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ABSTRACT 
 Artificial Intelligence (AI) is revolutionizing healthcare through the application of sophisticated Large 
Language Models (LLMs), facilitating rapid symptom assessment and enhanced disease identification. This study 
investigates the performance of multimodal LLMs, specifically llama-4-scout-17b-16e-instruct and llama-4-maverick-
17b-128e-instruct, tailored for the analysis of medical images, alongside their counterparts optimized for text-based 
diagnostic support. These models were evaluated using real-time X-ray imagery and patient-reported symptom 
descriptions, with assessments focusing on diagnostic precision, response clarity, processing efficiency, and contextual 
richness. Findings reveal that vision-specialized models demonstrate high accuracy in image interpretation, though 
with relatively slower processing times, while text-oriented models provide lucid insights, with occasional limitations 
in handling intricate scenarios. By advancing real-time multimodal analysis independent of pre-existing datasets, this 
research underscores the potential of synergizing vision and text functionalities to enhance the accuracy and 
responsiveness of AI-driven chatbots, paving the way for scalable, effective healthcare interventions in practical 
settings. 
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1. INTRODUCTION 
 
The integration of artificial intelligence (AI) into healthcare has broadened the reach of medical counsel 
significantly, reshaping how patients access timely advice and support. Known as medical chatbots, these virtual 
assistants now evaluate symptoms, hypothesize diagnoses, and suggest preliminary treatments, offering a lifeline 
where traditional resources may lag. Early iterations leaned on inflexible rule-based logic and pre-organized data, 
restricting their flexibility and scope. However, the advent of generative AI has marked a pivotal shift, ushering in a 
new paradigm of capability and interaction. Contemporary chatbots employ Large Language Models (LLMs) to 
decipher text, audio, and visual inputs with notable clarity, their success intricately tied to the foundational model’s 
strength, adaptability, and contextual acumen. 

Despite these advancements, conventional chatbots in healthcare often fail to adequately address the diverse 
spectrum of patient inquiries, a flaw most evident during late hours when timely intervention becomes critical. This 
limitation hampers their utility in urgent scenarios, leaving gaps in care delivery. To bridge this divide and enhance 
healthcare accessibility, this paper introduces a Generative AI-powered Medical Chatbot system. Distinct from 
traditional machine learning approaches tethered to fixed datasets, this system leverages contextual understanding 
and linguistic proficiency to deliver bespoke, dependable responses. It empowers patients with autonomous 
predictions of conditions, care pathways, and preventive strategies, free from immediate clinician oversight—a feature 
that amplifies its practical value. 

Notably, this solution functions ceaselessly, providing instantaneous medical advice at zero cost, an attribute that 
democratizes healthcare access. By harnessing generative AI, it surpasses rule-based limitations, cultivating dynamic, 
human-like patient interactions that feel intuitive and supportive. Our work aims to redefine digital healthcare 
assistance, ensuring advice is accessible, swift, and responsive to varied patient needs. What sets this study apart is 
its novel emphasis on real-time multimodal processing—an under-explored frontier in prior studies. This approach 
tackles the unpredictability of live patient inputs head-on, distinguishing our contribution from static dataset-reliant 
systems prevalent in the field and paving the way for more resilient, adaptable healthcare tools. 
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1.1 LITERATURE REVIEW 
 
Pioneering AI healthcare chatbots depended on Natural Language Processing (NLP) systems governed by rigid 
protocols, offering limited flexibility in patient engagement. For instance, Mazhar, T., Haq, I. (2023) explored 
machine learning’s role in detection of skin cancer, demonstrating its potential in specialized diagnostics, while Soe, 
N.N. (2024) showcased Evaluation of artificial intelligence-powered screening for sexually transmitted infections. 
Despite this, the integration of Large Language Models (LLMs) into healthcare remains underdeveloped, with 
limited focus directed toward the application of multimodal LLMs in genuine, dynamic medical environments—an 
area brimming with potential for further investigation. 

Evolution of AI in Medical Chatbots: Incorporating NLP into chatbots marked a leap forward, enabling nuanced 
comprehension of patient queries and yielding contextually rich answers that better mirrored clinical dialogue. Early 
platforms like Babylon Health (2017) and Ada Health (2016) fused NLP with decision-making frameworks to 
facilitate symptom assessment and initial diagnostics, laying foundational groundwork. Later, deep learning models 
such as BERT in Turchin, A., Masharsky, S. (2023)  and GPT-3 in Levine, D.M., Tuwani, R. (2024) refined these 
abilities further, proving adept at parsing complex medical texts with remarkable fluency. However, their scope 
remained textual, lacking the capacity to interpret visual health data—a significant limitation. The emergence of 
multimodal LLMs has since broadened this horizon, with DeepMind’s AI (2021) matching radiologists in X-ray and 
CT analysis and Med-PaLM (Google Health, 2023) enhancing clinical deduction through sophisticated reasoning. 
Despite these strides, persistent hurdles—AI errors, ethical concerns, and inconsistent outputs—continue to impede 
comprehensive diagnostic adoption, underscoring the need for robust, real-world testing. 
 
