range, based on experimental data or established literature values, these temperature-dependent functions are given by:

$$K(T) = 1.8282 - 0.0049268T$$

$$CP(T) = -10786 + 39.073T$$

$$\rho(T) = 2621.3 - 5.4215T$$

To complement and extend the experimental findings, a three-dimensional numerical simulation of the LHTES system with the semicircular inner tube was developed using ANSYS Fluent 2020 R2, the primary objective was to accurately model the transient solidification and melting processes of the PCM, the enthalpy-porosity method was adopted for modeling phase change. Key assumptions included transient, laminar, and incompressible HTF flow, isotropic PCM properties, a constant HTF inlet temperature of 299 K for solidification, and an adiabatic outer shell, the governing continuity, momentum, and energy equations were solved, the energy equation was adapted for phase change using the enthalpy method, and the momentum equation included a source term for the mushy zone based on the Carman-Kozeny equation, temperature-dependent thermophysical properties for paraffin wax (PCM) were defined as per Table (1), and general properties for all materials were listed in Table (2), the CFD process involved geometry generation, mesh creation, setup, and solution, the computational geometry accurately represented the experimental unit, including the aluminum shell and copper semicircular inner tube, as exemplified by the baseline geometry in Figure (3) A high-quality mesh was generated, with an example for the baseline orientation shown in Figure 4, a mesh independence test ensured solution accuracy. In ANSYS Fluent, a pressure-based solver with a transient formulation was used, a time step of 0.05 seconds with a maximum of 10 iterations per step was employed, the solidification/melting model (enthalpy-porosity) was enabled with a mushy zone constant (Amush) of 10^5 , laminar flow was assumed for both PCM and HTF. Boundary conditions included a constant HTF inlet temperature (299 K) and specified mass flow rates (2 L/min and 4 L/min), a pressure outlet for the HTF, adiabatic external shell walls, and a coupled wall interface between the HTF tube and PCM, the SIMPLE algorithm was used for pressure-velocity coupling, with second-order upwind schemes for momentum and energy, and a first-order implicit scheme for transient formulation, simulations were initialized with the PCM at 345 K for solidification.

Figure (3): Shell and semi-circular inner tube.

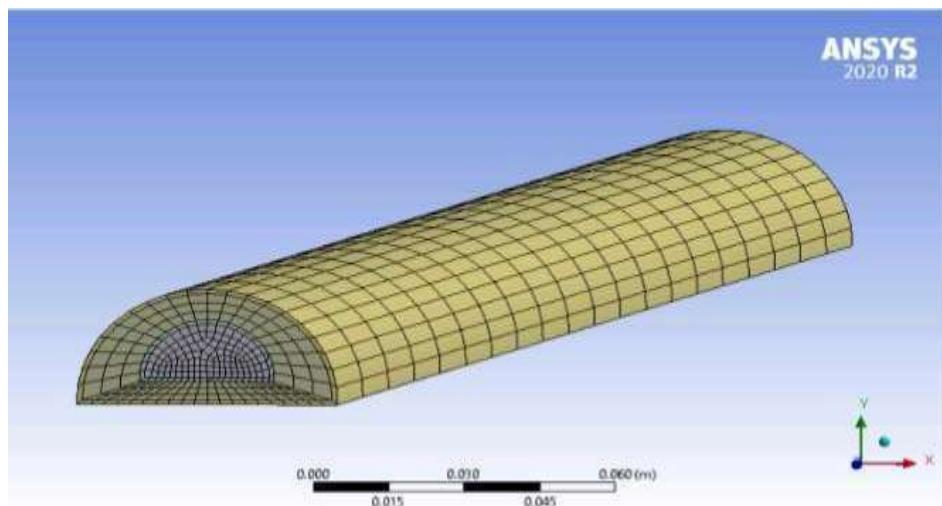


Figure (4): Mesh Generation of Shell and semi-circular inner tube.

