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Abstract— Network Intrusion Detection Systems (NIDS) are essential for fighting cyber threats, but many use 
"black-box" machine learning models that lack transparency, making them harder to trust. This research 
introduces a framework that combines Explainable Artificial Intelligence (XAI) tools like SHAP and LIME 
with models such as Deep Neural Networks, Random Forest, and LightGBM to improve both accuracy and 
transparency. Tested on datasets like CICIDS-2017 and NSL-KDD, the framework achieved 96% accuracy 
and identified key features like "src_bytes" and "duration." A 4% drop in accuracy was observed during testing 
when these features were altered, showing their importance. The system also provides real-time explanations 
in just 1.5 seconds. By balancing accuracy and clarity, this framework helps security teams detect and 
understand threats effectively, offering a reliable and flexible solution for modern cyber security challenges. 

Keywords— Cyber security, Network Intrusion Detection Systems, Explainable Artificial Intelligence, SHAP (Shapley 
Additive Explanations), Trust in Cyber security Tools, LIME (Local Interpretable Model-agnostic Explanations) 

I. INTRODUCTION  

The increasing sophistication of cyber threats poses significant risks to critical infrastructure, underscoring the 
need for robust network security mechanisms [1][2]. In order to detect and stop harmful activity in network 
environments, Network Intrusion Detection Systems (NIDS) are essential [3][4]. This lack of interpretability 
hampers the ability of cybersecurity professionals to fully understand, trust, and act upon the model's outputs 
in a timely and effective manner [5]. 

Explainable Artificial Intelligence (XAI) is an important field that focuses on making AI models easier to 
understand [6]. By showing how models make decisions, XAI increases trust, transparency, and helps in better 
decision-making, especially in critical areas [7][8]. In NIDS, using XAI techniques helps analysts understand, 
check, and trust the system's alerts, which makes intrusion detection more effective [9][10]. 

Even with progress, there are still big challenges in creating XAI methods designed specifically for NIDS. It is 
hard to find the right balance between high detection accuracy and making the model understandable, as the 
most accurate models are often the hardest to interpret [11][12]. Also, there aren't many real-time explainable 
NIDS that can work well in changing network environments [13]. Another problem is the lack of explanations 
that fit the different skill levels of security staff, which limits how useful XAI can be in NIDS [9][10]. This study 
addresses the aforementioned challenges by proposing a comprehensive XAI framework tailored for NIDS, 
aiming to enhance model interpretability without compromising detection performance. The framework 
incorporates XAI techniques designed for real-time applications and is evaluated using multiple benchmark 
datasets. A key aspect of the proposed method involves constructing a streamlined architecture that extracts 
and highlights a set of critical features used by the AI models [14][15]. The generated explanations are designed 
to be accessible and interpretable by security analysts from diverse technical backgrounds, thereby fostering 
trust and improving operational usability. Furthermore, by analyzing the influence of XAI on both feature 
relevance and model accuracy, the study provides valuable insights into achieving a practical balance between 
interpretability and predictive performance [16]. 
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II. LITERATURE SURVEY 

Many studies propose frameworks to add XAI to intrusion detection systems (IDS). One study uses SHAP 
values and LIME to explain model decisions, achieving over 95% detection accuracy and better transparency 
[5]. Another study uses gradient boosting with SHAP values, getting 97% accuracy and improving how feature 
importance is explained by 40% [17]. A third study uses reinforcement learning with visual explanations, 
balancing adaptability and interpretability in changing environments [18]. One more study builds a NIDS that 
cuts false positives by 12%, provides explanations in two seconds, and achieves 98% accuracy, which is 5% 
better than other models [19]. 

Some studies focus on balancing good performance with clear explanations. One study adds attention 
mechanisms to deep learning models, reaching 96% accuracy while improving transparency [9]. Another uses 
decision trees and rule-based models, maintaining 92% accuracy while offering simple explanations, showing 
that good performance and clarity can go together [20]. Anomaly detection models using XAI improve accuracy 
by 8% and help explain unusual patterns [10]. Another study looks at using XAI to pick important features, 
making IDS both more accurate and easier to understand [21]. 

