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Abstract 
Energy efficiency in home appliances is becoming more and more important especially with the increasing need to 
save electricity and move towards sustainable living. With the growing use of artificial intelligence new ways are 
being explored to make appliances smarter and more energy-efficient. This research work has proposed a method that 
uses intelligent algorithms to improve the energy efficiency of home appliances by analyzing indoor air quality (IAQ) 
data. Traditional methods often struggle due to small datasets, high computational requirements and poor 
adaptability. To tackle these issues data preprocessing techniques like SMOTE-ENN to handle class imbalance and 
Z-score normalization for proper feature scaling are used. This study tested several models and found that 
Bidirectional GRU and Stacked LSTM performed the best reaching high validation accuracies of 99.81% and 
99.64% respectively. What makes this approach different is how it links indoor environmental factors like CO₂ 
levels, humidity and temperature with energy usage patterns. This kind of integration can lead to more efficient and 
eco-friendly home energy systems. Overall, this work shows how smart algorithms can help us take a step forward in 
building greener and smarter homes. 
Keywords: Energy efficiency, Artificial Intelligence, Sustainable Living, SMOTE, Z-Score, Energy Management 
Systems 
 
1. INTRODUCTION 
With the onset of the 21st century, there has been a noticeable rise in global energy consumption across 
almost every region. Studies show that this growing demand for energy is largely driven by factors such 
as economic development, increasing population and higher electricity usage per person [1]. Among the 
various contributors household appliances account for a significant portion over 30% of total energy 
consumption in some countries making residential energy use a key area for efficiency improvements. 
Improving the energy efficiency of home appliances is not only important for reducing overall electricity 
usage but also plays a crucial role in minimizing the environmental and economic impacts of rising 
power demands [2]. These efforts directly support sustainable practices and help in lowering pollution 
levels while also contributing to the fight against climate change on an individual level. 
An energy-efficient home today is no longer just a concept. It is a practical reality that uses modern 
technologies and smart design principles to reduce energy consumption without compromising on 
safety, comfort or aesthetics [3]. Figure 1 illustrates the proportion of energy consumed by different 
household iances highlighting the need for intelligent energy management in day-to-day living. appl

 
Figure 1: Energy contributions by different home appliances to highlight their share in total 

residential energy consumption [31] 
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Across the world, improving energy efficiency has brought in clear benefits not just for the environment, 
but also for both energy providers and everyday users. These improvements lead to better energy 
conservation, cost savings and even social welfare. With the increasing energy demand and expanding 
economies, it's become more important than ever to manage energy use wisely. This includes managing 
the use of household appliances controlling peak usage times and designing smarter more efficient 
devices [4]. 
Among all appliances, heating and cooling systems take up a major share of electricity in homes, so 
focusing on their efficiency makes a big difference. Interestingly, indoor air quality plays a key role here. 
For example, when there's more dust in the air devices like air purifiers and fans have to work harder 
which affects both their performance and energy use. Similarly, if the CO₂ levels are high like when 
more people are inside it indicates the need for better ventilation, heating and lighting to maintain 
comfort while still being energy efficient [5]. 
By studying past indoor air quality data one can find useful patterns and trends. This helps in making 
smart, personalized suggestions to improve how appliances work depending on the air quality around 
them. So, using indoor air quality index values not only gives us an idea of how these appliances might 
behave but also helps us plan ahead to keep them running well under different indoor conditions [6]. 
Multiple traditional approaches are employed to improve the energy efficiency of household appliances, 
including the enforcement of energy-efficiency standards, advancements in appliance design and the 
encouragement of energy-saving technologies. However, these conventional strategies encounter several 
obstacles such as the intricacy of appliance designs, resistance from manufacturers toward regulations 
and the unpredictable nature of consumer behavior [7]. To overcome these challenges, deep learning 
emerges as a viable alternative by leveraging data-driven insights to enhance appliance design. Moreover, 
deep learning models can uncover complex relationships and patterns from large-scale data involving 
appliance performance, energy usage and Indoor Air Quality (IAQ) which might be missed by traditional 
techniques. This allows for the development of smarter more energy-efficient appliances that also 
improve IAQ [8]. 
Numerous studies have highlighted the role of machine and deep learning in enhancing the energy 
efficiency of home appliances. For instance, [9] introduced an AI-based Energy Management Model (AI-
EMM) tailored for green buildings, focusing on user safety and comfort alongside energy efficiency. 
Their system used a universal infrared communication interface and a Long Short-Term Memory 
(LSTM) network to optimize energy use, particularly by improving the airside design of HVAC systems, 
which resulted in measurable economic and environmental gains. The AI-EMM achieved a high-
performance ratio of 94.3% reduced energy consumption by 15.7% and demonstrated prediction 
accuracy of 97.1% among other metrics. 
In another study, [10] applied correlation analysis to eliminate redundant sensors and optimize the 
design of IoT systems in smart homes. Their machine learning-based intelligent service model assessed 
using Root Mean Square Error (RMSE), found the gradient-boosting regressor to be the most accurate 
with an RMSE of 22.29. Furthermore, researchers have explored several deep recurrent neural network 
(DRNN) architectures aimed at short and long-term energy consumption forecasting particularly for 
heating and electricity usage on an hourly basis. Their proposed DRNN model outperformed traditional 
models such as Support Vector Machines (SVMs) and Gradient Boosting (GB) with improvements of 
5.4% and 7.0% respectively in forecasting accuracy. 
A novel model featuring three components i.e. data smoothing using Kalman filtering, real-time cost 
error optimization using firefly along with genetic algorithm and fuzzy logic-based control through 
Mamdani systems has also been proposed [12]. This integrated system efficiently manages energy 
distribution for lighting and temperature demonstrating superior performance when compared to 
existing approaches. The authors highlighted the importance of optimization techniques and adaptive 
controllers in enhancing user comfort and energy efficiency while addressing the limitations of fixed 
PID controllers. 
Shree Lakshmi et al. used a Kaggle dataset comprising 29 features to reduce energy usage applying LSTM 
models combined with optimization techniques like genetic algorithms and grey wolf optimization for 
hyper parameter tuning [13]. Their GWO-LSTM approach demonstrated outstanding predictive 
performance with minimal error. Similarly, Khan et al. employed a combination of 1D deep 
convolutional neural networks, LSTM models and scheduling algorithms to develop a smart energy 
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management system for homes. Their model validated using real-world datasets effectively forecasted 
loads and optimized appliance scheduling, eliminating the need for additional energy sources [14]. 
Liao et al. (2020) [32] investigated deep learning approaches for forecasting air quality using CNNs, 
RNNs, LSTMs and spatiotemporal networks. They addressed key challenges such as model overfitting 
and discussed the real-world feasibility of their methods. 
Despite these advances, ongoing challenges include the significant computational resources required to 
train deep models, limited availability of diverse datasets and inconsistencies in data sourced from 
different platforms which can impact model accuracy and reliability. Overcoming these barriers is 
essential for developing robust and scalable solutions for energy-efficient smart environments. 
While existing literature has proposed various energy optimization techniques in residential settings the 
incorporation of Indoor Air Quality (IAQ) metrics remains limited. This research addresses that gap by 
integrating IAQ factors such as CO₂ concentration, humidity and temperature into a deep learning 
framework to enable responsive and context-aware energy management. Leveraging advanced models 
like Bidirectional Gated Recurrent Units (Bi-GRU) and Stacked LSTM, the system is capable of 
capturing both short- and long-term temporal dependencies. To handle class imbalance the hybrid 
SMOTE-ENN technique is employed, enhancing the model's robustness and generalization. This 
innovative approach underscores the potential of harmonizing IAQ metrics with energy efficiency 
strategies, laying the groundwork for intelligent, adaptive and sustainable smart home systems. 
Contribution of the Paper 
This study aims to design an automated system leveraging deep learning algorithms to detect and classify 
air quality levels based on multiple environmental parameters including the Indoor Air Quality Index 
(IAQI). The specific contributions of this research are as follows: 