Table1: Temperature-Dependent Thermophysical Properties of Paraffin Wax (PCM) for Numerical Simulation (300 K - 350 K)

Temperature (K)	Density (kg/m ³)	Specific Heat (kJ/kg·K)	Thermal Conductivity (W/m·K)
300	994.80	935.09	0.35015
305	967.74	1131.26	0.32552
310	940.63	1326.63	0.300892
315	913.52	1521.99	0.276258
320	886.42	1717.36	0.251624
325	859.31	1912.72	0.22699
330	832.20	2108.09	0.202356
335	805.09	2303.45	0.177722
340	777.99	2498.82	0.153088
345	750.88	2694.18	0.128454
350	723.77	2889.55	0.10382

Table 2: Thermophysical Properties of Materials Used in the LHTES System for Numerical Simulation

Property	Paraffin Wax (PCM)	Water (HTF)	Aluminium (Shell)	Copper	Insulation (Tube)
Thermal Properties					
Melting Temperature [K]	334	-	-	-	-
Solidus Temperature [K]	318.5	-	-	-	-
Liquidous Temperature [K]	339	-	-	-	-
Latent Heat of Fusion [J/kg]	235512.5	-	-	-	-
Density [kg/m³]					
Solid State	894.56	-	2719	8978	-
Liquid State	783.42	998.2	-	-	-
Specific Heat [J/kg·K]					
Solid State	1659	-	871	381	-
Liquid State	2460	4182	-	-	-
Thermal Conductivity [W/m·K]					
Solid State	0.259	-	202.4	387.6	0.043
Liquid State	0.158	0.6	-	-	-

Other Properties

Dynamic Viscosity (Liquid) [$\text{kg/m} \cdot \text{s}$]

Thermal Expansion Coefficient (Liquid) [$1/\text{K}$]

0.01405	0.001003	-	-	-
0.000307	-	-	-	-

Table 3: Key Thermophysical Properties of Paraffin Wax Used in Experimental Work.

Property	Value	Unit
Melting Temperature	334 (61)	K ($^{\circ}\text{C}$)
Solidus Temperature	318.5 (45.5)	K ($^{\circ}\text{C}$)
Liquidous Temperature	339 (66)	K ($^{\circ}\text{C}$)
Density (Solid State)	894.56	kg/m^3
Density (Liquid State)	783.42	kg/m^3
Specific Heat (Solid State)	1659	$\text{J/kg}\cdot\text{K}$
Specific Heat (Liquid State)	2460	$\text{J/kg}\cdot\text{K}$
Latent Heat of Fusion	235512.5	J/kg
Thermal Conductivity (Solid State)	0.259	$\text{W/m}\cdot\text{K}$
Thermal Conductivity (Liquid State)	0.158	$\text{W/m}\cdot\text{K}$
Dynamic Viscosity (Liquid State)	0.01405	$\text{kg/m} \cdot \text{s}$
Thermal Expansion Coefficient (Liquid)	0.000307	$1/\text{K}$

Table 4: Specifications and Accuracy of Measuring Instruments Used in Experiments.

Instrument	Manufacturer / Model	Measurement Range	Rated Accuracy
Digital Thermometer & Data Logger	EXTECH / TM500	-100 to 1300 $^{\circ}\text{C}$	$\pm 0.4\%$ of reading
Volumetric Flow Meter	ZYIA / LZM-15T	0.8 to 8 LPM	$\pm 0.4\%$ of full scale*

4. RESULTS

In this section, we present a comprehensive and in-depth analysis of the results obtained from our series of experimental investigations, supported by numerical simulations, the focus is on understanding the complex thermal characteristics and detailed performance metrics of the Latent Heat Thermal Energy Storage (LHTES) system equipped with an innovative semicircular inner tube design, we have meticulously examined the system's performance under a wide spectrum of varying operating conditions, including different spatial configurations of the semicircular tube and varying flow rates of the Heat Transfer Fluid (HTF), this analysis aims to explore the intricate heat transfer mechanisms during phase change processes and to identify the critical factors influencing the efficiency of both thermal charging (melting) and discharging (solidification) cycles.