Challenges in Multimodal Diagnostics: AI-driven medical chatbots grapple with ensuring reliability and precision, 
as misdiagnoses could imperil patient well-being and erode trust as mentioned in Kumar, S., Rani, S. (2024). 
Fabricated outputs, often termed hallucinations, necessitate stringent validation mechanisms to safeguard accuracy. 
Processing delays plague large models requiring rapid responses, a critical issue in time-sensitive scenarios, while 
safeguarding privacy under regulations like HIPAA and GDPR as in Soltanian, D. and Ghahari, A., (2024) remains 
paramount to ethical deployment. Seamlessly merging text and image analysis poses a technical challenge, limiting 
holistic medical insights—a gap this study addresses through its real-time, multimodal focus. Overcoming these 
barriers is crucial for safe, effective AI healthcare applications, demanding innovative solutions tailored to dynamic 
clinical needs. 
 
Breakthroughs and Innovations: Advancements in AI chatbots as in Khan, A., Zeb, I. (2025) have sharpened 
diagnostic clarity, operational speed, and coverage, transforming their role in healthcare delivery. Multimodal LLMs 
now integrate text and image processing, yielding refined health assessments that rival human expertise in controlled 
settings. Swift real-time computation and reduced latency have bolstered consultation feasibility, making virtual 
support a viable option, while medical data training has enhanced accuracy and minimized mistakes, a leap from 
earlier error-prone systems. Improvements in speech recognition and linguistic grasp have also streamlined user 
engagement, making interactions more natural and accessible. These gains establish a basis for dependable, 
extensible AI healthcare frameworks, and our work builds on them by emphasizing live multimodal integration—an 
approach that pushes beyond static data reliance to tackle real-world variability head-on. 

1.2 Comparative Studies and Benchmarks: 
 
Conducting a comparative assessment of AI models is vital to evaluate their efficacy and practical relevance within 
healthcare contexts. This study analyzed a selection of advanced Large Language Models (LLMs) llama-4-scout-17b-
16e-instruct and llama-4-maverick-17b-128e-instruct, distinguished by their specialized capabilities in vision and text 
processing. Performance was evaluated based on diagnostic precision, response clarity, processing efficiency, and 
contextual integrity, utilizing real-world scenarios such as X-ray imagery and patient symptom descriptions, measured 
against established medical benchmarks. Vision-oriented models exhibited strong proficiency in identifying image 
anomalies with high accuracy, while text-focused counterparts provided coherent interpretations and care guidance, 
revealing essential trade-offs between computational demands and analytical depth that guide model selection. 
Departing from traditional benchmarks reliant on static, preassembled datasets, this research employed a real-time 
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evaluation framework, offering valuable perspectives on model performance under the variable conditions of live 
patient interactions—a dimension often underexplored in previous studies. 

1.3 Multimodal Approaches: 
 
The integration of multimodal AI into healthcare represents a pivotal advancement in diagnostic precision and 
patient engagement, transcending the constraints of traditional single-modality systems. Unlike prior text-only 
frameworks as mentioned in Chen, D., Huang, R.S. (2024) , these innovative models amalgamate vision and 
language capabilities, enabling a holistic evaluation of medical imagery and textual data in unison. In this research, 
the advanced Large Language Models (LLMs), llama-4-scout-17b-16e-instruct and llama-4-maverick-17b-128e-
instruct, are employed for both vision and text processing tasks, with the former extracting diagnostic insights from 
imaging modalities like scans, and the latter interpreting symptom narratives, thereby enhancing accuracy through 
complementary perspectives. Reflecting clinical practices that synthesize visual and historical information, this 
approach establishes AI as a responsive, real-time healthcare collaborator, distinguished by its reliance on live-data 
processing rather than precompiled datasets, thus advancing its relevance for practical implementation. 