▪ A comprehensive dataset comprising 132,007 records with seven key attributes namely CO₂ 
concentration, humidity, temperature, Passive Infrared (PIR) sensor data, IAQI and overall 
room air quality levels were collected from two distinct indoor environments, Room 415 (Data 
I) and Room 776 (Data II). 

▪ The collected data underwent preprocessing to handle missing or null values, followed by 
graphical visualization techniques to explore and understand underlying patterns and trends. 

▪ To address the issue of class imbalance within the dataset, the Synthetic Minority Over-sampling 
Technique (SMOTE) was implemented. Additionally, feature scaling was applied to standardize 
the dataset for improved model performance. 

▪ Multiple Artificial Intelligence models were trained and evaluated on the processed dataset. 
Their performance was assessed using standard evaluation metrics including learning curves, 
confusion matrices and computational time analysis. 

Paper Organization 
The paper is organized as follows: 

▪ Section I discusses the concept of energy efficiency and its relevance to society while also 
reviewing current methodologies and their limitations. 

▪ Section II outlines the proposed methodology for developing an energy efficiency prediction 
model using advanced deep learning techniques. 

▪ Section III presents the evaluation and performance analysis of the implemented classifiers 
using various metrics. 

▪ Section IV concludes the paper by summarizing the key findings and discussing their practical 
implications and potential future work. 

 
2. RESEARCH METHODOLOGY 
This section defines the phases that have been used to predict and classify the Air Quality Level of a 
room using hybrid advanced deep learning techniques, as shown in Figure 2. 
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Figure 2: Proposed system for air quality assessment using deep learning classifiers 

Dataset Description 
The dataset utilized in this study comprises time-series data collected from 255 environmental sensors 
installed across 51 rooms spanning four floors of Sutardja Dai Hall, University of California, Berkeley. 
The sensors recorded various environmental parameters such as Passive Infrared (PIR) motion detection, 
Carbon Dioxide (CO₂) concentration, humidity, temperature and luminosity. Sensor readings were 
logged at a high temporal resolution of every five seconds with timestamps formatted in UNIX EPOCH 
time [15, 33]. 
Data Preprocessing 
A meticulous data preprocessing phase was undertaken to ensure data quality and reliability. Initially, 
all attributes from the 51 rooms were examined for null or missing values as summarized in Table 1. To 
handle the missing data effectively, the K-Nearest Neighbour (KNN) imputation technique was 
employed. This method estimates missing values based on the proximity of similar data points in the 
feature space thereby preserving the statistical structure and inherent patterns of the dataset [16]. 
Following data cleaning, Air Quality Index (AQI) values were computed for each room using the 
available sensor readings. These AQI values served as a composite measure representing the overall air 
quality of each indoor space. During this process, it was observed that some computed AQI values were 
negative which are scientifically invalid and hinder meaningful analysis. Therefore, records containing 
negative AQI values were excluded from further analysis. 
To maintain consistency and focus the study concentrated on data extracted from two randomly selected 
rooms, Room 415 (referred to as Data-I) and Room 776 (Data-II). Using the valid AQI data the 
corresponding Air Quality Level (AQL) classes were categorized as follows: 
 

▪ Low:   AQI 0–50 
▪ Average: AQI 51–100 
▪ Severe:  AQI 101–500 

These class labels facilitated the classification task for model training and evaluation [35]. 
Exploratory Data Analysis (EDA) 
Exploratory Data Analysis was performed to extract meaningful insights and understand the 
interdependence between indoor environmental factors and energy-related patterns [34, 44]. The EDA 
specifically focused on the distribution and correlation of computed AQI values with the corresponding 
air quality level classes (Low, Average, Severe). 
Figure 3 illustrates the correlation between indoor AQI measurements and their respective 
classifications for both Room 415 and Room 776. This analysis was instrumental in identifying the 
minimum and maximum AQI values observed across the selected rooms, which helped refine the 
classification thresholds. 
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By performing EDA, this study enhances interpretability of the data provides a deeper understanding of 
the environmental context and contributes to the development of a robust classification model for 
efficient indoor air quality management. 
Table 1: Comparison of missing values across attributes in Data-I and Data-II to emphasize the 
significance of imputing missing data for accurate analysis 

Sensor Attribute Missing Values (Data-I: Room 415) Missing Values (Data-II: Room 776) 

CO₂ 0 1095 

Humidity 1113 1 

Light 1113 1 

PIR (Motion) 55875 59171 

Temperature 
 

1114 0 

 
Figure 3: AQI values of Data I and Data II for different categories of AQL 

Figure 4 presents a comprehensive graphical analysis of various environmental parameters across 
different air quality levels - low, average and severe. The data visualization encompasses CO2 
concentration, PIR readings, light intensity, humidity and temperature measurements. 
Delving into Room 415's data patterns as shown in Figure 4(a), it is observed that low air quality 
conditions predominantly occur when CO2 levels fall between 450-500 ppm, temperature ranges from 
23.0-23.5°C, humidity stays between 58-60% and light intensity remains within 0-25 units. 