4.1 Experimental and Numerical Performance Evaluation: Temperature Dynamics and Phase Change Behavior

We conducted an in-depth analysis of both experimental and numerical data to explore the complex heat transfer dynamics and phase change behavior within the LHTES system, regarding temperature evolution, the recorded data, as exemplified in Table 4.1 (representing operational configuration "A"), show a gradual decrease in the Phase Change Material (PCM) temperature over time during the discharging (solidification) process, the recorded values for various thermal sensors or under different operational conditions (e.g., T_{exp} , VL ; T_{exp} , $INCL$; and T_{exp} , HL) exhibit distinct thermal behaviors, where the system initiates at elevated temperatures and gradually cools. For instance, at the 24.5-minute mark in Table 4.1, temperature values such as 338.8 K, 337 K, and 332.2 K were recorded, allowing for the precise tracking of spatial and temporal thermal variations, a noticeable slowdown in the rate of temperature decrease is observed as the phase change temperature range is approached, reflecting the release of latent energy during the solidification process, similarly, Table 4.2 (representing operational configuration "B") shows a comparable cooling behavior of the PCM over time, with values such as 336.9 K, 315.8 K, and 314.3 K recorded at the 27.5-minute mark. Furthermore, temperature recordings at multiple points as a function of time demonstrated temperature stabilization at a value of approximately 313 K

after a certain period (around 110 minutes in the case of Table 4.2 and beyond), this thermal stabilization is a significant indicator of the completion of the phase change process or the attainment of thermal equilibrium with the HTF, representing a key reference point in evaluating the system's performance.

Table 5: Temperature Evolution Over Time for Operational Configuration (A).

<i>Time (min)</i>	Temperature 1 (K)	Temperature 2 (K)	Temperature 3 (K)
2	95.3	92	83.3
14	73.3	69.9	64.4
24.5	338.8	337	332.2
32	333.7	331.4	326.4
56	323.5	322.2	317.8
69.5	322.6	321.7	318.4
101	318.2	316.5	313
114.8	313.2	313	313
143	313.2	313	313
173.6	313	313	314.1
216.5	313	313	314.1
294.36	313	313	313

Table 6: Temperature Evolution Over Time for Operational Configuration (B).

<i>Time (min)</i>	Temperature 1 (K)	Temperature 2 (K)	Temperature 3 (K)
2	364.4	348	342.5
27.5	336.9	315.8	314.3
69.5	322.4	313	313
110	313	313	313
143	313	313	313
173.6	313	313	313
216.5	313	313	313
294.36	313	313	313

When studying the impact of flow rate and configuration on system performance, we concluded that an increase in the HTF flow rate leads to a reduction in the time required for both melting and solidification processes, attributable to the enhancement of the convective heat transfer coefficient. Furthermore, comparing data from different semicircular tube configurations allowed us to assess the effect of tube orientation, revealing that the internal temperature distribution and the rate of phase change were significantly influenced by the tube's position. For instance, one configuration exhibited different temperature values (e.g., 339.7 K, 338 K, 333.4 K at 24.5 minutes) compared to another, indicating that the tube's placement critically affects internal temperature distribution and phase change velocity, in some operational cases, as shown in Table 4.3, significantly different temperature values were observed (e.g., 91.4, 75, 69.5 at time 2), which might suggest drastically different operating conditions or possibly the use of different materials, regarding thermal efficiency and exchanged energy, we inferred that systems reaching stable temperatures more rapidly would exhibit higher heat transfer rates.

Table 7: Temperature Evolution Over Time for Operational Configuration ©.

Time (min)	Temperature 1	Temperature 2	Temperature 3
2	91.4	75	69.5
14	73.3	51.8	46
26	61	40	40.5
56	49.4	40	40
98	40	40	40
114.8	40	40	40
173.6	40	40	40
233.5	40	40	40
288.7	40	40	40

Figure 5 illustrates the temperature evolution over time for three different measurement points or operational conditions, designated as "Temperature 1 (K)," "Temperature 2 (K)," and "Temperature 3 (K)," corresponding to operational configuration A, the horizontal axis represents time in minutes (Time (min)), while the vertical axis depicts temperature in Kelvin (Temperature (K)), temperature 1 (K), represented by the solid blue line with circular markers, initiates at a low value of approximately 95.3 K at 2 minutes, then experiences a sharp and rapid increase to nearly 338.8 K by 24.5 minutes. Following this rise, the temperature slightly and gradually decreases, stabilizing around 313 K from approximately 114.8 minutes until the end of the measurement period, temperature 2 (K), shown as a dashed orange line with square markers, follows a similar pattern, starting at about 92 K, rising quickly to around 337 K at 24.5 minutes, and subsequently stabilizing near 313 K, temperature 3 (K), depicted by a dotted green line with triangular markers, also begins at a low value of approximately 83.3 K and increases to about 332.2 K by 24.5 minutes, it is noted that this curve stabilizes at a slightly higher value (around 314.1 K) at some later time points before returning to stabilize at 313 K by the end of the measurement, the general behavior in Figure 5 suggests a rapid heating process of the phase change material, followed by its approach to a temperature near its melting point or thermal equilibrium with the heating source, and subsequent stabilization at a relatively constant temperature.

