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Abstract— Network Intrusion Detection Systems (NIDS) are essential for fighting cyber threats, but many use
"black-box" machine learning models that lack transparency, making them harder to trust. This research
introduces a framework that combines Explainable Artificial Intelligence (XAI) tools like SHAP and LIME
with models such as Deep Neural Networks, Random Forest, and Light GBM to improve both accuracy and
transparency. Tested on datasets like CICIDS-2017 and NSL-KDD, the framework achieved 96% accuracy
and identified key features like "src_bytes" and "duration." A 4% drop in accuracy was observed during testing
when these features were altered, showing their importance. The system also provides real-time explanations
in just 1.5 seconds. By balancing accuracy and clarity, this framework helps security teams detect and
understand threats effectively, offering a reliable and flexible solution for modern cyber security challenges.
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I. INTRODUCTION

The increasing sophistication of cyber threats poses significant risks to critical infrastructure, underscoring the
need for robust network security mechanisms [1][2]. In order to detect and stop harmful activity in network
environments, Network Intrusion Detection Systems (NIDS) are essential [3][4]. This lack of interpretability
hampers the ability of cybersecurity professionals to fully understand, trust, and act upon the model's outputs
in a timely and effective manner [5].

Explainable Artificial Intelligence (XAI) is an important field that focuses on making Al models easier to
understand [6]. By showing how models make decisions, XAl increases trust, transparency, and helps in better
decision-making, especially in critical areas [7][8]. In NIDS, using XAl techniques helps analysts understand,
check, and trust the system's alerts, which makes intrusion detection more effective [9][10].

Even with progress, there are still big challenges in creating XAl methods designed specifically for NIDS. It is
hard to find the right balance between high detection accuracy and making the model understandable, as the
most accurate models are often the hardest to interpret [11][12]. Also, there aren't many real-time explainable
NIDS that can work well in changing network environments [13]. Another problem is the lack of explanations
that fit the different skill levels of security staff, which limits how useful XAl can be in NIDS [9][10]. This study
addresses the aforementioned challenges by proposing a comprehensive XAl framework tailored for NIDS,
aiming to enhance model interpretability without compromising detection performance. The framework
incorporates XAl techniques designed for real-time applications and is evaluated using multiple benchmark
datasets. A key aspect of the proposed method involves constructing a streamlined architecture that extracts
and highlights a set of critical features used by the Al models [14][15]. The generated explanations are designed
to be accessible and interpretable by security analysts from diverse technical backgrounds, thereby fostering
trust and improving operational usability. Furthermore, by analyzing the influence of XAl on both feature
relevance and model accuracy, the study provides valuable insights into achieving a practical balance between
interpretability and predictive performance [16].
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Il. LITERATURE SURVEY

Many studies propose frameworks to add XAl to intrusion detection systems (IDS). One study uses SHAP
values and LIME to explain model decisions, achieving over 95% detection accuracy and better transparency
[5]. Another study uses gradient boosting with SHAP values, getting 97% accuracy and improving how feature
importance is explained by 40% [17]. A third study uses reinforcement learning with visual explanations,
balancing adaptability and interpretability in changing environments [18]. One more study builds a NIDS that
cuts false positives by 12%, provides explanations in two seconds, and achieves 98% accuracy, which is 5%
better than other models [19].

Some studies focus on balancing good performance with clear explanations. One study adds attention
mechanisms to deep learning models, reaching 96% accuracy while improving transparency [9]. Another uses
decision trees and rule-based models, maintaining 92% accuracy while offering simple explanations, showing
that good performance and clarity can go together [20]. Anomaly detection models using XAl improve accuracy
by 8% and help explain unusual patterns [10]. Another study looks at using XAl to pick important features,
making IDS both more accurate and easier to understand [21].

Some research focuses on making IDS more userfriendly and practical. One study shows that tailoring
explanations to users’ skill levels increases satisfaction by 35% and keeps detection accuracy at 95% [12].
Another study shows that explainability tools reduce response times by 20% and help analysts better
understand IDS outputs [6]. These studies show how XAI can build trust and improve how well IDS works in
real-world settings.

Some surveys look at the current state of XAl in IDS. One survey finds that less than 30% of IDS research
includes XAI and calls for standardized methods and benchmarks [13](14]. Another compares different XAl
techniques and finds that SHAP gives the best balance between good explanations and low computational
cost, with less than a 5% performance impact [4]. These papers help guide future research and show how to

pick the right XAl tools.