 
Figure 4(a): Distribution of values of Data I features across various classes of AQL 

For average air quality conditions, the peak frequencies are recorded at CO2 levels of 690-700 ppm, 
temperature between 23.5-23.9°C, humidity at two distinct ranges of 54-55% and 58-58.5% and light 
intensity varying from 40-80 units. 
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In cases of severe air quality, the predominant measurements show CO2 concentration hovering 
between 1050-1100 ppm, temperature maintaining 23.65-23.70°C, humidity dropping below 58% 
(specifically around 57.84%) and light intensity ranging from 40-50 units. It is important to note that 
these values represent approximate ranges rather than fixed constants [45]. 
Following a similar analytical approach the data patterns for Room 776 were examined as depicted in 
Figure 4(b). The analysis reveals distinct patterns across different air quality levels. 
For low air quality conditions, the maximum frequency of occurrences is observed when CO2 levels 
range between 450-500 ppm, temperature stays within 23.0-23.5°C, humidity fluctuates between 57-
58% and light intensity remains low at 0-10 units. 
In the average air quality category, the peak frequencies are recorded at CO2 levels of 700-720 ppm, 
temperature hovering around 25.0°C, humidity maintaining 54-55% and light intensity showing two 
distinct ranges of 60 units and 90-100 units [46]. 
The severe air quality conditions present a different pattern with CO2 concentration stabilizing around 
700 ppm, temperature rising to approximately 25.2°C, humidity settling at 54.5% and light intensity 
ranging from 80-100 units. An interesting observation is the presence of non-zero PIR (Passive Infrared) 
values across various attributes indicating occasional movement detection. 
It is crucial to emphasize that these measurements represent approximate ranges rather than fixed values 
as environmental conditions tend to fluctuate based on various factors. 
These visualizations were developed with the primary aim of enhancing energy efficiency. By optimizing 
the detection and management systems based on the identified thresholds, it can implement proactive 
interventions that ensure resource allocation aligns with actual environmental conditions [35, 38]. This 
approach would help minimize energy consumption while maintaining required air quality standards. 

 
Figure 4(b): Distribution of values of Data II features across various classes of AQL 

Data Augmentation 
To address the critical issue of class imbalance in this dataset, a hybrid approach combining SMOTE 
(Synthetic Minority Over-sampling Technique) and ENN (Edited Nearest Neighbors) is implemented as 
illustrated in Figure 5 [37]. This innovative combination offers a two-fold advantage: SMOTE enhances 
the representation of minority classes by creating synthetic instances while ENN systematically 
eliminates noisy data points from both minority and majority classes resulting in a more balanced and 
refined dataset [17]. 
The mathematical representation of SMOTE-ENN approach can be expressed as: 

𝑆𝑀𝑂𝑇𝐸 + 𝐸𝑁𝑁 (𝑋, 𝑦) =  𝐸𝑁𝑁(𝑆𝑀𝑂𝑇𝐸(𝑋𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦), 𝑦𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 , 𝑘)  (i) 
Where: 
X represents the feature matrix of dataset 
y denotes the target vector containing class labels 
k indicates the number of nearest neighbors utilized in both SMOTE and ENN algorithms 
While conventional oversampling techniques such as standalone SMOTE effectively increase minority 
class representation through synthetic sample generation, they often introduce noise by creating samples 
near outliers or class boundaries, potentially compromising model performance. Similarly, traditional 
undersampling methods, which primarily focus on reducing majority class samples to achieve balance 
frequently lead to the loss of crucial information that could be valuable for model training. 
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 Hybrid SMOTE-ENN approach effectively mitigates these limitations by simultaneously addressing class 
imbalance and noise reduction thereby enhancing the overall performance of learning models 

 

 
Figure 5: Class balancing achieved using the SMOTE-ENN technique to improve distribution of air 
quality levels in Data-I and Data-II 
Feature Scaling: In the analysis, Z-score standardization has been employed as a robust method for 
outlier detection and data normalization [48]. This approach proves particularly valuable as it enables 
us to identify data points that exhibit significant deviations from the dataset's central tendency. When 
Z-scores deviate substantially from zero either in the positive or negative direction, these points are 
flagged as potential outliers indicating their statistical significance in the context of the overall 
distribution. 
The mathematical formulation of Z-score standardization is expressed as: 

𝑧 =
𝑥−𝜇

𝜎
              (ii) 

Where: 
x represents the individual data point value 
μ denotes the population mean 
σ signifies the population standard deviation 
This standardization technique offers several advantages in analysis. Primarily, it facilitates the 
identification and interpretation of outliers by transforming the data into a standardized scale. 
Furthermore, it enables meaningful comparisons across different datasets that may have varying means 
and standard deviations [18]. This is particularly 
crucial in this study as it deals with multiple environmental parameters that operate on different scales. 
 
 
Classifiers 
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This study employs several sophisticated neural network architectures to analyze indoor energy efficiency 
parameters [36]. Let us examine each approach in detail: 
Multi-Layer Perceptron (MLP): 
The MLP architecture in this study is specifically designed to process environmental parameters 
including temperature, humidity, occupancy and lighting conditions from building sensors [49]. The 
network comprises an input layer for environmental data ingestion, multiple hidden layers for nonlinear 
transformations and feature extraction and an output layer for energy efficiency predictions [19]. The 
mathematical formulation is expressed as: 

𝑧𝑗
(𝑙)

=  ∑ 𝑤𝑖𝑗
𝑙𝑛

𝑖=1 𝑥𝑖 +  𝑏𝑗
𝑙          (iii) 

𝑎𝑗
(𝑙)

= 𝑓 (𝑧𝑗
(𝑙)

)                            (iv) 

Where: 
n represents the number of input features 
𝑤𝑖𝑗

𝑙  denotes the weight for the jth neuron 

𝑏𝑗
𝑙 represents the bias term 

𝑥𝑖 indicates the input feature 
𝑓(. ) represents the activation function 

𝑎𝑗
(𝑙) signifies the output of the jth neuron 

Recurrent Neural Networks (RNNs): 
RNNs are particularly effective for processing sequential data in indoor energy optimization [43]. Their 
architecture features input, hidden and output layers with recurrent connections, enabling memory 
retention of previous data points [20]. The hidden state is defined as: 