1.4 Ethical Considerations and Bias: 
                                                                               Deploying AI chatbots in medicine sparks pressing ethical 
dilemmas around bias, privacy, and diagnostic credibility—issues that demand careful navigation. LLMs trained on 
expansive datasets may harbor biases as in Kim, J., Cai, Z.R. (2025), skewing assessments across populations and 
potentially putting at a disadvantage underserved groups, a risk amplified by opaque training processes. Absent 
human empathy and situational nuance, unchecked AI reliance risks errors and harm, undermining patient safety. 
Transparency, interpretability, and ethical compliance—bolstered by Institutional Review Board (IRB) oversight 
where patient data is involved—are vital to responsible deployment. Robust data governance, ongoing scrutiny, and 
adherence to HIPAA/GDPR mitigate these risks, while human-AI collaboration fosters trust and equity, ensuring 
outcomes align with clinical and societal expectations. 

2. RELATED WORK 
 
Progress in AI and Machine Learning (ML) has redefined patient care, enhancing diagnostic precision, streamlining 
consultations, and lightening clinician burdens across diverse healthcare settings. AI chatbots have become pivotal, 
expanding healthcare reach and addressing provider shortages with unprecedented efficiency. This section reviews 
prior explorations into AI medical chatbots, delving into their techniques, applications, and persistent obstacles that 
shape their evolution. 

2.1 AI-Powered Chatbots for Healthcare Assistance: 
 
Research has examined how AI chatbots fortify healthcare by refining diagnostics and accessibility, offering a lifeline 
in resource-scarce environments as mentioned in Hindelang, M., Sitaru, S. (2024). Studies highlight their capacity 
to curb diagnostic oversights, juxtaposing human lapses with AI’s sharp pattern recognition for heightened 
dependability—a marked improvement over manual processes. Others underscore their expanding role in 
prevention, diagnosis, and therapy, stressing the importance of clear human-AI interplay and robust decision design 
to ensure usability. A specific inquiry showcases an ML chatbot forecasting health risks pre-visit, reducing costs and 
empowering users with symptom-matching and an SOS locator for nearby aid—an innovative blend of prediction 
and practicality. Symptom triage chatbots prove adept at directing patients to apt resources, streamlining care 
pathways effectively. 

2.2 Machine Learning-Based Approaches in Healthcare Chatbots: 
 
ML methods have been central to developing astute chatbots with adaptive learning and decision-making finesse, 
tailored to evolving patient needs as discussed in Badlani, S., Aditya, T.(2021). Supervised techniques like Support 
Vector Machines (SVM) and Decision Trees categorize ailments and symptoms, leveraging extensive data for tailored 
counsel that aligns with clinical norms. Reinforcement learning hones precision through patient and expert 
exchanges over time, while unsupervised clustering reveals patterns in raw data, aiding early hazard detection with 
minimal oversight. Federated learning bolsters privacy via decentralized training, protecting patient details—a critical 
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advancement in secure healthcare AI. These ML strategies enable responsive, personalized support across varied 
demands, setting a high bar for chatbot efficacy. 

2.3  Integration of AI and NLP in Medical Chatbots: 
 
Contemporary chatbots eclipse rule-based confines by embedding NLP as shown in Sarella, P.N.K. and Mangam 
(2024) and Deep Learning (DL) for enriched dialogue that mirrors human interaction. Investigations into Recurrent 
Neural Networks (RNNs) reveal robust symptom identification and classification via sequential analysis, a strength 
in processing temporal data. A Grasshopper-Optimized Spiking Neural Network enhances reply precision through 
synaptic adjustments, offering nuanced, context-rich advice. Multi-Layer Perceptron (MLP) systems predict 
conditions for consultations with reliability, while hybrid retrieval-generative models elevate response pertinence by 
retrieving data and refining context, boosting diagnostic and practical value across clinical scenarios. 

3. PROPOSED SYSTEM 
 
This framework merges two AI-driven healthcare components to amplify diagnostic accuracy and streamline medical 
decisions: Medical Image Analysis and Text-Based Diagnosis. The former employs deep learning to dissect 
radiological scans (e.g., X-rays, MRIs) for anomaly spotting, while the latter uses NLP to parse symptoms, records, 
and notes for predictive insights—two complementary pillars of modern diagnostics. Together, they forge a hybrid 
diagnostic system uniting visual and textual realms, a synergy designed to mirror clinical workflows. Two advanced 
Large Language Models (LLMs), applied across both vision and text tasks, were evaluated using real-world data 
comprising 100 X-ray and scan instances, aiming to enhance efficacy, minimize errors, and deliver accessible, 
professional-grade assessments. This real-time methodology sets our system apart from traditional, dataset-dependent 
approaches, providing a practical perspective on live patient engagements. 