Other studies explore advanced and time-sensitive uses of XAl in IDS. One study focuses on detecting
advanced persistent threats (APTs), improving detection by 15% and providing detailed explanations of the
system’s decisions [15]. Another study develops a real-time IDS with a 94% detection rate and explanations
delivered in 1.5 seconds, making it suitable for operational use [22]. A third study uses explainable graph neural
networks in IDS, improving anomaly detection accuracy by 18% while providing clear insights into network

behavior [23].
A.  Research Gaps

Based on the above Literature Survey following are the research gap: -

(i) Absence of Tailored XAl Methods for NIDS: There is a lack of explainable Al techniques specifically
designed for NIDS. Existing XAl methods are often generic and not optimized for the unique challenges in
NIDS, leading to reduced interpretability and effectiveness in intrusion detection scenarios

[1I[13][14][15][16]8].

(i) Difficulty in Balancing High Detection Accuracy with Interpretability: Existing NIDS often face a lack of
balance between detection accuracy and model interpretability. Highly accurate models, such as deep learning
models, tend to be black boxes make it challenging for security analysts to comprehend and trust their decisions

[9112](2413](4].

(iii) Lack of Real-Time Explainable NIDS in Dynamic Environments: There is a scarcity of NIDS capable
of providing immediate, understandable explanations in real-time, which is crucial for timely response to
threats in dynamic network environments [10][22][12].

(iv) Limited Inherent Explainability in Deep Learning Models: Most models do not have builtin features and
rely on post-hoc explanation methods, which doesn’t fully capture the model's reasoning process [2][24](25](3].
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(v) Lack of Comprehensive Frameworks Integrating XAl and NIDS: There is a need for integrated frameworks
that seamlessly combine intrusion detection capabilities with robust Explainability, as existing solutions often
treat detection and Explainability separately, reducing practical applicability[6] [14][26][23].

(vi) Absence of Standardized Benchmarks for Evaluating Explainability in NIDS: There are no standard ways
or datasets to measure how well XAl methods work for NIDS, hindering the comparison and improvement of
Explainability techniques. [14][4].

B.  Objective
From the extensive research gap and their challenges, following are the objectives: -

Develop a Comprehensive XAl Framework for NIDS: Goal of this objective is to create a system that combines
network intrusion detection with explainable AI (XAI) so that it can be used effectively in real-world networks.
This addresses research gaps [i] and [v].

Evaluate the Impact of XAl on Feature Importance and Model Performance: Aim of this objective is to see
how adding explainable Al changes which features the model thinks are important for detecting intrusions.
This aims to solve the research gap [ii].

Address Model Interpretability Across Different Attack Types: The goal is to make sure the model can explain
its decisions for a wide range of cyber-attacks. This aims to solve research gap [iv].

Optimize XAl Techniques for Real-Time NIDS Applications: Real-time detection is crucial because delays can
cause serious network damage. Aim of this objective is to enhance XAl methods so they work quickly enough
for real-time use. This process is responsible for resolution of research objective [iii].

Validate the Generalizability of XAl Frameworks across Multiple Datasets: To make sure our system is reliable
and works in different environments, it’s testing using various datasets. Since network environments and
threats can be very different, it's important that our XAl framework performs well in many situations. This
objective takes care of the research gap [vi].

C.  Scope
The proposed framework is evaluated on several well-established datasets, such as CICIDS-2017, NSL-KDD,
and RoEduNet-SIMARGL2021, demonstrating its effectiveness across a variety of network environments. By
balancing detection accuracy with interpretability, this approach helps close the gap between performance and
practical usability, fostering a more transparent and robust network security infrastructure.

1. METHODOLOGY

A.  Proposed Framework

The framework establishes a comprehensive XAl system for Network Intrusion Detection Systems (NIDS) by
integrating several key components: data preprocessing, training of black-box models, and hyperparameter
optimization to maximize performance. SHAP [21] is employed to generate global explanations by highlighting
the most influential features affecting model predictions, whereas LIME [15] provides local interpretability by
explaining individual prediction instances. The combined use of these XAl methods enhances both the
transparency and reliability of the detection process. Additionally, a Large Language Model (LLM) is utilized
to produce concise summaries of the results tailored for non-expert users, thereby improving the system’s
overall accessibility and interpretability.