Some research focuses on making IDS more user-friendly and practical. One study shows that tailoring 
explanations to users’ skill levels increases satisfaction by 35% and keeps detection accuracy at 95% [12]. 
Another study shows that explainability tools reduce response times by 20% and help analysts better 
understand IDS outputs [6]. These studies show how XAI can build trust and improve how well IDS works in 
real-world settings. 

Some surveys look at the current state of XAI in IDS. One survey finds that less than 30% of IDS research 
includes XAI and calls for standardized methods and benchmarks [13][14]. Another compares different XAI 
techniques and finds that SHAP gives the best balance between good explanations and low computational 
cost, with less than a 5% performance impact [4]. These papers help guide future research and show how to 
pick the right XAI tools. 

Other studies explore advanced and time-sensitive uses of XAI in IDS. One study focuses on detecting 
advanced persistent threats (APTs), improving detection by 15% and providing detailed explanations of the 
system’s decisions [15]. Another study develops a real-time IDS with a 94% detection rate and explanations 
delivered in 1.5 seconds, making it suitable for operational use [22]. A third study uses explainable graph neural 
networks in IDS, improving anomaly detection accuracy by 18% while providing clear insights into network 
behavior [23]. 

A. Research Gaps 
Based on the above Literature Survey following are the research gap: -  

(i) Absence of Tailored XAI Methods for NIDS: There is a lack of explainable AI techniques specifically 
designed for NIDS. Existing XAI methods are often generic and not optimized for the unique challenges in 
NIDS, leading to reduced interpretability and effectiveness in intrusion detection scenarios 
[1][13][14][15][16][8]. 

(ii) Difficulty in Balancing High Detection Accuracy with Interpretability: Existing NIDS often face a lack of 
balance between detection accuracy and model interpretability. Highly accurate models, such as deep learning 
models, tend to be black boxes make it challenging for security analysts to comprehend and trust their decisions 
[9][2][24][3][4]. 

(iii) Lack of Real-Time Explainable NIDS in Dynamic Environments: There is a scarcity of NIDS capable 
of providing immediate, understandable explanations in real-time, which is crucial for timely response to 
threats in dynamic network environments [10][22][12]. 

(iv) Limited Inherent Explainability in Deep Learning Models: Most models do not have built-in features and 
rely on post-hoc explanation methods, which doesn’t fully capture the model's reasoning process [2][24][25][3]. 
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(v) Lack of Comprehensive Frameworks Integrating XAI and NIDS: There is a need for integrated frameworks 
that seamlessly combine intrusion detection capabilities with robust Explainability, as existing solutions often 
treat detection and Explainability separately, reducing practical applicability[6] [14][26][23]. 

(vi) Absence of Standardized Benchmarks for Evaluating Explainability in NIDS: There are no standard ways 
or datasets to measure how well XAI methods work for NIDS, hindering the comparison and improvement of 
Explainability techniques. [14][4]. 

B. Objective 
From the extensive research gap and their challenges, following are the objectives: -  

Develop a Comprehensive XAI Framework for NIDS: Goal of this objective is to create a system that combines 
network intrusion detection with explainable AI (XAI) so that it can be used effectively in real-world networks. 
This addresses research gaps [i] and [v]. 

Evaluate the Impact of XAI on Feature Importance and Model Performance: Aim of this objective is to see 
how adding explainable AI changes which features the model thinks are important for detecting intrusions. 
This aims to solve the research gap [ii]. 

Address Model Interpretability Across Different Attack Types: The goal is to make sure the model can explain 
its decisions for a wide range of cyber-attacks. This aims to solve research gap [iv]. 

Optimize XAI Techniques for Real-Time NIDS Applications: Real-time detection is crucial because delays can 
cause serious network damage. Aim of this objective is to enhance XAI methods so they work quickly enough 
for real-time use. This process is responsible for resolution of research objective [iii]. 

Validate the Generalizability of XAI Frameworks across Multiple Datasets: To make sure our system is reliable 
and works in different environments, it’s testing using various datasets. Since network environments and 
threats can be very different, it's important that our XAI framework performs well in many situations. This 
objective takes care of the research gap [vi]. 

C. Scope 
The proposed framework is evaluated on several well-established datasets, such as CICIDS-2017, NSL-KDD, 
and RoEduNet-SIMARGL2021, demonstrating its effectiveness across a variety of network environments. By 
balancing detection accuracy with interpretability, this approach helps close the gap between performance and 
practical usability, fostering a more transparent and robust network security infrastructure. 

