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Abstract: In response to the problem of insufficient accuracy in current object detection algorithms for weld seam 
image defect detection, an improved model based on YOLOv8, called Sim-YOLOv8s, is proposed. First, the C2f 
module is improved by incorporating the SimAM module to enhance the overall performance of the model, reduce 
computational redundancy, and speed up network feature extraction. Second, the network structure is optimized based 
on the scale characteristics of weld seam defect targets to alleviate the loss of small target information caused by 
excessive downsampling. The Inner-CIoU is used as the new localization regression loss function to improve the learn-
ing capability for small target samples and accelerate the convergence of the bounding box regression. Finally, the 
model is pruned using Layer Adaptive Magnitude Pruning (LAMP), which sacrifices a certain amount of accuracy to 
reduce the model size and the number of parameters, enabling fast detection on embedded devices. Knowledge distil-
lation is applied to compensate for the detection accuracy lost due to pruning, thereby improving the model's detection 
performance. Experimental results show that, with a threshold of 0.5, the Sim-YOLOv8s model achieves an average 
precision (mAP50) of 93.9%, 94.3%, and 97.2% for detecting pores, inclusions, and lack of fusion defects, respectively, 
improving by 2.4, 2.5 and 1.7 percentage points over the original model, demonstrating better weld seam defect 
detection performance. 
Keywords: Image Processing; Object Detection; YOLOv8s; SimAM Module; Inner-CIoU Loss Function 
 
1. INTRODUCTION 
Pipelines, as a long-distance and large-scale carrier for oil and gas transportation, play an important role 
in a country's resource transportation, economic development, and environmental protection. Therefore, 
ensuring pipeline safety is critical. Different-shaped components are connected to form a pipeline through 
welding. Still, due to process and technical limitations, weld seams may develop various types of surface 
defects, which affect pipeline safety [1]. 
For weld seam surface image detection, early detection methods often relied on manual inspection, which 
is costly, slow, and highly dependent on the experience level of the operator, making it unsuitable for 
modern detection needs [2]. In recent years, with the continuous advancement of deep learning technol-
ogy, neural networks have been widely applied in the field of computer vision and have also been intro-
duced into pipeline weld seam image processing[3-5]. 
Currently, mainstream object detection models are divided into two categories: single-stage and two-stage 
models. Two-stage object detection models first generate proposal boxes from the input image and then 
select the best detection results from these proposals. The advantage of this method is high detection 
accuracy, but the computational cost is significant, making it unsuitable for online monitoring [7]. 
Single-stage object detection models, on the other hand, directly predict the class and bounding boxes 
from the input image [8]. This method has lower computational requirements but does not achieve the 
same level of detection accuracy as the two-stage models. One typical single-stage object detection model 
is YOLO, which, due to its high real-time performance and ease of implementation using the PyTorch 
framework, has become one of the most popular algorithms in industrial inspection [9]. Many researchers 
have developed surface defect detection methods based on the YOLO framework [10-15]. 
It can be observed that most existing research on defect identification using CNNs faces issues such as 
complex model implementations and high computational costs, which makes it difficult to optimize 
model parameters and leads to longer training and inference times [16-18]. 
Guo et al. [19] proposed an MSFT-YOLO model based on YOLOv5 for steel surface defect detection. By 
introducing a transformer-based TRANS module, which integrates global information with local features, 
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they improved the detection performance for defects with large variations in scale.Liu et al. [20] added a 
convolutional attention mechanism module to the convolutional layers of the YOLOv5 backbone net-
work to guide the network to focus on key features. They also used the K-means clustering algorithm to 
reduce sensitivity to the initial clustering center, improving localization accuracy and reducing network 
loss [21].Shang et al. [22] proposed the RayNet network for defect feature extraction and classification. 
Sampath et al. [23] introduced the Defect Aux-Net framework based on multi-task learning and attention 
mechanisms to address defect recognition tasks [24]. 
However, in traditional deep learning-based defect recognition methods, few studies have focused on 
small defect sizes and low contrast between defects and backgrounds, which leads to insufficient detection 
accuracy for certain weld seam defects. This paper investigates from the perspective of lightweight net-
works and model compression, proposing an efficient lightweight welding defect detection algorithm 
called Sim-YOLO. The main contributions of this algorithm are as follows: 
1. By introducing the Sim_C2f module to replace the original C2f module in the backbone network, the 
redundant computational load is effectively reduced, and memory access costs are minimized. The feature 
extraction capability of the model is preserved, while the computational speed is significantly improved. 
2. The network structure is optimized based on the scale features of defect targets in the dataset, focusing 
on the detection of medium and small targets. This prevents the loss of small target information due to 
excessive downsampling and reduces the model's parameter size. 
3. The Inner-SIoU is introduced as a new regression loss function, using auxiliary bounding boxes to 
accelerate the regression of low IoU samples and improve the localization accuracy for small targets. 
4. The LAMP model pruning technique is used to reduce parameters and memory usage while maintain-
ing as much accuracy as possible, decreasing the computational resource requirements. Knowledge distil-
lation is applied to fine-tune the pruned model to enhance performance. 
2. YOLOv8 Algorithm 
YOLOv8 is an advanced object detection algorithm developed by Ultralytics. Its backbone network still 
uses the Darknet53 structure, which has been adopted since YOLOv3. In the architecture of YOLOv8, 
the C2f module is introduced, which deeply integrates the structural advantages of the C3 module in 
YOLOv5 and the Efficient Layer Aggregation Network (ELAN) module in YOLOv7. Specifically, the C2f 
module first performs a stacking operation on the BottleNeck module within the C3 module to enhance 
feature extraction capability. Then, features obtained through conventional convolution operations and 
detailed processing by three BottleNeck layers are concatenated according to specific rules, allowing mul-
tidimensional feature information to be aggregated. Finally, a convolutional layer is used to further refine 
the concatenated features, producing accurate and reliable final outputs, thus laying a solid foundation 
for YOLOv8’s outstanding performance in object detection tasks. This module can output richer gradient 
flow information while maintaining lightweight characteristics. Additionally, YOLOv8 adopts an anchor-
free detection technique, discarding the Anchor Boxes used in previous versions for predicting the bound-
ing boxes of target objects. This simplifies the detection process, reduces model complexity and compu-
tational cost, and also improves the flexibility and accuracy of detection. The proposal includes the 
YOLOv8 architecture diagram and the structural diagrams of its individual modules. 