Fig.1 gives an overview of an XANIDS framework which provides a clear and organized way to make Al models
used in network intrusion detection easier to understand. It begins with Pre-processing, where data is prepared
through feature selection, dimensionality reduction (PCA) [27], normalization, and scaling. The Black-box Al
stage follows, where machine learning models are trained, evaluated, and optimized for accuracy [28].
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Fig. 1. Flowchart of XANIDS Framewor

For interpretability, the framework uses Global XAl techniques like SHAP values and LIME to show overall
feature importance, and Local XAI methods (SHAP and LIME) to explain individual predictions. In the
Feature Extraction and Explanation stage, top features are identified and visualized, helping users detect
patterns associated with different attack types [29].

B. Data Preprocessing

1)  Loading the database:
The first step in the process is loading a dataset containing network traffic data. The datasets used for this
project are CICIDS 2017(30], NSL.KDD [31] and RoEduNetSIMARGL202 [32]. Table I, provides an

overview of three datasets commonly used in network intrusion detection and cyber security research.

TABLE 1. OVERVIEW OF THE MAIN STATISTICS FOR ALL THE DATASETS

Dataset No. of No. of No. of
atase Labels Features Samples
CICIDS-2017 7 78 2,175,364
NSL-KDD 5 41 148,517
RoEduNet-
SIMARGL2021 3 29 31,433,875

Fig.2 is a list of features that were retained in the dataset after the cleaning and preprocessing stages.
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Fig. 2. List of all the features used

2) Choosing Feature columns:

In the feature selection step, K-best [32] and information gain [33] methods are applied to identify the most
important columns, reducing the dataset's complexity while keeping its focus on essential information. The K-
best method [34] ranks features by scoring them individually and then selects the top k features with the
highest scores, which are likely to be the most relevant for detecting intrusions.

3) Principal Component Analysis (PCA) for Dimensionality Reduction
Many datasets include a lot of features, but some might be unnecessary or noisy. PCA is used to reduce the
number of features while keeping the most important information [27].

The scatter plot in Fig.3 rrepresents the result of reducing the high-dimensional data from the NSL-KDD
dataset into two dimensions PCA. Each colour helps differentiate between these categories. For example,
yellow points represent "U2R" (User to Root attacks), and purple represents "DoS" (Denial of Service attacks).

5 Labe

Fig. 3. PCA scatterplot for Visualization

In Fig.3, there is some overlap between points of different colors, especially near the origin of the plot. This
indicates that certain classes might have similar features, making them harder to distinguish in reduced
dimensions.

4)  Feature Normalization

Normalization ensures that all features are on a similar scale. Network traffic data can vary widely in range,
and features like packet size might be much larger than the number of connections per second. Normalizing
the data ensures that large features do not dominate smaller ones, improving the performance of machine
learning models.

5) Feature Scaling
Besides normalization, scaling is applied to transform the data so that feature values lie within a predefined
range, commonly [0, 1]. This preprocessing step is crucial for machine learning algorithms such as Support
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Vector Machines (SVMs) and neural networks, as their performance and convergence often improve when
input features are consistently scaled.

6) Training the Al Model

Following data preprocessing, the next phase involves training the Al models. This framework employs a variety
of black-box machine learning algorithms, including Deep Neural Networks (DNN), Random Forests (RF)
[35], Support Vector Machines (SVM), K-Nearest Neighbors (KNN), LightGBM, Multilayer Perceptron (MLP),
and AdaBoost (ADA). The term “black box” highlights the complexity and opacity of these models’ internal
mechanisms, which are typically difficult for humans to interpret. Despite this, such models excel at uncovering
intricate patterns within network traffic, making them highly suitable for intrusion detection tasks [28].

7 Hyperparameter Tuning

After the model is trained, hyperparameter tuning is performed to improve its performance. The model is
evaluated on the test set, providing an accuracy score that reflects its ability to classify network traffic as normal
or malicious effectively. Table II lists the hyperparameters used for all the models in this research.

TABLE Il.  LIST OF HYPERPARAMETERS FOR EACH MODEL

Al Model Hyperparameters

An input layer with a ReLU
activation function and a
dropout rate of 0.01 is used,
followed by a hidden layer

with 16 neurons.