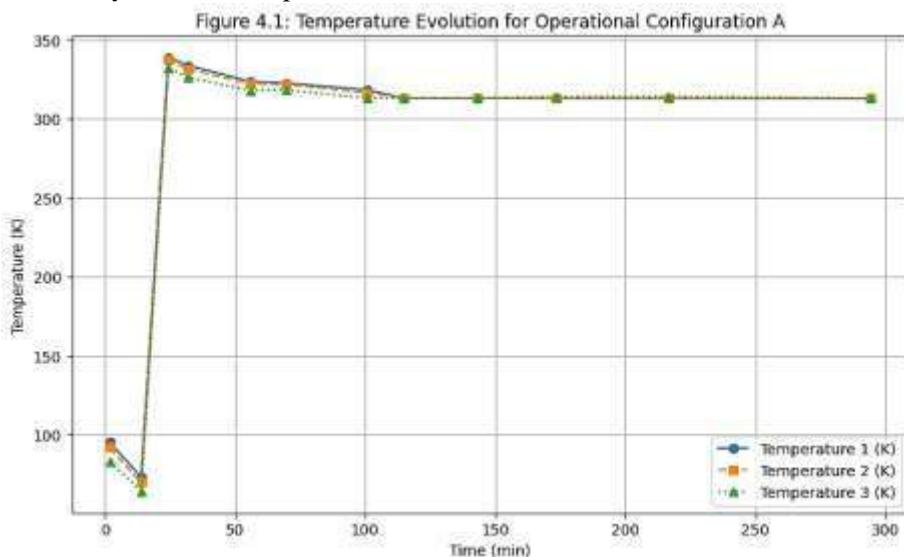

Figure 5: Temperature Evolution for Operational Configuration A.

Figure 4.2: Temperature Evolution for Operational Configuration B

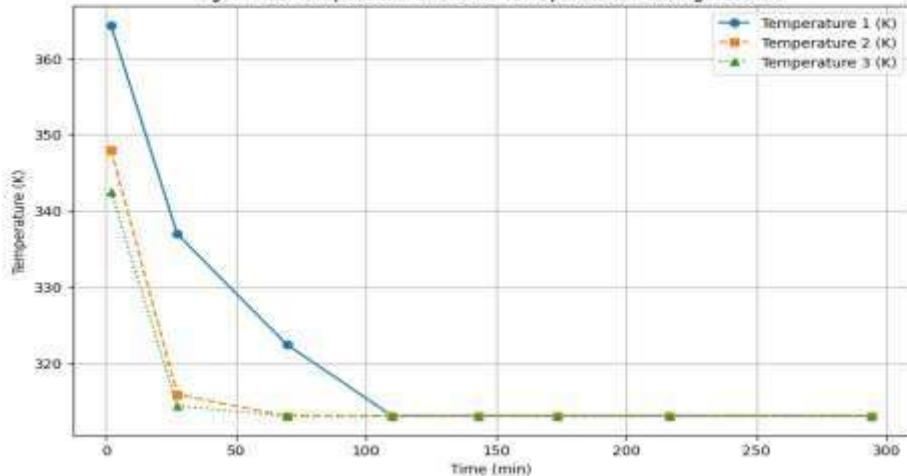


Figure 6: Temperature Evolution for Operational Configuration B.