III. METHODOLOGY  

A. Proposed Framework 
The framework establishes a comprehensive XAI system for Network Intrusion Detection Systems (NIDS) by 
integrating several key components: data preprocessing, training of black-box models, and hyperparameter 
optimization to maximize performance. SHAP [21] is employed to generate global explanations by highlighting 
the most influential features affecting model predictions, whereas LIME [15] provides local interpretability by 
explaining individual prediction instances. The combined use of these XAI methods enhances both the 
transparency and reliability of the detection process. Additionally, a Large Language Model (LLM) is utilized 
to produce concise summaries of the results tailored for non-expert users, thereby improving the system’s 
overall accessibility and interpretability. 

 

Fig.1 gives an overview of an XANIDS framework which provides a clear and organized way to make AI models 
used in network intrusion detection easier to understand. It begins with Pre-processing, where data is prepared 
through feature selection, dimensionality reduction (PCA) [27], normalization, and scaling. The Black-box AI 
stage follows, where machine learning models are trained, evaluated, and optimized for accuracy [28]. 
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Fig. 1. Flowchart of XANIDS Framewor 

For interpretability, the framework uses Global XAI techniques like SHAP values and LIME to show overall 
feature importance, and Local XAI methods (SHAP and LIME) to explain individual predictions. In the 
Feature Extraction and Explanation stage, top features are identified and visualized, helping users detect 
patterns associated with different attack types [29]. 

B. Data Preprocessing 
1) Loading the database: 
The first step in the process is loading a dataset containing network traffic data. The datasets used for this 
project are CICIDS 2017[30], NSL-KDD [31] and RoEduNet-SIMARGL202 [32]. Table I, provides an 
overview of three datasets commonly used in network intrusion detection and cyber security research. 

TABLE I.  OVERVIEW OF THE MAIN STATISTICS FOR ALL THE DATASETS 

Dataset 
No. of 
Labels 

No. of 
Features 

No. of 
Samples 

CICIDS-2017 7 78 2,775,364 

NSL-KDD 5 41 148,517 

RoEduNet-
SIMARGL2021 

3 29 31,433,875 

 

Fig.2 is a list of features that were retained in the dataset after the cleaning and preprocessing stages. 
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Fig. 2. List of all the features used 

2) Choosing Feature columns: 
In the feature selection step, K-best [32] and information gain [33] methods are applied to identify the most 
important columns, reducing the dataset's complexity while keeping its focus on essential information. The K-
best method [34] ranks features by scoring them individually and then selects the top 𝑘 features with the 
highest scores, which are likely to be the most relevant for detecting intrusions. 

3) Principal Component Analysis (PCA) for Dimensionality Reduction 
Many datasets include a lot of features, but some might be unnecessary or noisy. PCA is used to reduce the 
number of features while keeping the most important information [27].  

The scatter plot in Fig.3 rrepresents the result of reducing the high-dimensional data from the NSL-KDD 
dataset into two dimensions PCA. Each colour helps differentiate between these categories. For example, 
yellow points represent "U2R" (User to Root attacks), and purple represents "DoS" (Denial of Service attacks). 

  

Fig. 3. PCA scatterplot for Visualization  

In Fig.3, there is some overlap between points of different colors, especially near the origin of the plot. This 
indicates that certain classes might have similar features, making them harder to distinguish in reduced 
dimensions.  

4) Feature Normalization 
Normalization ensures that all features are on a similar scale. Network traffic data can vary widely in range, 
and features like packet size might be much larger than the number of connections per second. Normalizing 
the data ensures that large features do not dominate smaller ones, improving the performance of machine 
learning models. 

5) Feature Scaling 
Besides normalization, scaling is applied to transform the data so that feature values lie within a predefined 
range, commonly [0, 1]. This preprocessing step is crucial for machine learning algorithms such as Support 
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Vector Machines (SVMs) and neural networks, as their performance and convergence often improve when 
input features are consistently scaled. 
6) Training the AI Model 
Following data preprocessing, the next phase involves training the AI models. This framework employs a variety 
of black-box machine learning algorithms, including Deep Neural Networks (DNN), Random Forests (RF) 
[35], Support Vector Machines (SVM), K-Nearest Neighbors (KNN), LightGBM, Multilayer Perceptron (MLP), 
and AdaBoost (ADA). The term “black box” highlights the complexity and opacity of these models’ internal 
mechanisms, which are typically difficult for humans to interpret. Despite this, such models excel at uncovering 
intricate patterns within network traffic, making them highly suitable for intrusion detection tasks [28]. 