 
Figure 1. YOLOv8 network structure. 
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Figure 2. Structures of each module in YOLOv8. 
YOLOv8 algorithm offers excellent flexibility, allowing researchers to select different versions of YOLOv8 
based on the network depth and width. In this study, four versions of the detection performance were 
tested using a custom weld seam defect dataset, and the results are shown in Table 1. To save memory on 
embedded devices and reduce computational costs, YOLOv8s was chosen as the baseline model. 
Table 1. Comparison of performance of different YOLO v8 models. 

 
 
 
 
 
 
 
 
 

3. Algorithm Improvement 
The structure of the improved YOLOv8 model (Sim-YOLOv8) is shown in Figure 3. First, the original 
C2f module in the network is replaced with the S_C2f module, which incorporates the SimAM module, 
to enhance the overall detection performance of the network. This improves detection accuracy and speed 
without affecting the model's parameter count and computational load. Next, the network structure is 
optimized to alleviate the issue of small target detail loss caused by excessively deep networks. Then, the 
loss function is changed to the Inner-CIoU loss function, which dynamically evaluates the quality of 
anchor boxes, making it easier to focus on anchor boxes of ordinary quality and improve their perfor-
mance. Finally, the LAMP pruning technique is applied to reduce the number of parameters and memory 
usage while maintaining as much accuracy as possible, thus decreasing the computational resource re-
quirements. Figure 3 shows the structure diagram of the improved model.  

 
Figure 3. Sim_YOLO network structure. 
3.1. Improved C2f 
The C2f module, as a key component of the YOLOv8 network, integrates the advantages of the C3 mod-
ule from YOLOv5 and the ELAN module from YOLOv7. It stacks the BottleNeck module from C3, 

Model Precision (%) 
Recall 

(%) 

Mean Average Preci-

sion (%) 

Model Memory Us-

age (MB) 

YOLO v8s 93.50 91.20 94.60 21.40 

YOLO v8m 93.60 92.90 95.40 49.60 

YOLO v8l 94.60 92.60 96.00 88.60 

YOLOv8x 94.70 92.00 95.80 130.00 
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concatenates the features from convolutional layers and the three BottleNeck layers, and outputs the 
result through a convolutional layer. This not only strengthens feature extraction, capturing multi-dimen-
sional features, but also enhances both accuracy and speed, making YOLOv8 perform excellently. In the 
optimization process of the YOLOv8 network, to further exploit the potential of the C2f module, the 
focus is on enriching its gradient flow and enhancing its feature expression capability. Specifically, the 
SimAM module is introduced at the critical BottleNeck location. SimAM has a unique advantage: it can 
accurately compute the weight of each position, and notably, this addition does not impose additional 
computational burden on the model. By adding SimAM to the BottleNeck module in C2f, the feature 
representation ability of the module is improved. Figure 4 shows the improved S_C2f module.  