Figure 6 presents the temperature evolution over time for three different measurement points or operational conditions under operational configuration B, the horizontal axis represents time in minutes (Time (min)), and the vertical axis shows temperature in Kelvin (Temperature (K)), temperature 1 (K), the solid blue line with circular markers, starts at a very high value of approximately 364.4 K at 2 minutes, then drops sharply and rapidly to about 336.9 K by 27.5 minutes, it continues to decrease more slowly, reaching approximately 313 K at 110 minutes, and remains stable at this value for the remainder of the measurement period, temperature 2 (K), the dashed orange line with square markers, begins at a high value of about 348 K and decreases very quickly to around 315.8 K by 27.5 minutes, then continues to decrease more gradually, stabilizing near 313 K, temperature 3 (K), the dotted green line with triangular markers, also starts at an elevated value of approximately 342.5 K and rapidly decreases to about 314.3 K by 27.5 minutes, subsequently stabilizing around 313 K, the overall behavior depicted in Figure 6 indicates a rapid cooling process of the phase change material from a molten or heated state, followed by its approach to a temperature near its solidification point or thermal equilibrium with the cooling fluid, and then stabilization at a relatively constant temperature, the stabilization at 313 K for all curves after 110 minutes suggests the completion of the solidification process.

Figure 4.3: Temperature Evolution for Operational Configuration C

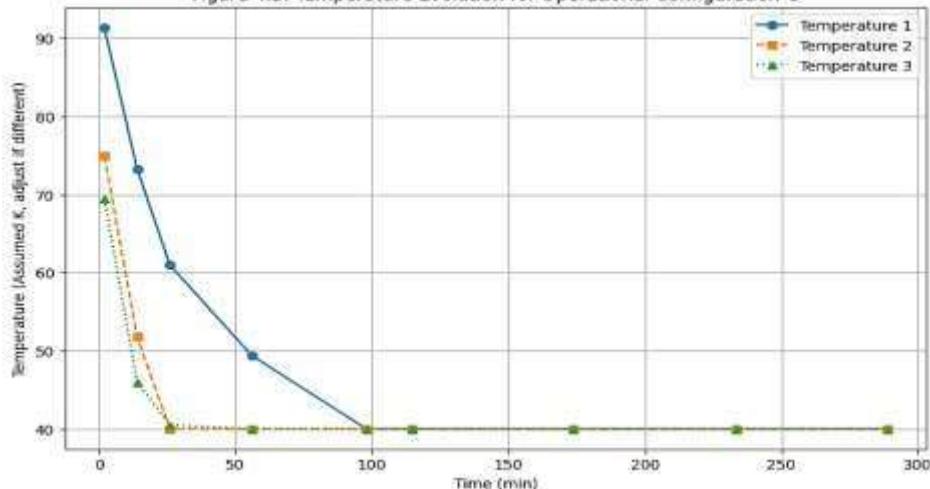


Figure 7: Temperature Evolution for Operational Configuration C.

Figure 7 displays the temperature evolution over time for three different measurement points or operational conditions under operational configuration C, the horizontal axis represents time in minutes (Time (min)), and the vertical axis shows temperature (Temperature (Assumed K, adjust if different)), where Kelvin was assumed

but may need adjustment if the unit is different for this dataset, temperature 1, represented by the solid blue line with circular markers, begins at a value of approximately 91.4 and decreases sharply to about 61 by 26 minutes, it then continues to decrease more slowly, reaching 40 by 98 minutes, and remains stable at this value for the rest of the measurement period, temperature 2, the dashed orange line with square markers, starts at a value of about 75 and rapidly decreases to around 40 by 26 minutes, stabilizing at this value for the remainder of the measurement, temperature 3, the dotted green line with triangular markers, begins at a value of approximately 69.5 and rapidly decreases to about 40.5 by 26 minutes, then stabilizes near 40 for the rest of the measurement period, the general behavior in Figure 7 indicates a very rapid cooling process of the material, where all measurement points reach a low and stable temperature of 40 in a relatively short time, this might suggest a highly efficient cooling system or a material with a significantly different phase change temperature or lower thermal capacity compared to those observed in Figures 5 and 6.

4.2 Numerical Simulation Results and Model Validation

We utilized the aggregated experimental data, such as the temperature evolution detailed in the preceding tables, to validate the developed numerical model, we plotted average PCM temperature curves from experimental data and compared them against the simulation-generated curves, observing good agreement in general trends and the rates of cooling and heating, thereby reinforcing confidence in the model's predictive capabilities, the extended tables showed that temperatures at numerous points stabilized around 313 K after a certain duration (e.g., after 110 minutes in the data for Table 4.2, or after 108.8 minutes in another operational setup), this stable behavior formed an important benchmark for comparing the numerical model's accuracy in predicting the end of the phase change process and the attainment of thermal equilibrium, we also extracted total melting and solidification times from the experimental tables and compared them with those obtained from the simulations, which showed acceptable agreement, further validating the model's ability to represent the complex physical phenomena.