ℎ𝑡 =  𝜎 (𝑊ℎ𝑥𝑥𝑡 +  𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)        (v) 
Where: 
𝑊ℎ𝑥  and 𝑊ℎℎ represent weight matrices 
𝜎 denotes the activation function 
𝑏ℎ indicates the bias vector 
Long Short-Term Memory (LSTM): 
LSTM networks, a specialized RNN variant, excel at handling long-term dependencies in sequential data 
while addressing vanishing gradient issues [21]. The architecture employs memory cells with three gates 
(input, forget and output) that regulate information flow. The mathematical expressions for these gates 
are: 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓𝑡) =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)   (vi) 
 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖𝑡) =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (vii) 
 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜𝑡) =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (viii) 
 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃𝑡) =  𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (ix) 
 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑡) =  𝑓𝑡. 𝑐𝑡−1 + 𝑖𝑡 . 𝑐̃𝑡 (x) 
 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡) =  𝑜𝑡  . 𝑡𝑎𝑛ℎ (𝑐𝑡)  (xi) 
Gated Recurrent Unit (GRU): 
GRU architecture, while similar to LSTM, offers a more streamlined approach to handling sequential 
data. It employs reset and update gates to selectively retain or discard information from previous time 
steps [22]. The mathematical formulation is: 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧𝑡) =  𝜎(𝑊𝑧. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (xii) 
 

𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟𝑡) =  𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (xiii) 
 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃𝑡) =  𝑡𝑎𝑛ℎ(𝑊ℎ. [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (xiv) 
 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡) = (1 − 𝑧𝑡)  ⊙ ℎ𝑡−1 +  𝑧𝑡  ⊙ ℎ̃𝑡   (xv) 
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Where: 
𝑊𝑧, 𝑊𝑟, 𝑊ℎ represent weight matrices 
⊙ indicates element-wise multiplication 
ℎ𝑡 denotes the current hidden state 
These architectures collectively enable sophisticated analysis of indoor environmental patterns 
facilitating real-time energy management and optimization strategies. 
Bidirectional Neural Networks: The study incorporates two sophisticated bidirectional architectures 
for enhanced temporal data processing [40]. 
Bidirectional Long Short-Term Memory (Bi-LSTM): 
The Bi-LSTM architecture represents a significant advancement in sequence processing, utilizing two 
parallel LSTM layers to process input data in both forward and backward directions [50]. This dual-
directional approach enables the network to capture contextual information from both past and future 
time steps thereby enhancing its ability to understand complex temporal patterns in indoor 
environmental data. 
The mathematical formulation for Bi-LSTM is expressed in two parts: 
Forward LSTM :          (xvi) 

𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓𝑡
(𝑓)) =  𝜎(𝑊𝑓

(𝑓). [ℎ𝑡−1
(𝑓), 𝑥𝑡] + 𝑏𝑓

(𝑓)) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖𝑡
(𝑓)) =  𝜎(𝑊𝑖

(𝑓). [ℎ𝑡−1
(𝑓), 𝑥𝑡] + 𝑏𝑖

(𝑓)) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜𝑡
(𝑓)) =  𝜎(𝑊𝑜

(𝑓). [ℎ𝑡−1
(𝑓), 𝑥𝑡] + 𝑏𝑜

(𝑓)) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃𝑡
(𝑓)) =  𝑡𝑎𝑛ℎ(𝑊𝑐

(𝑓). [ℎ𝑡−1
(𝑓), 𝑥𝑡] + 𝑏𝑐

(𝑓)) 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑡
(𝑓)) =  𝑓𝑡

(𝑓). 𝑐𝑡−1
(𝑓) +  𝑖𝑡

(𝑓). 𝑐̃𝑡
(𝑓) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡
(𝑓)) =  𝑜𝑡

(𝑓) . 𝑡𝑎𝑛ℎ (𝑐𝑡
(𝑓))  

Backward LSTM :         (xvii) 
𝐹𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑓𝑡

(𝑏)) =  𝜎(𝑊𝑓
(𝑏). [ℎ𝑡−1

(𝑏), 𝑥𝑡] + 𝑏𝑓
(𝑏)) 

𝐼𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑖𝑡
(𝑏)) =  𝜎(𝑊𝑖

(𝑏). [ℎ𝑡−1
(𝑏), 𝑥𝑡] + 𝑏𝑖

(𝑏)) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝑜𝑡
(𝑏)) =  𝜎(𝑊𝑜

(𝑏). [ℎ𝑡−1
(𝑏), 𝑥𝑡] + 𝑏𝑜

(𝑏)) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 (𝑐̃𝑡
(𝑏)) =  𝑡𝑎𝑛ℎ(𝑊𝑐

(𝑏). [ℎ𝑡−1
(𝑏), 𝑥𝑡] + 𝑏𝑐

(𝑏)) 

𝐶𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑡
(𝑏)) =  𝑓𝑡

(𝑏). 𝑐𝑡−1
(𝑏) +  𝑖𝑡

(𝑏). 𝑐̃𝑡
(𝑏) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡
(𝑏)) =  𝑜𝑡

(𝑏) . 𝑡𝑎𝑛ℎ (𝑐𝑡
(𝑏))  

 
Bidirectional Gated Recurrent Unit (Bi-GRU): 
Similar to Bi-LSTM, the Bi-GRU architecture employs two GRU layers processing data in opposite 
directions enabling comprehensive temporal pattern recognition [23,24]. The mathematical formulation 
is expressed as: 
Forward GRU :          (xviii) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧𝑡
𝑓) =  𝜎(𝑊𝑧

𝑓 . [ℎ𝑡−1
𝑓 , 𝑥𝑡] + 𝑏𝑧

𝑓) 

𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟𝑡
𝑓) =  𝜎(𝑊𝑟

𝑓 . [ℎ𝑡−1
𝑓, 𝑥𝑡] + 𝑏𝑟

𝑓) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃𝑡
𝑓

) =  𝑡𝑎𝑛ℎ(𝑊ℎ
𝑓 . [𝑟𝑡

𝑓 ⊙  ℎ𝑡−1
𝑓

,
 𝑥𝑡] + 𝑏ℎ

𝑓) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡
𝑓) = (1 − 𝑧𝑡

𝑓) ⊙ ℎ𝑡−1
𝑓 +  𝑧𝑡

𝑓  ⊙ ℎ̃𝑡  𝑓 
Backward GRU :         (xix) 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑔𝑎𝑡𝑒 (𝑧𝑡
𝑏) =  𝜎(𝑊𝑧