 
Figure 4. Structure diagrams of improved S-C2f module. 
3.2. Improve Network Structure  
The original YOLOv8 model has three prediction heads, corresponding to the detection of small, me-
dium, and large targets, respectively. The large target detection layer performs 32x downsampling on the 
image. When the target size is smaller than 32 pixels, only one point of the target is sampled, which may 
be redundant when detecting small-scale defects in weld seams. Additionally, as the scale of the feature 
map decreases, the detailed information contained within it is lost, which is also detrimental to the de-
tection of small-sized targets. To address these issues, the optimized architecture proposed in this paper is 
shown in Figure 5. 

 
Figure 5. Network Structure Improvement. 
The specific optimization strategy is as follows: In the initial phase, a CBS module and an S_C2f module 
at the end of the original backbone network are precisely removed. With this adjustment, the network 
performs at most 16x downsampling operations, generating a 40×40 feature map. This ensures that the 
detailed information of small targets is retained to the maximum extent during the network's forward 
propagation process, effectively preventing excessive information loss. Next, an upsampling operation is 
performed, and the resulting feature map is concatenated with the output from the second S_C2f module 
in the backbone network. After being processed by the C2f module, the concatenated feature map is 
passed to a detection head specifically designed for small target prediction. Then, only one downsampling 
step is carried out, ultimately obtaining a 40×40 output feature map, which will directly be applied to the 
detection of medium-sized defect targets. Through this optimized architecture, the issue of significant 
small target feature loss caused by frequent upsampling and downsampling in the network is successfully 
mitigated. While maintaining the accurate feature representation capability for small and medium targets 
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in weld seam defect detection, this approach significantly reduces the consumption of computational 
resources. 
3.3. Optimized Loss Function 
Regression loss functions are an important method for measuring the accuracy of object detection. In 
YOLOv8, CIoU is used as the loss function, which considers three aspects: the overlap area between the 
predicted and ground truth boxes, the distance between their center points, and the aspect ratio. It is 
defined as follows: 

LCIOU = 1 − IoU +
ρ2(b, bgt)

c2
+ αv 

(1) 

α is a trade-off parameter: 

α =
v

(1 − IoU) + v
 

(2) 

v measures the consistency of the aspect ratio: 

v =
4

π2
(arctan

wgt

hgt
− arctan

w

h
)

2

 
(3) 

wgt and hgt represent the width and height of the ground truth bounding box, while w and h repre-
sent the width and height of the predicted bounding box. 
Although CloU can effectively improve detection performance by adding new geometric constraints, it 
cannot effectively address the issue of multiple damage samples present in the dataset scene. Therefore, 
this paper further introduces the concept of Inner-IoU, which generates auxiliary bounding boxes to cal-
culate IoU loss, improving the model's ability to localize small samples and accelerating the regression of 
predicted bounding boxes. The definition of Inner-CloU is as follows: 

LInner−CIOU = 1 − IoUinner +
ρ2(b, bgt)

c2
+ αv 

(4) 

The ground truth box (GT Box) and the predicted box (Pred Box) are represented as bgt and b, respec-
tively. (xc

gt,yc
gt) represents the center point of the GT Box and the Inner GT Box. (xc,yc) represents the 

center point of the Pred Box and the Inner Pred Box. The width and height of the GT Box are denoted 
as wgt and hgt, while the width and height of the Pred Box are represented as w and h. The variable 
ratio corresponds to the scaling factor, which typically ranges from 0.5 to 1.5, with a value of 1.2 used in 
this paper. 
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(5) 

inter = (min(br
gt
, br) − max(bl

gt
, bl)) × (min(bb

gt
, bb) − max(bt

gt
, bt)) (6) 

union = (wgt × hgt) × (ratio)2 + (w × h) × (ratio)2 − inter (7) 

IoUinner =
inter

union
 

(8) 