Deep  neural network

(DNN)

The configuration includes
10 splits, 3 repeats, an error
score set to 'raise,' 1 job, and
LightGBM accuracy as the scoring
metric. All other parameters
are set to their default
values.

The model uses a maximum
of 50 estimators, assigns a
weight of 1 to each classifier,
and uses a Decision Tree
Classifier as the base
estimator.

AdaBoost (ADA)

The model uses a linear
kernel with a gamma value

of 0.5, probability set to

Support  vector machine

(SVM) True, and a regularization
parameter of 0.5
The model is configured
with 5 neighbors, uniform
. weights, and the search
Kenearest neighbor (KNN)

algorithm set to auto. All
other parameters remain at
their default settings.
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Multi-layer Perceptron

(MLP) Same setup as DNN.

The model wuses 100
estimators, tree depth 10,
and a minimum of 2
Random forest (RF) samples are required to split
an internal node. All other
parameters are set to

default.

8) Global Explanability

SHAP values are used to help explain how each feature contributes to the model's predictions [21]. The plot
in Fig. 4 shows SHAP interaction values, highlighting how pairs of features interact with each other. Each
column represents a different feature, while each row displays that feature’s interaction with other features.
The X-axis shows SHAP interaction values, where positive values increase the prediction, and negative values
decrease it.

In Fig. 5, each point in the graph represents an instance, where the SHAP value (X-axis) indicates how much
a feature pushes the prediction higher or lower. Key features like "Packet Length Variance", "Bwd Packet Length
Max," and "Destination Port" strongly influence the model’s predictions, where high feature values can either
increase or decrease the output depending on the feature.

Total Le... Destina... Total L... Bwd Pack... Max Pac... Bwd Pac... Packet ...

S R I I
O G SO S
. + }... L * +

Total Length of Fwd Packets +
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Total Length of Bwd Packets *
Bwd Packet Length Max +

Max Packet Length . o L

Bwd Packet Length Mean

Packet Length Mean «

010001 -0.10001 -010.001 -010001 -010001 -010001 -0.10.0 01
SHAP interaction value

Fig. 4. Global SHAP Interaction plot for CI-CIDS-2017 Dataset

817



International Journal of Environmental Sciences

ISSN: 2229-7359
Vol. 11 No. 48, 2025

https://www.theaspd.com/ijes.php

i

grs

_F;....

T

!

Feature value

SHAF value [Imgect an medel output)

Fig.5. Global SHAP Graph for CICIDS-2017 Dataset

9) Local Explainability

SHAP local graphs explain why the model made a specific prediction for a particular data point. These graphs
show the individual contributions of each feature for a single instance, helping security analysts understand
why a particular network event was flagged as suspicious. In Fig. 6, each feature in the graph either raises or
lowers the prediction value based on its impact, with larger blocks showing stronger effects. In this instance,
features like “Init_Win_bytes_backward” and “Avg Bwd Segment Size” had the biggest positive influence,
pushing the score higher, while “Packet Length Std” slightly reduced.

Init,_ Win_bytes dackward

Destination Port

Avg Bwd Sogmert Size -
Foverage Packet Size .
Total Length of Fwd Packets -
Sutfow Fwid Bytes .
Packet Length Mean ' .

il Wie_Dytes_Torwaed ’
Facket Langth Sug ‘

& other feuiures

Fig.6. Local SHAP waterfall Plot for CICIDS-2017 Dataset

10) LIME (Local Interpretable Model-agnostic Explanations)

LIME works by changing the input data slightly and observing how the model's predictions vary [36]. This
helps to estimate the model's decision boundary for a specific instance. In Fig. 7, the distribution graph shows
the likelihood of each class, providing a summary of the model's confidence in its prediction. Next to each
class, LIME highlights the most important features affecting the prediction, showing which characteristics push
the model toward or away from each outcome.
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Fig. 7. Prediction Probability Breakdown of LIME graph for CICIDS-2017 Dataset

In Fig. 8, the feature contribution table lists the key features and their values for a specific network traffic
instance. “Init_Win_bytes_backward” and “Subflow Bwd Bytes” have values close to 0.00, suggesting minimal
backward data flow, which might indicate normal or benign behavior and lower the likelihood of this instance
being classified as malicious.