7) Hyperparameter Tuning 
After the model is trained, hyperparameter tuning is performed to improve its performance. The model is 
evaluated on the test set, providing an accuracy score that reflects its ability to classify network traffic as normal 
or malicious effectively. Table II lists the hyperparameters used for all the models in this research. 

TABLE II.  LIST OF HYPERPARAMETERS FOR EACH MODEL 

AI Model Hyperparameters 

Deep neural network 
(DNN) 

An input layer with a ReLU 
activation function and a 
dropout rate of 0.01 is used, 
followed by a hidden layer 
with 16 neurons. 

LightGBM 

The configuration includes 
10 splits, 3 repeats, an error 
score set to 'raise,' 1 job, and 
accuracy as the scoring 
metric. All other parameters 
are set to their default 
values. 

AdaBoost (ADA) 

The model uses a maximum 
of 50 estimators, assigns a 
weight of 1 to each classifier, 
and uses a Decision Tree 
Classifier as the base 
estimator. 

Support vector machine 
(SVM) 

The model uses a linear 
kernel with a gamma value 
of 0.5, probability set to 
True, and a regularization 
parameter of 0.5 

K-nearest neighbor (KNN) 

The model is configured 
with 5 neighbors, uniform 
weights, and the search 
algorithm set to auto. All 
other parameters remain at 
their default settings. 
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Multi-layer Perceptron 
(MLP) Same setup as DNN. 

Random forest (RF) 

The model uses 100 
estimators, tree depth 10, 
and a minimum of 2 
samples are required to split 
an internal node. All other 
parameters are set to 
default. 

 
8) Global Explanability 
SHAP values are used to help explain how each feature contributes to the model's predictions [21]. The plot 
in Fig. 4 shows SHAP interaction values, highlighting how pairs of features interact with each other. Each 
column represents a different feature, while each row displays that feature’s interaction with other features. 
The X-axis shows SHAP interaction values, where positive values increase the prediction, and negative values 
decrease it. 

In Fig. 5, each point in the graph represents an instance, where the SHAP value (X-axis) indicates how much 
a feature pushes the prediction higher or lower. Key features like "Packet Length Variance", "Bwd Packet Length 
Max," and "Destination Port" strongly influence the model’s predictions, where high feature values can either 
increase or decrease the output depending on the feature. 

 

Fig. 4. Global SHAP Interaction plot for CI-CIDS-2017 Dataset 
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Fig. 5. Global SHAP Graph for CICIDS-2017 Dataset 

9) Local Explainability 
SHAP local graphs explain why the model made a specific prediction for a particular data point. These graphs 
show the individual contributions of each feature for a single instance, helping security analysts understand 
why a particular network event was flagged as suspicious. In Fig. 6, each feature in the graph either raises or 
lowers the prediction value based on its impact, with larger blocks showing stronger effects. In this instance, 
features like “Init_Win_bytes_backward” and “Avg Bwd Segment Size” had the biggest positive influence, 
pushing the score higher, while “Packet Length Std” slightly reduced. 

 

Fig. 6. Local SHAP waterfall Plot for CICIDS-2017 Dataset 

10) LIME (Local Interpretable Model-agnostic Explanations) 
LIME works by changing the input data slightly and observing how the model's predictions vary [36]. This 
helps to estimate the model's decision boundary for a specific instance. In Fig. 7, the distribution graph shows 
the likelihood of each class, providing a summary of the model's confidence in its prediction. Next to each 
class, LIME highlights the most important features affecting the prediction, showing which characteristics push 
the model toward or away from each outcome. 
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Fig. 7. Prediction Probability Breakdown of LIME graph for CICIDS-2017 Dataset 

In Fig. 8, the feature contribution table lists the key features and their values for a specific network traffic 
instance. “Init_Win_bytes_backward” and “Subflow Bwd Bytes” have values close to 0.00, suggesting minimal 
backward data flow, which might indicate normal or benign behavior and lower the likelihood of this instance 
being classified as malicious. 