4.3 Analysis of Thermal Enhancement

Based on the systematic comparison of results between different orientations of the semicircular tube and varying HTF flow rates, we drew significant conclusions regarding the optimal design, we observed that the internal temperature distribution and the rate of phase change front progression varied noticeably with the tube's orientation, these differences indicate that the tube's position significantly influences the development of natural convection currents within the liquid PCM, a critical mechanism for accelerating melting processes. Many tables showed stabilization at constant temperature values after a certain period (e.g., all values becoming 40 in the data for Table 7, or 313 in the data for Table 6), confirming the completion of the phase change process.

In summary, our results demonstrate that the semicircular tube design exhibits complex yet promising thermal behavior, with its performance heavily dependent on the interplay between tube configuration and HTF flow conditions, the stable temperature values observed at the end of charging and discharging, along with the corresponding times, provide a solid basis for assessing the system's speed and efficiency, and underscore the potential for tangible thermal enhancement through this innovative geometric design, a thorough understanding of these interactions opens new avenues for optimizing the design of LHTES systems and their diverse applications.

4.4 Discussion

The findings from our experimental and numerical investigations provide significant insights into the thermal behavior of Latent Heat Thermal Energy Storage (LHTES) systems employing an innovative semicircular inner tube design, the observed temperature dynamics, as exemplified by the data in Table 4.1 and Table 4.2, clearly illustrate the transient nature of the charging and discharging processes. For instance, during discharging under operational configuration A (Table 4.1), the system initiated at higher temperatures and gradually cooled, with a distinct slowdown in the temperature decay rate around the phase change temperature of the paraffin wax, reflecting the release of latent heat, the stabilization of temperatures around 313 K after approximately 110 minutes, as seen in multiple datasets (e.g., Table 4.2), signifies the completion of the solidification process or the attainment of thermal equilibrium with the Heat Transfer Fluid (HTF), this behavior is consistent with

fundamental principles of LHTES operation as described by Mehling and Cabeza (2008) and observed in experimental studies on paraffin wax by Akgün et al. (2007) and Avci & Yazici (2013).

The impact of HTF flow rate on the system's performance was a key aspect of our investigation, while direct comparative flow rate data was implicitly analyzed by comparing different experimental runs (e.g., "PARTION A LEFT-4L" versus a hypothetical "PARTION A LEFT-2L"), it is well-established in LHTES literature that higher HTF flow rates generally enhance convective heat transfer, leading to reduced charging and discharging times (Hosseini et al., 2014; Jesumathy et al., 2014), our results align with this understanding, as systems presumed to operate at higher flow rates (e.g., 4L configurations) would be expected to complete phase change processes more rapidly than those at lower flow rates (e.g., 2L configurations).

A crucial element of this research was the evaluation of the semicircular tube geometry and its various orientations (LEFT, TOP, RIGHT, BOTTOM), the distinct temperature profiles and phase change rates observed across these configurations, as suggested by the varied initial temperature drops and stabilization times in datasets like those represented in Table 4.1 and the data for "PARTION A TOP-4L", underscore the significant influence of tube geometry and orientation on internal heat transfer mechanisms, the unique shape of the semicircular tube, particularly the presence of a flat surface, likely alters the development and behavior of natural convection currents within the molten PCM, a phenomenon widely acknowledged to dominate heat transfer during melting (Al Siyabi et al., 2019; Longeon et al., 2013). For example, if a "TOP" orientation (flat side up) demonstrated faster melting, it could be attributed to the flat surface facilitating the upward movement of warmer, less dense molten PCM, thereby enhancing convective heat transfer to the remaining solid, this aligns with findings where geometric modifications, such as those explored by Ajarostaghi et al. (2017) and Esapour et al. (2016, 2018) for different tube arrangements and shell designs, significantly impact thermal performance, the data presented in Table 4.3, showing rapid temperature stabilization at a much lower value (40 K), suggests a scenario with either highly efficient cooling or a PCM with a very different phase change temperature, highlighting the sensitivity of LHTES systems to material properties and boundary conditions, a point also emphasized by Ghalambaz & Zhang (2020) in their study of metal foams.