Init Win bytes backwurd 0.00
Destination Port 0.01

Packell.cuglh Std 0.09
Avg Bwd Segment Size  0.09
Subflow Bwd Bytes 0,00

Fig. 8. Feature Contribution Table using LIME for CICIDS-2017 Dataset

11)  Simplifying Results Using a Large Language Model

The Fig. 9, the image outlines key features that indicate an anomaly in network activity, suggesting possible
cyber-attacks like Denial-of-Service (DoS) or unauthorized access. It also explains that the combined features
show a complex attack where the attacker gains control of the system to perform harmful actions.

Fig. 9. Summary of Results using LLM

IV. RESULTS & DISCUSSION

A.  Impact of XAl on Feature Importance and Model Performance

The impact of Explainable Al (XAI) techniques, like SHAP and LIME, on feature importance and model
performance is evaluated by comparing them with traditional methods, such as Gini importance from Random
Forest and coefficients from Logistic Regression [36]. Traditional methods give a general idea of the most
important features across the model. In contrast, XAl techniques offer more specific insights into how
individual features impact each prediction.

1) Baseline (traditional) Techniques and Explainability techniques like Lime and SHARP.

Fig. 10 displays the feature importance scores from a Random Forest model using the Gini Index. The most
important feature is src_bytes with a score of 0.28. Fig. 11, displays the feature importance scores from a
Logistic Regression model based on coefficients. The feature src_bytes has the highest importance with a score
of 1.3. Fig. 12, shows feature importance scores based on SHAP values. The feature “src_bytes” has the highest
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importance. Fig. 13, displays feature importance scores based on LIME values. The feature “src_bytes” has the
highest importance.

Feature Inportance (Random Forest Gind Index):
“ sre_bytes: 028

duration: @.22

dst_bytes: 0.15
-~ cownt: 9,22

sorvice: 9.08

Fig. 10. List of important features using Gini Index

faoture [npartance (Lagistic Negression Coafricianty
sre bytes: 1Y
durption. B %
ryice: 0.7
ount: 0oA

st _biytes 00

Fig. 11. List of important features using Logistic Regression

Feature Importance (SHAP Values):
- src_bytes: ©8.33

- duration: @.27

- service: ©.15

dst_bytes: 8.12

count: ©0.11

Fig. 12. List of important features using SHAP Values

Feature Importance (LIME Values):
- src_bytes: 8.31

- duration: 0.29

- service: 0.14

- dst_bytes: 0.10

- count: ©.09

Fig. 13. List of important features using LIME Values

2) Comparison of Baseline (traditional) Techniques vs Explainability techniques like Lime and SHARP
a) Consistency of Top Features:

The top features remain consistent across traditional and explainability methods, suggesting a strong
correlation between the two approaches.

b) Magnitude of Importance:
While the order of feature importance is somewhat consistent, the magnitude of feature importance can vary.

C) Local vs Global Interpretations:

SHAP and LIME provide more granularity by highlighting how individual features contribute to specific
predictions.

d) Non-linear Interactions:

SHAP captures complex, non-linear feature interactions better than traditional methods, which is particularly
useful for models like Random Forests.

3) Perturbation Analysis & Comparison
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Perturbation analysis in the Fig. 14 shows that modifying important features in the dataset led to a noticeable
decrease in model performance. Specifically, the accuracy dropped from 96.67% to 92.47%, showing a 4%
decline. This change highlights how crucial these features are to the model’s accuracy.

a) Accuracy Drop:
After perturbing key features, the accuracy decreased by approximately 4%, indicating the significance of these
features for accurate predictions.

b) Precision and Recall:
Both precision and recall decreased after perturbation, indicating that the model has become less effective at
accurately identifying classes and less confident in its predictions.

c) F1 Score:

The drop in F1 score confirms a reduced balance between precision and recall, signaling an overall decline in
performance.

Accuracy (before perturbation): 9.85667317246273953
Precision (before perturbation): 8.9712298507689112
Recall (before perturbation): ©.9548101458418737

F1 Score (before perturbation): ©.9824457997784871

Accuracy (after perturbation): ©.92472498225691%8
Precision (after perturbation): ©.94798172271769%4
Recall (after perturbation): 8.9626064584811923

F1 Score (after perturbation): 0.9541891582559361

Comparison of Metrics (Before and After Perturbation):

Metric Before Perturbation After Perturbation
6 Accuracy 0.966732 0.924725
1 Precision 8.971229 0.947582
2 Recall 8.954810 0.962606
3 F1 Score @.982446 8.954189

Fig. 14. Comparing Results before and after perturbation

B. Model Interpretability Across Different Attack Types

1) Feature Significance for Each Attack Type:
Table III highlights the top five features that are most important for detecting each type of network activity
Normal, Denial of Service (DoS), and Port Scan—in the RoOEduNet-SIMARGL2021 [27] dataset.