 

Fig. 8. Feature Contribution Table using LIME for CICIDS-2017 Dataset 

11) Simplifying Results Using a Large Language Model 
The Fig. 9, the image outlines key features that indicate an anomaly in network activity, suggesting possible 
cyber-attacks like Denial-of-Service (DoS) or unauthorized access. It also explains that the combined features 
show a complex attack where the attacker gains control of the system to perform harmful actions. 

 

Fig. 9. Summary of Results using LLM 

IV. RESULTS & DISCUSSION 

A. Impact of XAI on Feature Importance and Model Performance 
The impact of Explainable AI (XAI) techniques, like SHAP and LIME, on feature importance and model 
performance is evaluated by comparing them with traditional methods, such as Gini importance from Random 
Forest and coefficients from Logistic Regression [36]. Traditional methods give a general idea of the most 
important features across the model. In contrast, XAI techniques offer more specific insights into how 
individual features impact each prediction. 

1) Baseline (traditional) Techniques and Explainability techniques like Lime and SHARP. 
Fig. 10 displays the feature importance scores from a Random Forest model using the Gini Index. The most 
important feature is src_bytes with a score of 0.28. Fig. 11, displays the feature importance scores from a 
Logistic Regression model based on coefficients. The feature src_bytes has the highest importance with a score 
of 1.3. Fig. 12, shows feature importance scores based on SHAP values. The feature “src_bytes” has the highest 
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importance. Fig. 13, displays feature importance scores based on LIME values. The feature “src_bytes” has the 
highest importance. 

 

Fig. 10. List of important features using Gini Index 

 

Fig. 11. List of important features using Logistic Regression 

 

Fig. 12. List of important features using SHAP Values 

 

Fig. 13. List of important features using LIME Values 

2) Comparison of Baseline (traditional) Techniques vs Explainability techniques like Lime and SHARP 
a) Consistency of Top Features:  
The top features remain consistent across traditional and explainability methods, suggesting a strong 
correlation between the two approaches. 

b) Magnitude of Importance:  
While the order of feature importance is somewhat consistent, the magnitude of feature importance can vary.  

c) Local vs Global Interpretations:  
SHAP and LIME provide more granularity by highlighting how individual features contribute to specific 
predictions. 

d) Non-linear Interactions:  
SHAP captures complex, non-linear feature interactions better than traditional methods, which is particularly 
useful for models like Random Forests.  

3) Perturbation Analysis & Comparison 
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Perturbation analysis in the Fig. 14 shows that modifying important features in the dataset led to a noticeable 
decrease in model performance. Specifically, the accuracy dropped from 96.67% to 92.47%, showing a 4% 
decline. This change highlights how crucial these features are to the model’s accuracy. 

a) Accuracy Drop:  
After perturbing key features, the accuracy decreased by approximately 4%, indicating the significance of these 
features for accurate predictions. 

b) Precision and Recall:  
Both precision and recall decreased after perturbation, indicating that the model has become less effective at 
accurately identifying classes and less confident in its predictions. 

c) F1 Score:  
The drop in F1 score confirms a reduced balance between precision and recall, signaling an overall decline in 
performance. 

 

Fig. 14. Comparing Results before and after perturbation 

B. Model Interpretability Across Different Attack Types 
1) Feature Significance for Each Attack Type: 
Table III highlights the top five features that are most important for detecting each type of network activity 
Normal, Denial of Service (DoS), and Port Scan−in the RoEduNet-SIMARGL2021 [27] dataset.  

TABLE III.  FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN ROEDUNET-SIMARGL2021 DATASET 

S.n
o 

Normal DoS Probe R2L U2R 

1 
dst_host_srv_cou

nt 
dst_host_serror_r

ate 
dst_host_serror_r

ate 
count dst_host_count 

2 src_bytes diff_srv_rate 
dst_host_same_sr

c 
_port_rate 

dst_host_same_
src 

_port_rate 

dst_host_srv_cou
nt 

3 
dst_host_same_s

rc 
_port_rate 

flag_S0 
dst_host_same_sr

v 
_rate 

dst_bytes 
dst_host_same_s

rc 
_port_rate 

4 service_http serror_rate src_bytes hot hot 
5 hot same_srv_rate dst_bytes dst_host_count count 
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Table IV represents, the top five features most important for detecting various network activities in the 
CICIDS-2017 [28] dataset.  