3.1 Medical Image Analysis: 
 
This segment utilizes deep learning and computer vision to probe medical images, emphasizing anomaly detection, 
classification, and segmentation to support radiologists in complex diagnostic tasks. 
 
The following are the key modules on our medical Chatbot system: 

● Data collection 
● Text Processing module 
● Architecture 
● Algorithm 

Dataset Collection:  
 
Data collection occurred in real time, amassing 100+ images (e.g., X-rays, photos) from patients or public sources, 
bypassing static datasets to mirror clinical unpredictability and real-world challenges. The visual representation in 
Figure 1 depicts the X-ray scan evaluated in real time. 

  
Figure 1: Real-time data collection (X-ray) 
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Ethically sourced during testing under IRB guidelines to ensure patient consent and privacy, these spanned skeletal, 
respiratory, and dermatological conditions—common yet diverse areas of medical imaging. Paired with voice queries 
on symptoms or evaluations, this live approach ensures adaptability to telemedicine’s variable inputs, capturing the 
spontaneity of patient-doctor exchanges. This method contrasts with traditional curated datasets, offering a more 
authentic testbed for system performance. 

Text Processing Module: 
 
The text processing module constitutes the foundational component for interpreting patient inquiries and 
delivering medically informed responses. Voice inputs, recorded through a microphone and stored as MP3 files, are 
converted into text using the Whisper-Large-V3 model. This speech-to-text (STT) functionality incorporates 
sophisticated noise-cancellation methods, facilitated by the SpeechRecognition library, to optimize transcription 
fidelity across varied auditory settings. The resulting text is merged with a pre-established system prompt, directing 
the language model to adopt a professional medical tone, offer preliminary home care suggestions, outline potential 
differential diagnoses, and advise specialist referrals while avoiding medication prescriptions. For generating 
responses, the system leverages two advanced Large Language Models (LLMs), llama-4-scout-17b-16e-instruct and 
llama-4-maverick-17b-128e-instruct, both deployed for text processing tasks, which evaluate the textual input 
alongside visual data to yield succinct, contextually relevant outputs. The final response is transformed into speech 
using the Google Text-to-Speech (gTTS) library, ensuring an intuitive and accessible delivery for users. 

Architecture: 
 
The system architecture is designed as an integrated pipeline that seamlessly combines voice and vision modalities 
to emulate a virtual medical consultation. 

Figure 2: Architecture Image for Medical image analysis 
 
As architecture for medical image analysis illustrated in Figure 2, the workflow begins with the input layer, where 
audio is recorded using the SpeechRecognition library and images (e.g., X-rays or photographs) are uploaded in 
JPEG format. The audio data is processed by the Whisper-Large-V3 model for transcription, while images are base64-
encoded using Python’s built-in library for compatibility with the vision models. The core processing unit leverages 
the groqcloud API, employing meta-llama/llama-4-scout-17b-16e-instruct and meta-llama/llama-4-maverick-17b-
128e-instruct, models to analyze the combined text and image inputs, generating a textual response based on a 
predefined medical prompt. This response is then passed to the output layer, where gTTS converts it into an audio 
file, played back to the user via platform-specific commands. The entire system is encapsulated within a Gradio-
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based graphical user interface, providing an intuitive front-end for real-time interaction. This modular architecture 
ensures scalability and flexibility, allowing for future enhancements such as additional LLM integration or expanded 
input modalities. 

 
Algorithm:  
 
The algorithm governing the proposed system operates as a sequential process tailored to handle multimodal inputs 
and deliver medically informed outputs. It can be outlined as follows: 
1. Input Acquisition: Record patient voice input as an MP3 file using the SpeechRecognition library with a timeout 

of 20 seconds and optional phrase time limit, and accept an image file (e.g., X-ray or photograph) in JPEG format. 
Figure 3 shows the dermatological diseases evaluated in real time.  

 
            Figure 3: Real-time data collection (skin disease)   

      
2. Audio Transcription: Convert the recorded audio to text using the Whisper-Large-V3 model via the groqcloud 

API, applying ambient noise adjustment to enhance accuracy. 

3. Image Encoding: Transform the uploaded image into a base64-encoded string to enable processing by the vision-
enabled LLMs. 

4. Multimodal Analysis: Combine the transcribed text with a system prompt and the encoded image, then process 
them using either the llama-4-scout-17b-16e-instruct or llama-4-maverick-17b-128e-instruct model to generate a 
textual response containing medical observations, remedies, and specialist recommendations. 

5. Response Synthesis: Convert the generated text into an audio file using gTTS, with playback executed via 
platform-specific commands (e.g., afplay for macOS, start for Windows). 