𝑏 . [ℎ𝑡−1
𝑏 , 𝑥𝑡] + 𝑏𝑧

𝑏) 
𝑅𝑒𝑠𝑒𝑡 𝑔𝑎𝑡𝑒 (𝑟𝑡

𝑏) =  𝜎(𝑊𝑟
𝑏 . [ℎ𝑡−1

𝑏 , 𝑥𝑡] + 𝑏𝑟
𝑏) 

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ℎ𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 (ℎ̃𝑡
𝑏

) =  𝑡𝑎𝑛ℎ(𝑊ℎ
𝑏. [𝑟𝑡

𝑏 ⊙ ℎ𝑡−1
𝑏

,
 𝑥𝑡] + 𝑏ℎ

𝑏) 

𝐻𝑖𝑑𝑑𝑒𝑛 𝑠𝑡𝑎𝑡𝑒 𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ𝑡
𝑏) = (1 − 𝑧𝑡

𝑏)  ⊙ ℎ𝑡−1
𝑏 + 𝑧𝑡

𝑏  ⊙ ℎ̃𝑡   𝑏 
The final output at time step t is computed by concatenating the forward and backward hidden states: 

    ℎ𝑡 = [ℎ𝑡
(𝑓)

, ℎ𝑡
(𝑏)

]      (xx) 
These bidirectional architectures significantly enhance the network's ability to capture complex temporal 
dependencies in indoor environmental data leading to more accurate predictions and better 
understanding of energy consumption patterns [41, 51]. 
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Stacked Neural Network Architectures: The study employs two sophisticated stacked architectures for 
enhanced temporal data processing [39]: 
Stacked Long Short-Term Memory (LSTM): 
The Stacked LSTM architecture represents a hierarchical approach to sequence processing, comprising 
multiple LSTM layers arranged in a vertical configuration [49]. In this architecture, each LSTM layer 
processes the input data sequentially, with the output of one layer serving as the input for the subsequent 
layer. This layered structure enables the network to capture both short-term and long-term dependencies 
in the data thereby enhancing its ability to model complex temporal patterns in indoor environmental 
variables. 
Stacked Gated Recurrent Unit (GRU): 
The Stacked GRU architecture follows a similar hierarchical principle as the Stacked LSTM but utilizes 
GRU units instead of LSTM cells [42]. This architecture consists of multiple GRU layers stacked 
vertically creating a deep network structure. Each layer contains a series of GRU units and each equipped 
with its own set of parameters for analyzing input data patterns and relationships. The hierarchical 
nature of this architecture allows the network to learn representations at multiple levels of abstraction 
as information flows from one layer to the next [25, 26]. 
The effectiveness of these stacked architectures in modeling indoor environmental variables is further 
enhanced by carefully selected hyperparameter values which are detailed in Table 2. These hyper 
parameters play a crucial role in determining the network's learning capacity and overall performance 
Performance Metrics: This study employs a comprehensive set of evaluation metrics to assess the 
performance of classification models in the context of energy efficiency for smart home appliances, 
specifically focusing on indoor air quality index and air quality level predictions [47]. 
The primary metrics used in this analysis are: 
Accuracy: 
Accuracy serves as a fundamental measure of model performance representing the proportion of 
correctly classified instances across all classes [27]. It is calculated as: 

𝐴𝑐𝑐 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (xxi) 

Loss: 
Loss function quantifies the discrepancy between predicted and actual values with cross-entropy 
serving as a crucial metric for model optimization and convergence [28, 47]. The mathematical 
expression is: 

𝐿𝑜𝑠𝑠 =  
(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒)2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 (xxii) 

Precision: 
Precision is particularly important in this context as it measures the model's ability to accurately 
identify equipment responsible for poor air quality while minimizing false positives [51]. It is expressed 
as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (xxiii) 

Recall: 
Recall evaluates the model's capability to correctly identify all actual positive cases which is crucial for 
comprehensive air quality monitoring. The formula is: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (xxiv) 

F1 Score: 
The F1 score provides a balanced measure of model performance, especially useful when dealing with 
imbalanced positive and negative instances [29, 30]. It is calculated as: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
     (xxv) 

To ensure optimal model performance, very carefully hyperparameters were selected for model training 
as detailed in Table 2: 

Table 2: Hyperparameters and their selected values for model training 

Hyperparameter Value 

Learning Rate 0.001 
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Batch Size 16 

Epochs 15 

Optimizer Adam 

Dropout Rate 0.5 

Activation Layer ReLU in hidden, Softmax in output 

These metrics and hyperparameters collectively provide a robust framework for evaluating and 
optimizing the models' performance in predicting indoor air quality and energy efficiency. 
 
3. RESULTS AND DISCUSSIONS 
This section presents a comprehensive analysis of the performance of various neural network models 
trained on data collected from both rooms. Let us begin with the analysis of Data I from Room 415. 
Analysis of Models for Data I of Room 415 
This research evaluated the performance of eight different neural network architectures including MLP, 
RNN, GRU, LSTM and their various combinations using both training and validation datasets. The 
evaluation metrics focused on accuracy and loss where higher accuracy and lower loss values indicate 
superior model performance. 
Table 3 presents the detailed performance metrics for each model: 
Table 3: Accuracy and Loss Metrics for Training and Validation Phases of Various Models Applied to 
Data-I 