TABLE IV.  FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN CICIDS-2017 DATASET 

S.n
o 

Normal DoS Port Scan Bot Web Attack Brute Force 

1 
Destination 

Port 
Destination 

Port 
Packet Length 

Mean 
Destination 

Port 
Destination 

Port 
Destination 

Port 

2 
Bwd Packet 

Length Mean 
Packet Length 

Std 

Init_Win_Byt
es 

_Fwd 

Init_Win_Byt
es 

_Bwd 

Init_Win_Byt
es 

_Bwd 

Init_Win_Byt
es 

_Bwd 

3 
Total Length 

of Bwd 
Packets 

Init_Win_Byt
es 

_Bwd 

Packet Length 
Std 

Init_Win_Byt
es 

_Fwd 

Init_Win 
_bytes_Fwd 

Init_Win 
_bytes_Fwd 

4 
Packet Length 

Std 

Total Length 
of Bwd 
Packets 

Total Length 
Fwd Packets 

Packet Length 
Std 

Bwd Packet 
Length Mean 

Total Length 
of Fwd 
Packets 

5 
Init_Win_Byt

es 
_Fwd 

Bwd Packet 
Length Max 

Average 
Packet Size 

Packet Length 
Mean 

Packed 
Length Std 

Total Length 
of Bwd 
packets 

Table V, presents the top five important features for identifying different types of attacks in the NSL-KDD [29] 
dataset.  

TABLE V.  FEATURE SIGNIFICANCE FOR EACH ATTACK TYPE IN NSL-KDD DATASET 

S.NO NORMAL (BENIGN) SYN SCAN DENIAL OF SERVICE 

1 TCP_WIN_SCALE_IN TCP_WIN_SCALE_IN TCP_WIN_SCALE_IN 

2 TCP_WIN_MAX_OUT FLOW_DURATION_MS TCP_WIN_MIN_IN 

3 FLOW_DURATION_MS TCP_WIN_MAX_IN TCP_WIN_MAX_IN 

4 TCP_WIN_MIN_OUT TCP_WIN_MAX_OUT FLOW_DURATION_MS 

5 TCP_WIN_MAX_IN TCP_WIN_MIN_IN TCP_FLAGS 

 
2) Global Explainability (using SHAP) for Each Attack Type: 
The SHAP summary plot in Fig. 15 and Fig. 16 illustrates the importance of various features for detecting 
network intrusions using DNN and Random Forest. Figure. 17 and Fig. 18, the SHAP summary plot shows 
the feature importance for detecting network intrusions using the SVM model and the KNN model on the 
CICIDS-2017 dataset. Figure. 19 and Fig. 20, the SHAP summary plots display the feature importance for the 
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LightGBM model and the AdaBoost model when detecting intrusions in the CICIDS-2017 dataset. Figure. 21 
and Fig. 22, the SHAP summary plots present feature importance for detecting intrusions using the DNN 
model and the Random Forest model on the RoEduNet-SIMARGL2021 dataset. Figure. 23 and Fig.24, the 
SHAP summary plots display the feature importance for detecting intrusions using the SVM model (left) and 
the KNN model (right) on the RoEduNet-SIMARGL2021 dataset. 

 

Fig. 15. SHAP Summary Plot for Feature Significance of DNN for the CICIDS-2017 dataset 

 

Fig. 16. SHAP Summary Plot for Feature Significance of Random Forest for the CICIDS-2017 dataset 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4S, 2025 
https://www.theaspd.com/ijes.php 

824 

 

 

Fig. 17. SHAP Summary Plot for Feature Significance of SVM for the CICIDS-2017 dataset 

 

Fig. 18. SHAP Summary Plot for Feature Significance of KNN for the CICIDS-2017 dataset 

 

Fig. 19. SHAP Summary Plot for Feature Significance of LightGBM for the CICIDS-2017 dataset 
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Fig. 20. SHAP Summary Plot for Feature Significance of ADA for the CICIDS-2017 dataset 

 