6. Output Delivery: Present the transcribed text, generated response, and synthesized audio to the user through 
the Gradio interface. 

 
This algorithm ensures efficient handling of real-time data, with an emphasis on maintaining a professional tone 
and ethical boundaries in the absence of a predefined training dataset. Its reliance on pre-trained LLMs eliminates 
the need for extensive model training, focusing instead on fine-tuned prompt engineering to achieve medically 
relevant outputs. 

3.2 Text-Based Diagnosis: 
 
The Text-Based Diagnosis component leverages NLP and deep learning models to process patient symptoms and 
medical records for predictive analysis. It enables chatbot-driven consultations and automated symptom-checking 
for preliminary medical assessments. 

The following are the key modules on our medical Chatbot system: 
● Data collection 
● Text Processing module 
● Architecture 
● Algorithm 
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Dataset Collection:  
 
The dataset for this study was dynamically collected during real-time testing, consisting of textual inputs provided 
by users interacting with the chatbot system.  No predefined dataset was employed, as the solution is designed to 
process live patient queries, simulating authentic medical consultation scenarios. Figure 4 depicts a snapshot of real 
time data collection in text-based diagnosis. 

 
Figure 4: Real-time user input (text-based diagnosis) 

 
Over the evaluation phase, approximately 100 unique user interactions were recorded, encompassing a variety of 
symptom descriptions, health-related questions, and requests for preliminary advice. These inputs were gathered 
through the Gradio-based interface, where users typed their concerns directly into a textbox. The real-time collection 
approach ensures the system’s ability to handle diverse, unstructured queries, reflecting the unpredictable nature of 
patient-doctor dialogues. This method aligns with the project’s goal of developing a flexible, text-only medical 
chatbot capable of providing immediate responses without reliance on pre-curated data. 

Text Processing Module: 
 
The text processing module forms the core of the chatbot’s ability to interpret user inputs and generate medically 
relevant responses. User messages, entered via a text box in the Gradio interface, are directly appended to a chat 
history maintained as a list of role-content pairs (user and assistant). This history is then processed by one of two 
large language models (LLMs) accessed through the groq API: llama-4-scout-17b-16e-instruct or llama-4-maverick-
17b-128e-instruct. The module constructs a JSON payload containing the chat history and submits it to the API 
endpoint, utilizing HTTP POST requests with appropriate headers for authentication and content specification. 
The selected LLM analyzes the input contextually, leveraging its pre-trained knowledge to produce a coherent 
response tailored to the user’s query. Error handling is implemented to manage potential API failures, ensuring 
robustness. The generated response is returned as plain text, displayed in the chatbot interface, mimicking a doctor’s 
conversational tone without additional formatting or multimedia output. 

Architecture:  
 
The system architecture is structured as a streamlined, text-only pipeline designed to facilitate real-time medical 
dialogue. Figure 5 depicts the architecture for Text-ased Diagnosis.  

Figure 5: Architecture image for text-based diagnosis 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4S, 2025 
https://www.theaspd.com/ijes.php 

803 
 

 
The input layer consists of a Gradio-based user interface featuring a textbox for user queries and a chatbot display 
for conversation history. User inputs are captured and stored in a chat history object, which is processed by the core 
module interfacing with the groqcloud API. This module employs either the llama-4-scout-17b-16e-instruct or llama-
4-maverick-17b-128e-instruct model, depending on the implementation, to generate responses via the OpenAI-
compatible chat completion endpoint. The API communication is managed using the requests library, with headers 
ensuring secure authentication via a manually set API key. The output layer updates the chatbot interface with the 
LLM-generated response, maintaining a continuous conversational flow. An "End Chat" button resets the history, 
enhancing user control. This lightweight architecture prioritizes simplicity and efficiency, making it suitable for text-
based telemedicine applications. 

Algorithm:  
 
The algorithm driving the text-only chatbot operates as a sequential process optimized for real-time text analysis and 
response generation. It can be described as follows: 

1. Input Capture: Accept a user’s textual query via the Gradio textbox and append it to the chat history as a ("user", 
message) tuple. 

2. History Initialization: Ensure the chat history is initialized as an empty list if no prior conversation exists. 

3. API Request Preparation: Format the chat history into a list of dictionaries with "role" and "content" keys, then 
construct a JSON payload specifying the chosen model (llama-4-scout-17b-16e-instruct or llama-4-maverick-17b-
128e-instruct). 

4. Response Generation: Submit the payload to the groq API endpoint using an HTTP POST request, 
authenticated with the API key, and retrieve the LLM-generated response from the JSON output. 