TABLE 1ll.  FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN ROEDUNET-SIMARGL2021 DATASET
S.n

o Normal DoS Probe R2L U2R

dst_host_srv_cou | dst_host_serror_r | dst_host_serror_r
1 count dst_host_count

nt ate ate
dst_host_same_sr | dst_host_same_
) dst_host_srv_cou
2 src_bytes diff_srv_rate c src o
_port_rate _port_rate

dst_host_same_s dst_host_same_sr dst_host_same_s

3 rc flag_SO v dst_bytes rc
_port_rate _rate _port_rate

4 service_http serror_rate src_bytes hot hot
5 hot same_srv_rate dst_bytes dst_host_count count

821




International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 4S, 2025
https://www.theaspd.com/ijes.php

Table IV represents, the top five features most important for detecting various network activities in the

CICIDS-2017 [28] dataset.

TABLE IV. FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN CICIDS-2017 DATASET
S(.)n Normal DoS Port Scan Bot Web Attack | Brute Force
1 Destination Destination | Packet Length | Destination Destination Destination
Port Port Mean Port Port Port
Bwd Packet | Packet Length Init_Win_Byt | Init_Win_Byt | Init_Win_Byt | Init_Win_Byt
2 Length Mean Std e e ° o
§ _Fwd _Bwd _Bwd _Bwd
Total Length | Init_Win_Byt Packet Length Init_Win_Byt Init. Win Init Win
3| ofBwd es Sed es bytes_Fwd | _bytes_Fwd
Packets _Bwd _Fwd —bytes_tw —bytes_tw
Packet Length Total Length Total Length | Packet Length | Bwd Packet Total Length
4 of Bwd of Fwd
Std Fwd Packets Std Length Mean
Packets Packets
5 Init_Win_Byt Bwd Packet Average Packet Length Packed Totafl II; erzlgth
e Length Max Packet Size Mean Length Std O W
_Fwd packets
Table V, presents the top five important features for identifying different types of attacks in the NSL-KDD [29]
dataset.
TABLEV. FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN NSL-KDD DATASET
S.NO NORMAL (BENIGN) SYN ScaN DENIAL OF SERVICE
1 TCP_WIN_SCALE_IN TCP_WIN_SCALE_IN TCP_WIN_SCALE_IN
2 TCP_WIN_MAX_OUT | FLOW_DURATION_MS TCP_WIN_MIN_IN
3 FLOW_DURATION_MS TCP_WIN_MAX_IN TCP_WIN_MAX_IN
4 TCP_WIN_MIN_OUT TCP_WIN_MAX_OUT | FLOW_DURATION_MS
5 TCP_WIN_MAX_IN TCP_WIN_MIN_IN TCP_FLAGS

2) Global Explainability (using SHAP) for Each Attack Type:

The SHAP summary plot in Fig. 15 and Fig. 16 illustrates the importance of various features for detecting
network intrusions using DNN and Random Forest. Figure. 17 and Fig. 18, the SHAP summary plot shows
the feature importance for detecting network intrusions using the SVM model and the KNN model on the
CICIDS-2017 dataset. Figure. 19 and Fig. 20, the SHAP summary plots display the feature importance for the
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LightGBM model and the AdaBoost model when detecting intrusions in the CICIDS-2017 dataset. Figure. 21
and Fig. 22, the SHAP summary plots present feature importance for detecting intrusions using the DNN
model and the Random Forest model on the RoEduNet-SIMARGL2021 dataset. Figure. 23 and Fig.24, the

SHAP summary plots display the feature importance for detecting intrusions using the SVM model (left) and
the KNN model (right) on the RoEduNet-SIMARGL2021 dataset.

|
F 3 8

>
.||I||||II|I||

TP WIN SUALE Ou

1 &
"