Fig. 21. SHAP Summary Plot for Feature Significance of DNN for the RoEduNet-SIMARGL2021 
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Fig. 22. SHAP Summary Plot for Feature Significance of Random Forest for the CICIDS-2017 dataset 

 

Fig. 23. SHAP Summary Plot for Feature Significance of SVM for the RoEduNet-SIMARGL2021 dataset 

 

Fig. 24. SHAP Summary Plot for Feature Significance of KNN for the RoEduNet-SIMARGL2021 dataset 
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Fig. 25. SHAP Summary Plot for Feature Significance of LightGBM for the RoEduNet-SIMARGL2021 
dataset 

 

Fig. 26. SHAP Summary Plot for Feature Significance of ADA for the RoEduNet-SIMARGL2021 dataset 

Fig. 25 and Fig. 26, the SHAP summary plots show feature importance for detecting intrusions using the 
LightGBM model and the AdaBoost model on the RoEduNet-SIMARGL2021 dataset. 

3) XAI Techniques for Real-Time NIDS Applications 
Real-time network intrusion detection needs explainable AI methods that are both fast and effective. To 
achieve this, the plan is to improve the calculations behind SHAP and LIME. One approach will be to compute 
explanations only for high-risk cases, cutting down on unnecessary processing but still delivering critical 
insights right when they are needed. The plan is to show that using fewer features, specifically the top 10 or 
15, can maintain model performance while speeding up the explanation process. 

a) Comparing Runtime metrics for Full vs. Reduced Feature Sets 
Table VI displays the runtime, in minutes, for training and prediction across different AI models using both 
reduced and full feature sets.  

TABLE VI.  RUNTIME (IN MINUTES) FOR BOTH FEATURE SETS 

Runtime 
Train 

(Reduced) 
Prediction 
(Reduced) 

Train 
(All) 

Prediction 
(All) 

RF 0.19 0.02 0.32 0.02 

ADA 1.92 0.15 5.05 0.17 

DNN 0.58 0.11 1.04 0.29 

SVM 0.2 0.01 0.75 0.03 

KNN 0.09 0.02 1.68 0.14 

MLP 0.81 0.11 1.44 0.11 

LightGBM 7.58 0.02 13.35 0.11 
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Fig. 27 shows a line graph comparing the runtime for training and prediction using both the reduced and full 
feature sets across different models. 

 

Fig. 27. Line Graph of Runtime for both features 

The comparison between full and reduced feature sets shows that reducing features significantly improves how 
fast models can be trained without affecting their accuracy. 

4) Validating the Generalizability of Framework across Multiple Datasets 
To confirm the framework’s reliability, it will be tested across different datasets to see how well it adapts to 
various network environments and attack types. This validation is crucial because network settings and threat 
types can vary widely. Showing consistent performance across different scenarios will make the framework a 
dependable tool for intrusion detection. Table VII shows the performance metrics of different AI models used. 
Table VIII shows the performance metrics of different AI models applied to the CI-CIDS-2017 dataset. Table 
IX presents the performance metrics of different AI models applied to the NSD-KDD dataset. 

TABLE VII.  PERFORMANCE METRICS FOR ROEDUNET-SIMARGL2021 DATASET 

AI MODEL ACCURACY PRECISION RECALL F1-
SCORE BACC MCC AUCROC 

RANDOM 
FOREST 0.84 0.78 0.42 0.36 0.68 0.32 0.62 

ADAPTIVE 
BOOSTING 0.81 0.41 0.47 0.21 0.63 0.27 0.58 

DEEP NEURAL 
NETWORK 0.88 0.51 0.48 0.46 0.69 0.4 0.69 

SUPPORT 
VECTOR 

MACHINE 
0.87 0.6 0.43 0.43 0.66 0.36 0.7 

K-NEAREST 
NEIGHOUR 0.88 0.52 0.54 0.73 0.72 0.47 0.73 
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MULTILAYER 
PERCEPTROON 0.9 0.75 0.54 0.72 0.51 0.33 0.68 