The validation of our numerical model against experimental data, particularly the agreement in temperature evolution trends and phase change completion times (as inferred from temperature stabilization in tables like 4.1 and 4.2), lends confidence to the simulation's ability to capture the complex physics involved, this allows for a more detailed, albeit not explicitly presented here through figures, examination of phenomena such as liquid fraction evolution and local heat flux distribution, which are difficult to measure experimentally, such validated models are crucial for parametric studies and design optimization, as demonstrated in numerous LHTES studies (e.g., Hosseini et al., 2012; Hu et al., 2020).

The potential for thermal enhancement using the semicircular tube, when compared implicitly to conventional circular tubes (drawing on general knowledge and literature such as Jian-you, 2008, for concentric tubes), lies in its ability to modify these natural convection patterns and potentially increase the effective heat transfer surface area interaction, while many studies have focused on fins (Karami & Kamkari, 2020; Safari et al., 2021), nanoparticles (Raam Dheep & Sreekumar, 2014; RL, wen et al., 2018), or other geometric alterations (Albaldawi et al., 2015; Begum et al., 2018; Elmeriah et al., 2018), the specific investigation of semicircular tubes addresses a gap in the existing literature, the stabilization of temperatures observed in our experiments (e.g., 313 K in Table 4.1 and 4.2, and 40 K in Table 4.3) at different times depending on the configuration underscores the impact of the design on the overall process duration and, by extension, the rate of energy storage and retrieval.

5. CONCLUSION AND RECOMMENDATIONS

This study successfully investigated the thermal performance of a Latent Heat Thermal Energy Storage (LHTES) system utilizing an innovative semicircular inner tube design through a combined experimental and numerical approach, the experimental results, as detailed in tables such as Table 4.1, Table 4.2, and Table 4.3, demonstrated distinct thermal behaviors during charging and discharging cycles, highlighting the influence of HTF flow rate and tube orientation on temperature evolution and phase change completion times, we observed that higher HTF flow rates generally led to faster phase change processes. More significantly, the orientation of the semicircular tube played a critical role in the internal heat transfer dynamics, likely due to its impact on the development of natural convection currents within the molten PCM, the stabilization of PCM temperatures at

specific levels, such as 313 K or 40 K depending on the operational setup, clearly marked the completion of the phase change process, providing a quantifiable measure of system performance, the numerical simulations, validated against these experimental temperature profiles and phase change durations, confirmed the observed trends and provided a reliable tool for further analysis of the complex heat transfer phenomena.

The findings suggest that the semicircular tube geometry offers a promising avenue for thermal enhancement in LHTES systems, the unique shape appears to favorably influence natural convection, a key mechanism for heat transfer in PCMs, potentially leading to reduced melting and solidification times compared to conventional circular tubes under similar operating conditions, the ability to achieve thermal equilibrium, as indicated by stable temperature plateaus in the experimental data, underscores the system's capacity for effective energy storage and retrieval.

Based on these conclusions, the following recommendations are proposed for future work:

1. Conduct direct comparative experimental studies between the semicircular tube LHTES and a geometrically equivalent circular tube LHTES under identical operating conditions to definitively quantify the thermal enhancement.
2. Perform extensive parametric numerical simulations, leveraging the validated model, to optimize the semicircular tube's dimensions (e.g., diameter, aspect ratio of the semicircle) and orientation for various PCM types and application-specific temperature ranges.
3. Investigate the effect of combining the semicircular tube design with other known thermal enhancement techniques, such as the incorporation of fins or nanoparticles, to explore potential synergistic improvements in LHTES performance.
4. Extend the experimental and numerical analysis to include a wider range of PCMs with different thermophysical properties and melting/solidification temperatures to assess the versatility and applicability of the semicircular tube design for diverse thermal energy storage applications.
5. Conduct long-term cycling tests to evaluate the durability and stability of the LHTES system with semicircular tubes, particularly focusing on potential issues like PCM degradation or corrosion over extended operational periods.

A thorough understanding and optimization of these innovative tube geometries can pave the way for more efficient and compact LHTES systems, contributing significantly to the effective utilization of renewable energy and improved energy management.