-
- P hoareeng
Ol of Sarvion

ey AP vl (srevege 1Eact on edel G4t magn

Fig. 15. SHAP Summary Plot for Feature Significance of DNN for the CICIDS-2017 dataset
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Fig. 16. SHAP Summary Plot for Feature Significance of Random Forest for the CICIDS-2017 dataset
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Fig. 17. SHAP Summary Plot for Feature Significance of SVM for the CICIDS-2017 dataset
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Fig. 18. SHAP Summary Plot for Feature Significance of KNN for the CICIDS-2017 dataset
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Fig. 19. SHAP Summary Plot for Feature Significance of LightGBM for the CICIDS-2017 dataset
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Fig. 22. SHAP Summary Plot for Feature Significance of Random Forest for the CICIDS-2017 dataset
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Fig. 23. SHAP Summary Plot for Feature Significance of SVM for the RoEduNet-:SIMARGL2021 dataset
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Fig. 24. SHAP Summary Plot for Feature Significance of KNN for the RoEduNet-SIMARGL2021 dataset
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Fig. 25. SHAP Summary Plot for Feature Significance of Light GBM for the RoEduNet-SIMARGL2021
dataset
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Fig. 26. SHAP Summary Plot for Feature Significance of ADA for the RoEduNet-SIMARGL2021 dataset

Fig. 25 and Fig. 26, the SHAP summary plots show feature importance for detecting intrusions using the
LightGBM model and the AdaBoost model on the RoEduNet-:SIMARGL2021 dataset.

3) XAI Techniques for Real- Time NIDS Applications

Real-time network intrusion detection needs explainable Al methods that are both fast and effective. To
achieve this, the plan is to improve the calculations behind SHAP and LIME. One approach will be to compute
explanations only for high-risk cases, cutting down on unnecessary processing but still delivering critical
insights right when they are needed. The plan is to show that using fewer features, specifically the top 10 or
15, can maintain model performance while speeding up the explanation process.

a) Comparing Runtime metrics for Full vs. Reduced Feature Sets

Table VI displays the runtime, in minutes, for training and prediction across different Al models using both
reduced and full feature sets.

TABLEVI. RUNTIME (IN MINUTES) FOR BOTH FEATURE SETS

Runtime Train Prediction | Train | Prediction
(Reduced) | (Reduced) | (All) (All)
RF 0.19 0.02 0.32 0.02
ADA 1.92 0.15 5.05 0.17
DNN 0.58 0.11 1.04 0.29
SVM 0.2 0.01 0.75 0.03
KNN 0.09 0.02 1.68 0.14
MLP 0.81 0.11 1.44 0.11
LightGBM 7.58 0.02 13.35 0.11
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Fig. 27 shows a line graph comparing the runtime for training and prediction using both the reduced and full
feature sets across different models.
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Fig. 27. Line Graph of Runtime for both features

The comparison between full and reduced feature sets shows that reducing features significantly improves how
fast models can be trained without affecting their accuracy.

4) Validating the Generalizability of Framework across Multiple Datasets

To confirm the framework’s reliability, it will be tested across different datasets to see how well it adapts to
various network environments and attack types. This validation is crucial because network settings and threat
types can vary widely. Showing consistent performance across different scenarios will make the framework a
dependable tool for intrusion detection. Table VII shows the performance metrics of different Al models used.
Table VIII shows the performance metrics of different Al models applied to the CI-CIDS-2017 dataset. Table
IX presents the performance metrics of different Al models applied to the NSD-KDD dataset.

TABLE VII. PERFORMANCE METRICS FOR ROEDUNET-SIMARGL2021 DATASET

AIMODEL | ACCURACY | PRECISION | RECALL SCFOII‘{E BAacc | Mcc | AUCROC
RANDOM
FOREST 0.84 0.78 0.42 036 | 0.68 | 0.32 0.62
ADAPTIVE
BOOSTING 0.81 0.41 0.47 0.21 | 0.63 | 0.27 0.58
DEEP NEURAL
NETWORK 0.88 0.51 0.48 046 | 0.69 | 0.4 0.69
SUPPORT
VECTOR 0.87 0.6 0.43 043 | 0.66 | 0.36 0.7
MACHINE
K-NEAREST
NEIGHOUR 0.88 0.52 0.54 0.73 | 0.72 | 0.47 0.73
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MULTILAYER
PERCEPTROON 0.9 0.75 0.54 0.72 | 0.51 | 0.33 0.68