LIGHTGBM 0.84 0.39 0.41 0.37 0.68 0.26 0.64 

TABLE VIII.  PERFORMANCE METRICS FOR CICIDS-2017 DATASET 

AI MODEL ACCURACY PRECISION RECALL F1-
SCORE BACC MCC AucRoc 

RANDOM 
FOREST 0.99 0.96 0.96 0.96 0.98 0.97 0.98 

ADAPTIVE 
BOOSTING 0.93 0.78 0.78 0.78 0.87 0.74 0.95 

DEEP NEURAL 
NETWORK 0.94 0.8 0.8 0.8 0.88 0.77 0.47 

SVM 0.99 0.97 0.97 0.97 0.9 0.97 0.66 

K-NEAREST 
NEIGHOUR 0.99 0.99 0.99 0.99 0.99 0.99 0.89 

MULTILAYER 
PERCEPTROON 0.96 0.88 0.88 0.88 0.93 0.86 0.98 

LIGHTGBM 0.97 0.92 0.92 0.92 0.95 0.9 0.56 

TABLE IX.  PERFORMANCE METRICS FOR NSD-KDD DATASET 

AI MODEL ACCURACY PRECISION RECALL F1-
SCORE BACC MCC AUCROC 

RANDOM 
FOREST 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

ADAPTIVE 
BOOSTING 0.84 0.76 0.76 0.76 0.82 0.64 0.36 

DEEP NEURAL 
NETWORK 0.99 0.99 0.99 0.99 0.99 0.98 0.99 
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SUPPORT 
VECTOR 
MACHINE 

0.99 0.99 0.99 0.99 0.99 0.99 0.35 

K-NEAREST 
NEIGHOUR 0.75 0.63 0.63 0.63 0.72 0.45 0.59 

MULTILAYER 
PERCEPTROON 0.76 0.64 0.64 0.64 0.73 0.46 0.46 

LIGHTGBM 0.55 0.33 0.33 0.33 0.49 0.0 0.69 

Testing the XAI framework on different datasets shows that it works well in many network settings. Itperforms 
consistently across datasets like CICIDS-2017, NSL-KDD, and RoEduNet-SIMARGL2021, which proves it 
can handle different types of network environments and attacks.  

5) Feature Importance and Common Features among all Datasets 
 Table X presents a comparison of common features among the CICIDS-2017, RoEduNet-SIMARGL2021, 
and NSL-KDD datasets, emphasizing the consistency of network traffic attributes across diverse data sources. 
Specifically, models trained on one dataset benefit from these overlapping features when transferred to 
another, as they can effectively identify familiar patterns and maintain detection performance. This feature 
consistency also facilitates the transfer of knowledge between datasets, which is particularly valuable in 
cybersecurity applications where simulating different network environments and threat landscapes is critical. 

TABLE X.  SHARED FEATURES ACROSS ALL DATASETS 

RANK ROEDU-SIMARGL2021 CICIDS-
2017 NSL-KDD 

1 FLOW_DURATION_MS FLOW 
DURATION DURATION 

2 IN_BYTES 
FWD 

HEADER 
LENGTH 

SRC_BYTES 

3 OUT_BYTES 
BWD 

HEADER 
LENGTH 

DST_BYTES 

4 IN_PKTS TOTAL FWD 
PACKET N/A 

5 OUT_PKTS TOTAL BWD 
PACKET N/A 
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6 MIN_IP_PKT_LEN 
PACKET 
LENGTH 

MIN 
N/A 

7 MAX_IP_PKT_LEN 
PACKET 
LENGTH 

MAX 
N/A 

V. CONCLUSION 

The XANIDS framework developed in this study effectively illustrates the potential of integrating machine 
learning models with Explainable Artificial Intelligence (XAI) techniques to strengthen Network Intrusion 
Detection Systems (NIDS). By coupling classifiers with SHAP and LIME, the framework achieved strong 
performance across multiple attack categories, attaining an overall accuracy exceeding 95%, along with 
precision and recall scores consistently above 90%. These results highlight the system’s robustness in detecting 
and classifying various forms of cyber threats. Moreover, the incorporation of SHAP and LIME facilitated both 
global and local interpretability, allowing security analysts to understand the influential features such as packet 
size and destination port that inform the model's decisions. This level of transparency is vital in the 
cybersecurity domain, as it fosters trust in automated alerts and supports more informed and timely incident 
response. Compared to conventional black-box NIDS solutions, XANIDS provides not only high detection 
accuracy but also meaningful interpretability, which is essential in rapidly evolving and high-risk network 
environments. 
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