5. History Update: Append the response as an ("assistant", response) tuple to the chat history. 

6. Output Delivery: Return the updated chat history to the Gradio chatbot interface and clear the input textbox 
for the next query. 

This algorithm ensures efficient processing of text inputs without the need for additional modalities, relying on the 
LLMs’ pre-trained capabilities to deliver contextually appropriate medical advice. Its design emphasizes real-time 
interaction and adaptability to diverse user queries, with minimal computational overhead. 

4. RESULT AND DISCUSSION 
 
This section evaluates the vision and text LLMs’ performance with real-time images and queries, exploring their 
efficacy, strengths, limitations, and hybrid potential in depth to inform future healthcare applications. 

4.1 Performance of Vision LLMs: 
 
The performance of the Vision LLMs was evaluated based on accuracy, inference speed, contextual understanding, 
error rate, and computational resource usage. Figure 6 exhibits a snapshot of the result of Medical image analysis. 
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Figure 6: Medical image analysis result 

 
 A dataset of 100+ medical images, including X-rays, skin conditions, and CT scans, was used for testing. The 
comparative results are presented in Table 1. 

Table 1 is a tabular form showcasing the performance metrics of both vision LLMs. 
 
 

Table 1: Performance Metrics of Vision LLMs 

Parameter llama-4-
scout-17b-
16e-instruct 

llama-4-
maverick-17b-
128e-instruct 

Accuracy 92.5% 94.2% 

Coherence 93.1% 93.7% 

Inference time 13.2 sec 12.2 sec 

Ethical 
Compliance and 
Safety 

92.4% 93.1% 

 
The meta-llama/llama-4-maverick-17b-128e-instruct model showcased enhanced performance, achieving an accuracy 
of 94.2% compared to 92.5% for the meta-llama/llama-4-scout-17b-16e-instruct, coupled with a notable 
improvement in coherence (93.7% versus 93.1%) and a reduced inference time (12.2 seconds versus 13.2 seconds). 
Additionally, it demonstrated a higher ethical compliance and safety rating (93.1% versus 92.4%), reflecting stronger 
adherence to responsible AI guidelines. These results indicate that llama-4-maverick-17b-128e-instruct is more 
suitable for applications demanding elevated diagnostic precision and rapid processing, such as comprehensive 
image-based medical evaluations, whereas llama-4-scout-17b-16e-instruct remains a practical choice for settings where 
computational efficiency and moderate accuracy suffice. Figure 6 is a graphical representation comparing both 
algorithms for vision tasks. 
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Figure 7: A graphical representation comparing 

both algorithms for vision task 
 
4.2 Performance of Text-Based LLMs: 
 
The text-based LLMs, llama-4-scout-17b-16e-instruct and llama-4-maverick-17b-128e-instruct, were evaluated using 
100 real-time medical queries submitted via the chatbot interface, covering symptom descriptions, first-aid inquiries, 
and disease-related questions. Responses were assessed by medical professionals for accuracy, coherence, relevance, 
response speed, and ethical compliance. The results are presented in Table 2. 

Table 2: Performance Metrics of Text-Based LLMs 

Parameter llama-4-scout-
17b-16e-
instruct 

llama-4-
maverick-17b-
128e-instruct 
 

Accuracy 91.4% 93.5% 

Coherence 92.1% 94% 

Inference time 3.2 sec 3.8 sec 

Ethical 
Compliance 
and Safety 

92.4% 92% 

 
The meta-llama/llama-4-maverick-17b-128e-instruct model excelled across key performance indicators, achieving an 
accuracy of 93.5% compared to 91.4% for meta-llama/llama-4-scout-17b-16e-instruct, alongside enhanced coherence 
(94.0% versus 92.1%). It also demonstrated robust ethical compliance and safety (92.0% versus 92.4%), though 
with a slightly longer inference time (3.8 seconds versus 3.2 seconds). In contrast, llama-4-scout-17b-16e-instruct 
offered faster processing, suggesting its suitability for scenarios prioritizing quick response times, such as initial 
patient queries. These findings position llama-4-maverick-17b-128e-instruct as the preferred choice for text-based 
interactions requiring high accuracy and contextual clarity, while llama-4-scout-17b-16e-instruct remains valuable 
where speed is a critical factor. Figure 7 is a graphical representation comparing both algorithms for text-only task. 
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Figure 8: A graphical representation comparing 

both algorithms for text-only task 
 

4.3 Comparative Analysis and Hybrid Model Considerations: 
 
The evaluation reveals distinct strengths across the tested models, informing their potential applications and 
integration strategies: 

1. Vision-Based Analysis: llama-4-maverick-17b-128e-instruct excels in high-accuracy image diagnostics, making 
it ideal for critical medical imaging tasks, while llama-4-scout-17b-16e-instruct offers a balanced trade-off for 
low-power systems where computational efficiency is paramount. 