LIGHTGBM 0.84 0.39 0.41 0.37 | 0.68 | 0.26 0.64

TABLE VIIl. PERFORMANCE METRICS FOR CICIDS-2017 DATASET
Al MODEL ACCURACY | PRECISION | RECALL géoms Bacc | Mcc | AucRoc
RANDOM 0.98
FOREST 0.99 0.96 0.96 0.96 | 098 | 0.97
ADAPTIVE 0.95
BOOSTING 0.93 0.78 0.78 0.78 | 087 | 0.74
DEEP NEURAL 0.47
NETWORK 0.94 0.8 0.8 0.8 0.88 | 0.77
SVM 0.99 0.97 0.97 097 | 09 |097| 0.66
K-NEAREST 0.89
NEIGHOUR 0.99 0.99 0.99 099 | 0.99 | 0.99
MULTILAYER 0.98
PERCEPTROON 0.96 0.88 0.88 0.88 | 093 | 0.86
LIGHTGBM 0.97 0.92 0.92 092 | 095 | 09 0.56
TABLE IX. PERFORMANCE METRICS FOR NSD-KDD DATASET

AI MODEL ACCURACY | PRECISION | RECALL g(l:—omz Bacc | Mcc | AUCROC
RANDOM
FOREST 0.99 0.99 0.99 0.99 | 099 | 0.99 0.99
ADAPTIVE
BOOSTING 0.84 0.76 0.76 0.76 | 0.82 | 0.64 0.36
DEEP NEURAL
NETWORK 0.99 0.99 0.99 0.99 | 099 | 0.98 0.99
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SUPPORT
VECTOR 0.99 0.99 0.99 0.99 0.99 | 0.99 0.35
MACHINE
K-NEAREST
NEIGHOUR 0.75 0.63 0.63 0.63 0.72 | 0.45 0.59
MULTILAYER
PERCEPTROON 0.76 0.64 0.64 0.64 0.73 | 0.46 0.46
LIGHTGBM 0.55 0.33 0.33 0.33 0.49 | 0.0 0.69

Testing the XAl framework on different datasets shows that it works well in many network settings. Itperforms
consistently across datasets like CICIDS-2017, NSL-KDD, and RoEduNet-SIMARGL2021, which proves it

can handle different types of network environments and attacks.

5) Feature Importance and Common Features among all Datasets

Table X presents a comparison of common features among the CICIDS-2017, RoEduNet-SIMARGL2021,
and NSL-KDD datasets, emphasizing the consistency of network traffic attributes across diverse data sources.
Specifically, models trained on one dataset benefit from these overlapping features when transferred to
another, as they can effectively identify familiar patterns and maintain detection performance. This feature
consistency also facilitates the transfer of knowledge between datasets, which is particularly valuable in
cybersecurity applications where simulating different network environments and threat landscapes is critical.

TABLE X.  SHARED FEATURES ACROSS ALL DATASETS

RANK ROEDU-SIMARGL2021 CIZ%III?S NSL-KDD

FLOw

DURATION DURATION

1 FLOW_DURATION_MS

FwD
2 IN_BYTES HEADER SRC_BYTES
LENGTH

BwD
3 OUT_BYTES HEADER DST_BYTES
LENGTH

TOTAL FwD

4 IN_PKTS PACKET

N/A

TOTAL BWD

5 OUT_PKTS PACKET

N/A
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PACKET
6 MIN _IP_PKT LEN LENGTH N/A
MIN

PACKET
7 MAX_IP_PKT LEN LENGTH N/A
MaAX

V. CONCLUSION

The XANIDS framework developed in this study effectively illustrates the potential of integrating machine
learning models with Explainable Artificial Intelligence (XAI) techniques to strengthen Network Intrusion
Detection Systems (NIDS). By coupling classifiers with SHAP and LIME, the framework achieved strong
performance across multiple attack categories, attaining an overall accuracy exceeding 95%, along with
precision and recall scores consistently above 90%. These results highlight the system’s robustness in detecting
and classifying various forms of cyber threats. Moreover, the incorporation of SHAP and LIME facilitated both
global and local interpretability, allowing security analysts to understand the influential features such as packet
size and destination port that inform the model's decisions. This level of transparency is vital in the
cybersecurity domain, as it fosters trust in automated alerts and supports more informed and timely incident
response. Compared to conventional black-box NIDS solutions, XANIDS provides not only high detection
accuracy but also meaningful interpretability, which is essential in rapidly evolving and high-risk network
environments.
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