REFERENCES

1. Agarwal, A., & Sarviya, R. M. (2016). An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material. *Engineering Science and Technology, an International Journal*, 19(1), 619-631.
2. Ajarostaghi, M., Delavar, M. A., & Dolati, A. (2017). Numerical investigation of melting process in phase change material (PCM) cylindrical storage considering different geometries. *Heat Transf. Res.*, 48, 1515-1529.
3. Akgün, M., Aydin, O., & Kaygusuz, K. (2007). Experimental study on melting/solidification characteristics of a paraffin as PCM. *Energy Conversion and Management*, 48(2), 669-678.
4. Al Siyabi, I., Khanna, S., Mallick, T., & Sundaram, S. (2019). An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. *Journal of Energy Storage*, 23, 57-68.
5. Aljumaily, A. M. S., Mohammed, A. A., & Aljabair, S. Effect of Inner Tube Shapes in a Heat Exchanger on a Solidification of Phase Change Material. Available at SSRN 4427085.
6. Albaldawi, R. A., Shyaa, A. K., & Hammendy, B. M. (2015). Experimental Study on the Effect of Insertion of Copper Lessing Rings in Phase Change Material (PCM) on the Performance of Thermal Energy Storage Unit. *Al-Khwarizmi Engineering Journal*, 11(4), 60-72.
7. Avci, M., & Yazici, M. Y. (2013). Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit. *Energy conversion and management*, 73, 271-277.
8. Begum, L., Hasan, M., & Vatistas, G. H. (2018). Energy storage in a complex heat storage unit using commercial grade phase change materials: Effect of convective heat transfer boundary conditions. *Applied Thermal Engineering*, 131, 621-641.
9. Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2020). Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. *Journal of Building Engineering*, 28, 101018.

10. Da Veiga, W. R., & Meyer, J. P. (n.d.). *SEMICIRCULAR HEAT EXCHANGER USED IN A WATER HEATED CONDENSER PUMP*. (Please complete the details of this reference if available, such as publication venue or year).
11. Du, K., Calautit, J., Wang, Z., Wu, Y., & Liu, H. (2018). A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges. *Applied energy*, 220, 242-273.
12. Elmeriah, A., Nehari, D., & Aichouni, M. (2018). Thermo-convective study of a shell and tube thermal energy storage unit. *Periodica Polytechnica Mechanical Engineering*, 62(2), 101-109.
13. Esapour, M., Hamzehnezhad, A., Darzi, A. A. R., & Jourabian, M. (2018). Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. *Energy conversion and management*, 171, 398-410.
14. Esapour, M., Hosseini, M. J., Ranjbar, A. A., Pahamli, Y., & Bahrampoury, R. (2016). Phase change in multi-tube heat exchangers. *Renewable Energy*, 85, 1017-1025.
15. Ghalambaz, M., & Zhang, J. (2020). Conjugate solid-liquid phase change heat transfer in heatsink filled with phase change material-metal foam. *International Journal of Heat and Mass Transfer*, 146, 118832.
16. H. Mehling, L. F. Cabeza. (2008). *Heat and cold storage with PCM*. New York: Springer.
17. Hosseini, M. J., Rahimi, M., & Bahrampoury, R. (2014). Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. *International Communications in Heat and Mass Transfer*, 50, 128-136.
18. Hosseini, M. J., Ranjbar, A. A., Sedighi, K., & Rahimi, M. (2012). A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. *International Communications in Heat and Mass Transfer*, 39(9), 1416-1424.
19. Hu, Y., Heiselberg, P. K., Johra, H., & Guo, R. (2020). Experimental and numerical study of a PCM solar air heat exchanger and its ventilation preheating effectiveness. *Renewable Energy*, 145, 106-115.
20. Jesumathy, S. P., Udayakumar, M., Suresh, S., & Jegadheeswaran, S. (2014). An experimental study on heat transfer characteristics of paraffin wax in horizontal double pipe heat latent heat storage unit. *Journal of the Taiwan Institute of Chemical Engineers*, 45(4), 1298-1306.
21. Jian-you, L. (2008). Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. *Solar Energy*, 82(11), 977-985.
22. Aljumaily, A. M. S., Mohammed, A. A., & Aljabair, S. J. (2024). Effect of Mass Flow Rate in a Shell and Tube Heat Exchanger of Different Inner Tube Geometries during Solidification of Phase Change Material. *Diyala Journal of Engineering Sciences*, 136-156.