2. Text-Based Interaction: The llama-4-scout-17b-16e-instruct model is optimal for delivering rapid, coherent, 
and ethically compliant responses, while the llama-4-maverick-17b-128e-instruct is well-suited for extended, 
detail-rich medical discussions. 

3. Hybrid Potential: A hybrid framework integrating llama-4-scout-17b-16e-instruct for image analysis and 
llama-4-maverick-17b-128e-instruct for text processing holds the potential to create a highly effective 
multimodal chatbot, capitalizing on the distinct advantages of each model to improve diagnostic accuracy 
and patient interaction. 

These findings underscore the adaptability of the proposed solutions to diverse healthcare needs. Future work could 
explore fine-tuning these models with domain-specific medical data or integrating real-time feedback mechanisms 
to further improve performance and user trust. 
 
5. LIMITATIONS AND POTENTIAL ENHANCEMENTS 
 
The chatbots shine in real-time aid but face data, performance, ethical, usability, and deployment hurdles, detailed 
below with unified enhancements. 

5.1 Data-Related Challenges: 
 
The reliance on real-time data collection, while enabling adaptability, introduces significant limitations. The vision-
based system was tested with 100+ medical images (e.g., X-rays, skin conditions, CT scans), and the text-based system 
with 100 user queries, both lacking the scale and standardization of curated datasets. This restricted sample size and 
diversity may not capture the full spectrum of medical conditions or patient demographics, potentially biasing 
performance metrics. Moreover, the quality of user inputs—such as blurry images or ambiguous queries—varies 
widely, risking degraded accuracy and relevance in responses. 

5.2 Model Performance Limitations: 
 
The vision Large Language Models (LLMs), llama-4-scout-17b-16e-instruct and llama-4-maverick-17b-128e-instruct, 
attain accuracies of 92.5% and 94.2%, respectively, with corresponding error rates inferred to be approximately 
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7.5% and 5.8%, suggesting potential for refinement, particularly in detecting subtle anomalies such as minor 
fractures or uncommon dermatological conditions. Likewise, the text-oriented counterparts of these same models 
exhibit accuracies of 91.4% and 93.5%, yet occasionally provide responses that are either incomplete or excessively 
broad, posing a risk of user misinterpretation. Elevated computational requirements, such as inferred high GPU 
usage for llama-4-maverick-17b-128e-instruct due to its 128 experts, may pose challenges to scalability on devices 
with limited resources. 

5.3 Ethical and Safety Concerns: 
 
As discussed in Bataineh,A.Q.,Mushtaha,A.S.(2024), ethical risks arise from the systems’ reliance on pre-trained 
LLMs, which may harbor outdated or biased knowledge, potentially yielding unsafe advice despite avoiding 
medication prescriptions. The text-based system’s ethical compliance scores (9.5 and 8.8 on a 10-point scale) suggest 
occasional lapses, such as vague recommendations open to misinterpretation. For the vision system, 
misclassifications (e.g., mistaking benign conditions for serious ones) could provoke undue alarm or delay proper 
care, undermining user trust and safety. 

5.4 User Interaction and Accessibility Issues: 
 
The Gradio interfaces, though functional, present usability challenges as shown in Khamaj, A.(2025) . The vision 
system’s multimodal input process (image uploads and audio recording) results in longer interaction times (e.g., 
15.2s vs. 10.8s for text-only), which may frustrate less tech-savvy users. Limited to English, the systems exclude non-
English-speaking populations. The gTTS audio output, while effective, lacks customization options (e.g., speed or 
tone), potentially hindering comprehension for users with hearing impairments or diverse preferences. 

5.5 Technical and Deployment Constraints: 
 
Dependence on the Groq API introduces latency (e.g., 420ms–510ms for text, 2.3s–3.1s for vision) and vulnerability 
to service disruptions, limiting reliability. Internet connectivity requirements restrict use in remote or offline 
settings, a critical drawback for telemedicine. Security concerns as discussed in Li, J.(2023) also emerge, particularly 
in the text-based system, where a hardcoded API key poses a risk if publicly deployed. 