Models Training Validation 

Acc Loss Acc Loss 

MLP 99.53 0.0146 99.16 0.0200 

RNN 99.44 0.0169 99.75 0.0061 

Bidirectional GRU 99.46 0.0152 99.81 0.0081 

Bidirectional LSTM 99.47 0.0148 99.72 0.0066 

LSTM 99.41 0.0166 99.57 0.0104 

GRU 99.49 0.0149 99.79 0.0082 

Stacked LSTM 99.40 0.0173 99.56 0.0102 

Stacked GRU 99.45 0.0162 99.51 0.0156 

The results reveal several interesting patterns in model performance. The MLP model achieved the 
highest training accuracy (99.53%) but showed slightly lower validation accuracy (99.16%). In contrast, 
the Bidirectional GRU model demonstrated the highest validation accuracy (99.81%) while maintaining 
a strong training accuracy (99.46%). The RNN model showed remarkable validation performance with 
the lowest validation loss (0.0061) indicating excellent generalization capabilities. 
Analysis of Model Performance: 
The MLP model demonstrated superior performance during the training phase achieving the highest 
accuracy of 99.53% with the lowest loss of 0.0146. This performance establishes MLP as the most 
effective model in terms of training metrics among all evaluated architectures. 
The bidirectional architectures, particularly Bidirectional LSTM and Bidirectional GRU showed 
commendable performance. Bidirectional LSTM slightly outperformed Bidirectional GRU with a 
marginally lower loss (0.0148 versus 0.0152) and slightly higher accuracy (99.47% versus 99.46%). This 
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superior performance can be attributed to their ability to capture temporal dependencies in both 
forward and backward directions thereby enhancing their learning capabilities. 
The stacked architectures (Stacked LSTM and Stacked GRU) achieved respectable accuracies of 99.40% 
and 99.45% respectively. However, these performances were slightly inferior to their non-stacked 
counterparts (LSTM: 99.41% and GRU: 99.49%) suggesting that increased network depth does not 
necessarily translate to improved performance for this particular dataset. 
In the validation phase, Bidirectional GRU and Bidirectional LSTM models exhibited exceptional 
performance, achieving validation accuracies of 99.81% and 99.72% respectively coupled with low loss 
values of 0.0081 and 0.0066. These results highlight their strong generalization capabilities primarily 
due to their ability to process temporal dependencies bidirectionally. 
The MLP model maintained good performance with a validation accuracy of 99.16% and a loss of 
0.0200. However, it was slightly outperformed by RNN-based models likely due to its inherent 
limitations in capturing sequential dependencies. 
Standard LSTM and GRU models demonstrated robust performance with accuracies of 99.57% and 
99.79% and losses of 0.0104 and 0.0082 respectively reaffirming their effectiveness in processing 
sequential data. 
The stacked architectures (Stacked LSTM and Stacked GRU) showed solid performance with accuracies 
of 99.56% and 99.51% respectively but failed to significantly outperform their single-layer counterparts 
further supporting the observation that increased network complexity does not necessarily yield better 
results for this dataset. 
Figure 6 illustrates the learning curves of various models depicting training and validation accuracy as 
well as loss over 15 epochs. The analysis reveals distinct patterns in model behavior: 
The MLP and RNN models demonstrate particularly stable learning curves, indicating consistent 
performance throughout the training process. In contrast, the remaining models exhibit slight zig-zag 
patterns in their curves suggesting minor fluctuations in their performance metrics. 
An interesting observation emerges from the loss curves that the validation loss consistently remains 
lower than the training loss across all models. This pattern suggests that the validation dataset might 
present a simpler prediction task compared to the training dataset. 
Similarly, the accuracy curves reveal that validation accuracy consistently outperforms training accuracy 
from the initial epochs. This phenomenon could be attributed to either the validation dataset being 
inherently easier to predict or having a different distribution compared to the training set leading to 
superior performance on the validation data. 
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Stacked GRU 

 
Figure 6: Learning curves depicting training/validation accuracy and loss for models applied to Data-I 

to indicate convergence and generalization trends. 
Table 4 presents a comprehensive evaluation of various neural network models through precision, recall 
and F1 scores for energy efficient home appliances for Data-I: 
 
Table 4: Analysis of models for the energy efficient home appliances Data-I 

Models Precision Recall F1score 

MLP 0.9971 0.9915 0.9914 

RNN 0.9975 0.9975 0.9974 

Bidirectional GRU 0.9980 0.9982 0.9979 

Bidirectional LSTM 0.9972 0.9972 0.9972 

LSTM 0.9957 0.9957 0.9956 

GRU 0.9979 0.9980 0.9979 

Stacked LSTM 0.9955 0.9955 0.9954 

Stacked GRU 0.9951 0.9950 0.9950 

The analysis shows Bidirectional GRU as the top performer with precision (0.9980), recall (0.9982) and 
F1 score (0.9979). The standard GRU model followed closely with similar metrics (precision: 0.9979, 
recall: 0.9980, F1: 0.9979). 
RNN, LSTM and Bidirectional LSTM demonstrated consistent performance with RNN achieving 
precision, recall and F1 score of 0.9975, 0.9975 and 0.9974 respectively. The stacked architectures 
(Stacked LSTM and Stacked GRU) showed slightly lower performance than their non-stacked versions. 
MLP model performed the weakest with recall (0.9915) and F1 score (0.9914). 
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A 3x3 confusion matrix (Figure 7) provides detailed insights into the models' prediction patterns across 
different classification categories. 

 

 
Figure 7: Confusion matrix depicting the performance of models on Data-I for three air quality 
classes: Low, Average and Severe 
Table 5 presents a detailed class-wise analysis of model performance across three air quality categories 
(Low, Average and Severe) using precision, recall and F1-score metrics. 

 
 
 
 



 
International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 21s, 2025 
https://theaspd.com/index.php 

553 

Table 5: Class-wise analysis of models for Data-I to show their precision, recall and F1-scores across 
Low, Average and Severe air quality classes 