3.4. Model Pruning and Knowledge Distillation 
Deploying neural networks on embedded devices is challenging due to the limited storage space and 
computational resources, requiring model compression to reduce computational load and parameter 
count. Neural networks often contain redundant parameters, which can be pruned using the LAMP 
(Layer-adaptive sparsity for magnitude-based pruning) technique. The approach is as follows: 
In a neural network, weight tensors can either be in the form of a 2D matrix or a 4D tensor. To unify the 
definition of the LAMP score, all weight tensors need to be unfolded into one-dimensional vectors. For 
each unfolded vector, the elements are sorted according to the given index. Let μ and v be the weight 
indices, and W[μ] and W[v] be the corresponding mapped weights, with the condition that when μ < 
v, W[μ] ≤ W[v]. The LAMP score calculation formula is as follows: 
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sorce(μ,W) =
(W[μ])2

∑ (W[v])2v≥μ
 (9) 

(W[μ])2 represents the squared weights of the target connection, and ∑ (W[v])2v≥μ  represents the sum 
of the squared weights of the connections with indices greater than μ within the same layer. That is, the 
denominator represents the sum of squared weights of all remaining connections in the current layer, 
while the connections with indices smaller than μ have already been pruned. From equation (9), it can 
be seen that the larger the squared weight, the higher the LAMP score. This score reflects the importance 
of the connection, and weights with lower scores are considered unimportant and are pruned. During 
LAMP pruning, after setting the target pruning ratio, low-score connections are globally pruned to meet 
the global sparsity constraint, with at least one connection in each layer having a score of 1 to prevent 
layer collapse. The application of LAMP can reduce parameters and is better suited for embedded devices. 
Knowledge distillation is an effective method to further improve the model's detection accuracy. For the 
pruned model, distillation techniques are further applied to enhance its performance. First, based on the 
results from the damage dataset, a teacher model is carefully selected. To ensure that both the teacher 
and student models extract feature maps at the same scale, the improved Sim_YOLOv8s model is chosen 
as the teacher. A distillation method suitable for dense object detection and cross-task consistency proto-
cols is used. This method transfers knowledge by mimicking the teacher detector's logit output, which 
includes binary classification distillation loss Lcls

dis  and IoU-based localization distillation loss Llos
dis , 

thereby transferring classification and localization knowledge. The process is shown in Figure 6. 

 
Figure 6. Knowledge distillation flowchart. 
The distillation process for the dataset input is divided into two parts: (1)Input the defect damage data 
into the Sim_YOLO teacher model. (2)Input the defect damage data into the pruned student model and 
obtain the binary classification maps from both the teacher and student models. 
The binary cross-entropy loss values for each binary classification map are computed to extract classifica-
tion knowledge. The importance of the classification maps is then weighted, yielding the binary distilla-
tion loss A, which enables the student model to inherit the teacher model's correct prediction capabilities. 
The formula for calculating the binary classification distillation loss is as follows: 

Lcls
dis(x) =∑∑wi,jLBCE

n

j=1

n

i=1

(pi,j
t′ , pi,j

x′) (10) 

LBCE (pi,j
t′ , pi,j

x′) = −[(1 − pi,j
t′) × lg(1 − pi,j

x′) + pi,j
t′ × lgpi,j

x′] (11) 

 
wi,j represents the importance weight of sample x; LBCE is the binary cross-entropy loss value; pi,j

t′、pi,j
x′ 

represent the binary classification scores at the i-th position and j-th class, respectively. 
Similarly, along with obtaining the binary classification maps, the teacher model's and student model's 
localization maps are also obtained. The Intersection over Union (IoU) between the teacher model's 
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bounding boxes and the student model's bounding boxes is calculated. A loss weighting strategy is then 
introduced to obtain the IoU-based localization distillation loss Llos

dis , which transfers localization 
knowledge from the teacher model to the student model. The formula for calculating the localization 
distillation loss is as follows: 

Llos
dis(x) =∑max(w, j)

n

j=1

× (1 − ui
′) (12) 

ui
′ represents the IoU between the teacher model's bounding boxes and the student model's bounding 

boxes. 
The combined distillation loss is calculated as follows: 
 

Ltotal
dis (x) = a1Lcls

dis(x) + a2Llos
dis(x) (13) 

a1 and a2 is the distillation weight coefficient. 
 