5.6 Potential Enhancements: 
 
To overcome the identified limitations, the systems could be enhanced by integrating a hybrid dataset of curated 
medical images and queries with real-time inputs to improve diversity and robustness, alongside input validation to 
ensure data quality. Fine-tuning LLMs as shown in Anisuzzaman, D.M.(2025) with domain-specific medical data, 
employing ensemble methods for vision models, and optimizing via quantization could enhance accuracy and 
efficiency, enabling deployment on low-power devices. Incorporating a real-time fact-checking layer linked to current 
medical guidelines, explicit disclaimers, and bias audits would bolster ethical safety. Usability improvements, such 
as simplified vision inputs, multilingual support, and customizable audio outputs, would broaden accessibility, while 
caching queries, developing offline-capable models, and securing API keys would reduce latency and enhance 
deployment reliability, advancing the systems’ practical utility in healthcare. 

6. CONCLUSION 
 
This research designed and assessed two AI-powered medical chatbot systems: a vision-based platform employing 
meta-llama/llama-4-scout-17b-16e-instruct and meta-llama/llama-4-maverick-17b-128e-instruct for real-time image 
analysis, and a text-based framework utilizing the same models for query interpretation. Evaluation using a dataset 
exceeding 100 medical images and queries demonstrated robust performance, with the vision models attaining 
accuracies of 92.5% and 94.2%, and the text models achieving 91.4% and 93.5%. These findings underscore the 
systems’ capacity to deliver initial medical insights, with llama-4-maverick-17b-128e-instruct excelling in accuracy and 
llama-4-scout-17b-16e-instruct offering advantages in processing speed, while their respective applications present 
trade-offs between resource efficiency and comprehensive responses. 
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Despite these strengths, limitations such as restricted data diversity, variable model performance, ethical risks, 
usability constraints, and deployment challenges as discussed in Sadeq, M.A.(2024) temper the systems’ readiness 
for widespread adoption. The vision-based system’s multimodal complexity and the text-based system’s reliance on 
internet connectivity underscore the need for further refinement. Comparative analysis suggests a hybrid approach—
combining the best-performing vision and text models—could optimize diagnostic and communicative capabilities, 
tailoring solutions to specific healthcare needs. 

In conclusion, these chatbot systems represent a significant step toward accessible, AI-supported medical assistance, 
particularly for educational purposes as in Robleto, E., Habashi, A.(2024) and preliminary consultation purposes as 
in Harari, R.E., Ahmadi, N.(2024). The proposed enhancements, including dataset expansion, model optimization, 
and enhanced accessibility, offer a roadmap for overcoming current shortcomings. Future research should focus on 
validating these systems with larger, diverse datasets and integrating real-time specialist feedback to bridge the gap 
between virtual assistance and professional care, paving the way for practical telemedicine applications. 

7. FUTURE RESEARCH AVENUES 

7.1 Expansion of Dataset and Validation: 
As mentioned in Bauer, S.J.(2025), future research should prioritize expanding the dataset beyond the current 
100+ real-time images and queries to encompass a broader, more diverse range of medical conditions, imaging 
modalities, and patient demographics. Incorporating standardized, annotated datasets from clinical repositories, 
alongside continued real-time collection, would enable rigorous validation of the systems’ performance across 
varied scenarios. This approach could leverage statistical benchmarks and external medical expert reviews to 
quantify improvements in accuracy, error rates, and generalizability, ensuring the chatbots’ reliability for real-world 
healthcare applications. 

7.2 Model Optimization and Integration: 
 
Innovations in models as discussed in Wagner, A.J. and Jürgen, M.(2025) optimization offer a critical pathway to 
elevate the performance of both vision and text Large Language Models (LLMs). Refining these models with 
specialized medical datasets, exploring hybrid configurations (e.g., integrating llama-4-scout-17b-16e-instruct and 
llama-4-maverick-17b-128e-instruct), and developing lightweight versions through methods such as knowledge 
distillation could enhance diagnostic accuracy while mitigating computational requirements. Additionally as in 
Eachempati, P., Supe, A.(2025), integrating real-time feedback from specialists—where AI-generated outputs are 
reviewed or enriched by human expertise—may narrow the divide between automated support and clinical oversight, 
thereby boosting confidence and applicability in telemedicine environments. 

7.3 Accessibility and Deployment Enhancements: 
 
Improving accessibility and deployment readiness as written in Frade, S., Mendonca, R.(2025) offers another critical 
research direction. Extending language support to include multilingual capabilities, refining user interfaces for 
seamless interaction (e.g., voice commands or mobile compatibility), and developing offline functionality through 
on-device processing would broaden the systems’ reach, particularly in underserved or remote regions. Security 
enhancements, such as encrypted API interactions and robust user authentication, alongside scalability testing in 
diverse network conditions, would ensure practical deployment, aligning the chatbots with the evolving needs of 
global healthcare delivery.
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