Models Class Precision Recall F1score 

MLP 

Low 1.00 0.9918 0.9958 

Average 0.9751 1.00 0.9873 

Severe 1.00 0.9829 0.9913 

RNN 

Low 1.00 0.9980 0.9989 

Average 0.9980 0.9946 0.9962 

Severe 0.9945 1.00 0.9972 

Bidirectional GRU 

Low 1.00 0.9951 0.9975 

Average 0.9951 0.9995 0.9972 

Severe 0.9991 1.00 0.999 

Bidirectional LSTM 

Low 1.0 0.9965 0.9982 

Average 0.9965 0.9951 0.9958 

Severe 0.9951 1.0 0.9975 

LSTM 

Low 1.00 0.9967 0.9983 

Average 0.9967 0.9904 0.9935 

Severe 0.9905 1.00 0.9952 

GRU 

Low 1.00 0.9948 0.9973 

Average 0.9941 0.9997 0.9968 

Severe 0.9997 0.9997 0.9997 

Stacked LSTM 

Low 1.00 0.9950 0.9974 

Average 0.9949 0.9917 0.9932 

Severe 0.9917 1.00 0.9958 

Stacked GRU 

Low 1.00 0.9959 0.9979 

Average 0.9959 0.9892 0.9925 

Severe 0.9895 1.00 0.9947 

Analysis of model performance across different classes reveals several interesting patterns: 
Low Air Quality Class: 
All models achieved perfect precision scores of 1.00 indicating accurate positive predictions. However, 
variations in recall and F1 scores suggest differences in their ability to identify true positives. The RNN 
model outperformed others with the highest recall (0.9980) and F1 score (0.9989) followed by LSTM 
and Bidirectional LSTM with recall values of 0.9967 and 0.9965 and F1 scores of 0.9983 and 0.9982 
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respectively. The MLP model showed the lowest performance in this category with recall and F1 score 
values of 0.9918 and 0.9958 respectively, indicating a higher number of false negatives. 
Average Air Quality Class: 
The MLP model achieved perfect recall (1.00) demonstrating its ability to identify all true positive cases. 
For precision, RNN led with 0.9980 followed by LSTM (0.9967) and Bidirectional LSTM (0.9965). In 
terms of recall and F1 score, GRU and Bidirectional GRU showed superior performance with values of 
0.9997 and 0.9968 and 0.9995 and 0.9972 respectively. The lowest performance metrics were observed 
in GRU's precision (0.9941) and Stacked GRU's recall and F1 score (0.9892 and 0.9925 respectively). 
 
Severe Air Quality Class: 
The MLP model maintained perfect precision while other models (RNN, Bidirectional GRU, 
Bidirectional LSTM, LSTM, Stacked LSTM and Stacked GRU) achieved perfect recall scores. The GRU 
model demonstrated balanced performance across all metrics with consistent values of 0.9997, 
indicating minimal false positives and false negatives. The Stacked GRU showed the lowest precision 
(0.9895) while the MLP recorded the lowest recall and F1 score values suggesting areas for potential 
improvement. 
Analysis of models for the Data II of Room 776 
Table 6 presents a comparative analysis of various deep learning models based on their training and 
validation performance metrics for data collected from room 776 for Data-II. 
Table 6: Accuracy and loss values for training and validation phases of neural network models applied 

to Data-II 

Models Training Validation 

Acc Loss Acc Loss 

MLP 99.17 0.0276 99.58 0.0140 

RNN 99.26 0.0240 99.43 0.0158 

Bidirectional GRU 99.27 0.0238 99.41 0.0151 

Bidirectional LSTM 99.14 0.0273 99.45 0.0130 

LSTM 99.20 0.0255 99.47 0.0143 

GRU 99.24 0.0247 99.63 0.0118 

Stacked LSTM 99.13 0.0281 99.64 0.0117 

Stacked GRU 99.16 0.0264 99.34 0.0177 

Training Phase Analysis: 
The Bidirectional GRU model demonstrated superior performance during training achieving the 
highest accuracy of 99.27% with the lowest loss of 0.0238. This was closely followed by RNN (99.26% 
accuracy, 0.0240 loss) and GRU (99.24% accuracy, 0.0247 loss) indicating the effectiveness of recurrent-
based models in capturing training data patterns. The low loss values coupled with high accuracies 
suggest these models learn effectively without overfitting. 
The stacked architectures (Stacked LSTM and Stacked GRU) achieved respectable accuracies of 99.13% 
and 99.16% respectively, but showed higher loss values (0.0281 and 0.0264), suggesting that increased 
network complexity did not necessarily improve performance on the training data. 
Validation Phase Analysis: 
All models demonstrated strong validation performance with accuracies ranging from 99.34% to 
99.64% and loss values between 0.0117 and 0.0177. The Stacked LSTM model achieved the highest 
validation accuracy (99.64%) with the lowest loss (0.0117) followed closely by GRU (99.63% accuracy, 
0.0118 loss) indicating their superior generalization capabilities. 
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The MLP model, despite its simpler architecture, showed competitive performance with 99.58% 
validation accuracy and 0.0140 loss. The RNN, Bidirectional GRU and Bidirectional LSTM models 
showed slightly lower validation accuracies (99.43%, 99.41% and 99.45% respectively) with higher losses 
(0.0158, 0.0151 and 0.0130 respectively). 
The Stacked GRU model showed the lowest validation accuracy (99.34%) with the highest loss (0.0177) 
suggesting potential overfitting issues or challenges in training the deeper architecture. 
 
Learning Curve Analysis: 
Figure 8 illustrates the learning curves for training and validation accuracy and loss over 15 epochs. 
Similar to Data-I, the MLP and RNN models exhibited stable learning curves. However, the 
Bidirectional GRU model showed an initial peak in its learning curve indicating a period of adjustment 
before achieving improved performance as training progressed. 
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Figure 8: Learning curves for models trained on Data-II to highlight differences in performance 

between training and validation dataset 
Table 7 presents a comprehensive evaluation of various deep learning models using precision, recall and 
F1 score metrics for energy efficient home appliances Data-II. 
Table 7: Analysis of models for the energy efficient home appliances Data-II 

Models Precision Recall F1score 

MLP 0.9957 0.9957 0.9957 

RNN 0.9943 0.9943 0.9942 

Bidirectional GRU 0.9940 0.9940 0.9939 

Bidirectional LSTM 0.9945 0.9945 0.9945 

LSTM 0.9920 0.9973 0.9946 

GRU 0.9963 0.9963 0.9962 

Stacked LSTM 0.9959 0.9964 0.9961 

Stacked GRU 0.9961 0.9966 0.9949 

Analysis of model performance reveals several interesting patterns: 
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The GRU and Stacked GRU models demonstrated superior performance in minimizing false positives, 
achieving the highest precision values of 0.9963 and 0.9961 respectively. The Stacked LSTM and MLP 
models followed closely with precision scores of 0.9959 and 0.9957 respectively. 
In terms of recall, the LSTM model achieved the highest value of 0.9973 demonstrating exceptional 
ability in identifying true positives. Despite its lower precision of 0.9920 it maintained a strong F1 score 
of 0.9946. The Stacked GRU, Stacked LSTM and GRU models also showed strong recall performance 
with values of 0.9966, 0.9964 and 0.9963 respectively coupled with F1 scores of 0.9949, 0.9961 and 
0.9962. 
The MLP model demonstrated robust performance with a balanced F1 score of 0.9957. However, the 
Bidirectional GRU and Bidirectional LSTM models showed relatively lower performance, with 
precision and recall values of 0.9940 and 0.9945 respectively suggesting less consistent performance 
compared to other models. 
To further analyze the models' performance across different classes a 3x3 confusion matrix has been 
created (Figure 9) providing detailed insights into the models' prediction patterns and their effectiveness 
in classifying different categories. 