4. Experiment and Result Analysis 
4.1. Experimental Platform 
To verify the effectiveness of the improved algorithm under different experimental environments, three 
different experimental platforms were set up, including a computer development platform and two em-
bedded test platforms. 
The computer development platform uses the Windows 10 x64 operating system, with an Intel® Core™ 
i5-11400 CPU, NVIDIA Geforce RTX-3060 12GB GPU, and 32 GB RAM. 
The embedded test platform utilizes the Raspberry Pi 4B device developed and manufactured by Rasp-
berry Pi Holdings plc, with an ARM Cortex-A72 1.5GHz (quad-core) CPU, and 4GB LPDDR4 RAM. 
This platform is primarily used for model inference and testing. The experimental environment runs on 
the Ubuntu 22.04 system, with Python 3.11 as the programming language and Pytorch 1.10.2 as the deep 
learning framework. 
4.2. Model Evaluation Metrics 
This study uses Precision (P), Recall (R), and Mean Average Precision (mAP) as evaluation metrics for the 
algorithm's detection performance. The calculation formulas are as follows: 

P =
TP

TP + FP
 (14) 

R =
TP

TP + FN
 (15) 

AP = ∫ P(R)dR
1

0

 (16) 

mAP =
∑ APi
n
i=1

n
 (17) 

Where FP represents the number of incorrectly predicted negative samples, FN represents the number 
of incorrectly predicted positive samples, and TP represents the number of correctly predicted positive 
samples. AP reflects the accuracy of target detection for a single class, and mAP represents the average 
AP value over multiple classes. 
4.3. Model Pruning Experiment 
During the model pruning process, a significant phenomenon was observed: as the compression ratio 
gradually increased, the model's loss in accuracy rose correspondingly. The detailed data is presented in 
Table 2, which shows the model's performance metrics under different compression ratios. When the 
compression ratio is below 3, the negative impact on precision, recall, and mean average precision is 
relatively minor, while the floating-point operations, parameter count, and memory usage are significantly 
reduced, allowing more room for model optimization. However, once the compression ratio exceeds the 
threshold of 3, the situation takes a sharp turn, with recall and mean average precision showing a dramatic 
decline. Despite this, the changes in parameter count and memory usage are not significant. This phe-
nomenon clearly indicates that when the compression ratio exceeds 3, pruning the channels starts to 
interfere with the core performance of the model. Therefore, this study ultimately selects a pruning 
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strategy with a compression ratio of 3, using it as a baseline for precise pruning, aiming to achieve efficient 
resource utilization while maintaining model performance. 
Table 2. Comparison of Detection Performance Across Different Networks. 
 
4.4. Knowledge 
Distillation Ex-
perimen 
In the 
knowledge distil-
lation experi-
ment, it was ob-
served that the 
distillation 
weight coeffi-
cient plays a cru-
cial role in the 
distillation effectiveness. Based on the student model and teacher model (Sim-YOLOv8s), the impact of 
various distillation weight coefficients on the knowledge distillation process was explored in detail, as 
shown in Figure 7. From the figure, it can be seen that when the distillation weight coefficient is set to 
2.0, the distilled model demonstrates a high precision (93.70%) and mean average precision (95.20%). 
As the distillation weight coefficient changes dynamically, the precision and recall curves exhibit fluctua-
tions, indicating that different weight coefficients cause the model to focus on specific feature information 
of passion fruit. However, the mean average precision consistently remains at a high level, strongly sup-
porting that the distilled model exhibits good performance in passion fruit detection. 
 

 
Figure 7. Model Performance Under Different Weight Coefficients. 
4.5. Ablation Experiment 
Ablation experiments aim to analyze the value of each improvement. Based on the self-made dataset, 
ablation experiments were conducted to test the improved model. The experimental results are shown in 
Table 3. 
Table 3. Comparison of Detection Performance Across Different Networks. 

Compression 

Ratio 
P (%) R (%) mAP50 (%) FLOPs Params 

Model Memory 

Usage (MB) 

2.0 94.8 91.6 95.3 9.6*10
9 

6.799*106 11.01 

2.5 93.7 91.2 95.1 9.3*10
9 

5.493*106 10.49 

3.0 93.5 90.7 94.8 8.2*10
9 

4.134*106 9.64 

3.5 91.6 89.7 92.3 7.4*10
9 

3.833*106 8.16 

Grou

p 

Neck 

Network 

Inner-

CloU 

Pruning 

and 

Knowledge 

Distillation 

P (%) 
R 

(%) 

mAP50 

(%) 
Params 

Model 

Memory Us-

age (MB) 

0 × × × 86.7 84.9 88.6 
1.236*10
7 

20.60 
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The results from the table show that Group 1 introduced SimAM and improved the C2f module. After 
adding SimAM and optimizing the network structure, the model's parameter count and floating-point 
operations remained unchanged, but both accuracy and detection speed were improved. Group 2 built 
upon Group 1 by changing the loss function to Inner-CIoU, which slightly reduced the detection speed 
but increased the model's mAP50 by 1.7 percentage points compared to the original model. Group 3 
further enhanced Group 2 with model pruning and knowledge distillation, resulting in no loss of accuracy, 
while the model's parameter count and memory usage were reduced by 66.55% and 53.20%, respectively, 
making it more suitable for embedded terminal deployment. 
4.6. Comparison of Different Models 
In order to compare the performance of the improved model with current mainstream object detection 
models, the experiment uses metrics such as FLOPs, parameter count, frame rate, precision, recall, mean 
average precision (mAP), and model memory usage. The proposed model is compared with Faster R-CNN, 
YOLO v5s, YOLO v7 Tiny, YOLO v8s, and YOLO v9 on the same self-constructed dataset. The experi-
mental results are shown in Table 4 and Figure 8. 
Table 4. Comparison of Detection Performance Across Different Networks. 

 

air-
hole 

   

over-
lap 

   

1 √ × × 91.9 91.1 93.1 
1.594*10
7 

25.60 

2 √ √ × 
93.5 90.7 94.8 4.134*10

6 
18.95 

3 √ √ √ 94.7 91.3 95.2 
4.134*10
6 

9.64 

Model 

AP/% 

mAP5
0(%) 

FPS 
(com-
puter
) 

FPS 
(4B) 

Params FLOPs 
Pore 

Slag in-
clusion 

Incom-
plete 
pene-
tration 

Sim-
YOLOv8s 

93.9 94.3 97.2 95.2 
98.3
0 

5.86 4.134*106 
8.196*10
9 

YOLO v9 91.2 92.3 94.8 92.9 
49.6
8 

1.10 3.148*107 
1.654*10
11 

YOLO v8s 91.5 91.8 95.5 93.6 
84.6
2 

3.00 1.236*107 
2.679*10
10 

YOLOv7 
Tiny 

86.2 89.4 93.4 86.8 
56.4
5 

1.32 3.981*107 
1.195*10
11 

YOLO v5s 88.9 90.4 76.2 84.3 
71.6
0 

4.10 7.034*106 
1.764*10
10 

Faster R-
CNN 

75.3 84.6 37.5 57.9 6.01 0.23 4.128*107 
3.145*10
11 
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bite-
edge 

   
 Faster R-CNN YOLO v8s Sim-YOLOv8s 

Figure 8. Comparison of detection performance among three models. 
In the comparison, Sim-YOLOv8 demonstrates exceptional performance. Compared to models like 
YOLOv9, YOLOv8s, YOLOv7 Tiny, YOLO v5s, and Faster R-CNN, Sim-YOLOv8 shows significant ad-
vantages in various parameters, with its accuracy metrics leading the way. The further optimized Sim-
YOLOv8s model, compared to YOLOv8s, achieves breakthroughs in multiple aspects: on one hand, it 
reduces the requirements for Params and FLOPs; on the other hand, in defect detection performance, 
the average precision for detecting porosity, slag inclusion, and lack of fusion defects improved by 2.4, 
2.5, and 1.7 percentage points, respectively, and the mAP increased by 1.6 percentage points.  

air-hole 

  

broken-arc 

  

overlap 

  

bite-edge 

  

unfused 

  
 YOLOv8s Sim-YOLOv8s 

Figure 9. Comparison Chart of Model Improvement Effects. 
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5. CONCLUSION 
A pipeline weld seam image defect detection model based on the improved model Sim-YOLOv8 is pro-
posed. By comparing it with the original YOLOv8 model and current mainstream models, the superiority 
of the improved model in detecting pipeline weld seam image defects is validated. The comparison metrics 
include mAP50, FPS, parameter count, and floating-point operations. The main conclusions are as fol-
lows: 
(1) The original network structure was adjusted by removing the detection head for large targets and 
redundant network layers, which reduced the network parameters while improving the detection perfor-
mance. 
(2) A series of effective improvements were made. On one hand, SimAM was introduced to enhance the 
C2f module, significantly improving detection accuracy and speed without changing the model’s compu-
tational load. On the other hand, the newly added Inner-CloU loss function improved the accuracy of 
detecting anchor boxes. 
(3) The results show that the improved lightweight model outperforms YOLO v5s and YOLO v8s, with 
better performance in weld seam defect recognition. It can quickly and accurately detect weld defects in 
complex environments and multi-target scenarios, balancing both accuracy and real-time performance. 
This demonstrates that the improved model has optimal overall performance, robust capabilities, and can 
effectively support weld seam defect recognition. 
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