 

 
Figure 9: Confusion matrix showing model predictions versus actual values for Data-II across air 
quality levels: Low, Average and Severe 
Table 8 presents a detailed class-wise analysis of model performance across three air quality categories 
(Low, Average and Severe) using precision, recall and F1-score metrics. 
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Table 8: Evaluation of model performance in distinguishing air quality levels (Low, Average, Severe) 
in Data-II 

Models Class Precision Recall F1score 

MLP Low 1.00 0.9911 0.9955 

Average 0.9912 0.9961 0.9936 

Severe 0.9961 1.00 0.9980 

RNN Low 1.00 0.9918 0.9958 

Average 0.9918 0.9911 0.9914 

Severe 0.9912 1.00 0.9955 

Bidirectional GRU Low 1.00 0.9905 0.9952 

Average 0.9903 0.9916 0.9909 

Severe 0.9918 1.00 0.9958 

Bidirectional LSTM Low 1.00 0.9931 0.9966 

Average 0.9932 0.9904 0.9918 

Severe 0.9903 1.00 0.9951 

LSTM Low 0.9922 1.00 0.9961 

Average 0.9921 0.9919 0.9919 

Severe 0.9919 1.00 0.9959 

GRU Low 1.00 0.9913 0.9956 

Average 0.9914 0.9977 0.9945 

Severe 0.9976 1.00 0.9987 

Stacked LSTM Low 1.00 0.9914 0.9957 

Average 0.9913 0.9979 0.9945 

Severe 0.9964 1.00 0.9982 

Stacked GRU Low 1.00 0.9900 0.9949 

Average 0.9898 0.9999 0.9948 

Severe 0.9902 1.00 0.9950 

Analysis of model performance across different classes reveals several interesting patterns: 
Low Air Quality Class: 
Most models demonstrated perfect precision (100%) in classifying low air quality instances with the 
exception of LSTM which achieved perfect recall instead. However, several models showed lower recall 
values: MLP (0.9911), RNN (0.9918), Bidirectional GRU (0.9905), GRU (0.9913), Stacked LSTM 
(0.9914) and Stacked GRU (0.9900), indicating challenges in identifying true positive instances. The 
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Bidirectional LSTM showed slightly better performance with a recall of 0.9931 and an F1 score of 
0.9966. 
Average Air Quality Class: 
Most models maintained high performance metrics (above 0.99) except for Stacked GRU. The 
Bidirectional GRU, RNN, LSTM and Bidirectional LSTM showed slightly lower F1 scores (0.9909, 
0.9914, 0.9919 and 0.9918 respectively) due to variations in precision or recall. The Stacked GRU 
demonstrated high sensitivity with a recall of 0.9999, though with a lower precision of 0.9898, resulting 
in an F1 score of 0.9948. Several models showed lower recall values: RNN (0.9911), Bidirectional GRU 
(0.9916), Bidirectional LSTM (0.9904) and LSTM (0.9919) indicating challenges in correctly classifying 
positive instances. 
Severe Air Quality Class: 
All models achieved perfect recall (1.00) demonstrating excellent ability to identify severe air quality 
instances. The GRU and Stacked LSTM models showed superior performance with F1 scores of 0.9987 
and 0.9982 respectively. The MLP and RNN models achieved slightly lower F1 scores (0.9980 and 
0.9955). The Stacked GRU and Bidirectional LSTM showed the lowest precision scores (0.9902 and 
0.9903 respectively) suggesting areas for improvement in their prediction capabilities. 
Table 9 presents a comprehensive analysis of computational efficiency across different deep learning 
models for both Data I and Data II. 
Table 9: Overall execution time of applied learning models for Data-I and Data-II to underscore the 
impact of model complexity on computational efficiency 

Models Time frame 

LSTM 1 hour  25 min 

GRU 1 hour 40 min 

Stacked LSTM 1 hour 40 min 

Stacked GRU 2 hour 

MLP 1 hour 

RNN 1 hour 30 min 

Bidirectional GRU 2 hour 

Bidirectional LSTM 2 hour 5 min 

Analysis of Computational Efficiency: 
The MLP model demonstrated superior computational efficiency with the shortest training time of 1 
hour attributed to its simpler architecture. In contrast, the more complex architectures required 
significantly longer training times: Stacked LSTM (1 hour 40 minutes), Stacked GRU (2 hours), 
Bidirectional LSTM (2 hours 5 minutes) and Bidirectional GRU (2 hours). The RNN, LSTM and GRU 
models showed moderate training times of 1 hour 30 minutes, 1 hour 25 minutes and 1 hour 40 minutes 
respectively. 
Practical Applications and Implications: 
The superior performance of Bidirectional GRU and Stacked LSTM models in terms of accuracy and 
loss makes them particularly suitable for real-time energy optimization systems in smart homes. These 
models can effectively manage dynamic adjustments in heating, ventilation and lighting systems based 
on indoor air quality parameters such as CO2 levels and temperature, optimizing energy efficiency while 
maintaining occupant comfort. 
The insights gained from learning curves particularly the observed fluctuations in training and validation 
accuracy provide valuable guidance for hyper parameter tuning in real-world deployments. The SMOTE-
ENN technique for class balancing proves particularly effective in homes with uneven energy 
consumption patterns such as those with seasonal variations in appliance usage. 
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The execution time analysis presented in Table 9 offers crucial insights for scenarios where 
computational efficiency is paramount such as real-time energy management systems requiring rapid 
model updates and predictions. These practical applications demonstrate the potential of deep learning 
models in creating effective energy-saving solutions for residential buildings contributing to both 
sustainability and efficiency goals. 
 
4. CONCLUSION 
This research demonstrates significant progress in leveraging deep learning techniques for enhancing 
energy efficiency in home appliances. Through comprehensive analysis of environmental parameters 
including CO2 levels, humidity and temperature, these models have shown promising results in 
optimizing energy consumption and promoting sustainable practices. 
The Bidirectional GRU and Stacked LSTM models emerged as superior performers among all tested 
classifiers achieving remarkable accuracy and low loss values for data collected from rooms 415 and 776. 
These results underscore the transformative potential of AI-driven approaches in revolutionizing energy 
management systems for smart homes. The models' ability to optimize real-time decision-making in 
smart appliances presents significant opportunities for reducing energy costs and minimizing 
environmental impact. 
The findings highlight the broader implications for integrating AI-driven approaches into energy policies 
and sustainability strategies potentially leading to more effective reductions in residential energy 
consumption and contributing to climate change mitigation efforts. 
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