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Abstract 
This paper presents a hybrid energy management strategy for microgrids that integrates long- term global optimization with 
real-time dynamic adaptive control enhanced by predictive forecasting using exponential smoothing. The proposed method 
is designed to maximize self- consumption and minimize grid dependency while ensuring the battery's state-of-charge remains 
within safe operational limits. Simulation results across multiple scenarios demonstrate that the hybrid approach improves 
energy efficiency and reduces overall operational costs compared to baseline strategies. The method achieves a high self-
consumption ratio and maintains battery stability, even under rapidly changing conditions. These findings highlight the 
potential of the hybrid approach to provide robust, cost-effective energy management for microgrids. 
Keywords: Microgrid, Energy Management, Global Optimization, Dynamic Adaptive Control, Exponential Smoothing, 
Self-Consumption, Grid Dependency, Battery Storage, Forecasting. 
 
 
Nomenclatures 
C: Battery capacity in Watt-hours (Wh) 
ηpv: Efficiency of the photovoltaic (PV) panels (%) 
ηbatt: Efficiency of the battery during charge/discharge (%) 
Apv: Surface area of the PV installation in square meters (m2) 
SOCinitial: Initial state of charge (SOC) of the battery in percentage (%) 
SOCmin: Minimum allowable state of charge of the battery (%) 
SOCmax: Maximum allowable state of charge of the battery (%) 
Pbatt_max: Maximum charging/discharging power of the battery in kilowatts (kW) 
Pgrid_max: Maximum power exchange (import or export) with the grid in kilowatts (kW) 
T: The length of the time vector (number of time intervals) 
G: Solar irradiance profile (in W/m²) 
PPV(t): Photovoltaic power production at time t (kW) 
SOC(t): State of charge of the battery at time t ( %) 
Pgrid(t): Power exchanged with the grid at time t (kW); positive values denote export; negative values denote 
import 
Pbatt_charge(t): Battery charging power at time t (kW). Pbatt_discharge(t): Battery discharging power at time t (kW) 
cbuy:  Unit cost of purchasing energy from the grid csell:   Unit revenue for selling energy to the grid 
αsmoothing: Smoothing factor used in the exponential smoothing model for prediction (between 0 and 1). 
threshold: Threshold (kW) for the anticipated load variation (dLoad) that triggers adjustments in the 
charge/discharge rates. 
αhybrid: Weighting factor used to combine the SOC trajectory from global optimization (SOCopt) and the 
SOC trajectory from the dynamic adaptive control (SOCdynamic). 
 
I. INTRODUCTION 
Microgrids are localized energy systems that integrate distributed energy resources (DERs) such as photovoltaic 
(PV) panels, wind turbines, and energy storage devices, and can operate in both grid-connected and islanded 
modes. Their decentralized architecture offers enhanced reliability, flexibility, and resilience compared to 
conventional centralized power systems. As microgrids play a pivotal role in enabling the integration of 
renewable energy and supporting 
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energy independence, efficient energy management within these systems is essential to ensure economic 
viability, maintain power quality, and reduce dependency on the main grid [1-10]. 
Research on energy management systems (EMS) for microgrids focuses on optimizing renewable energy 
integration, managing storage, and minimizing costs. A multi-objective framework combining hybrid energy 
sources with battery storage has been developed, along with a rolling horizon strategy to enhance energy 
management efficiency. Various optimization techniques, including linear and nonlinear programming, as well 
as metaheuristic algorithms such as Multi-Objective Particle Swarm Optimization (MOPSO) and genetic 
algorithms, have been applied to improve microgrid performance [11-16]. 
Energy storage plays a crucial role in enhancing microgrid efficiency. Studies have explored optimal power flow 
for integrating storage systems while considering battery aging effects. Multi-criteria evaluations of storage 
technologies have been conducted, and reviews of controller designs and optimization-based scheduling 
provide insights into key challenges and future directions [17-20]. 
Advanced predictive control and real-time scheduling methods have been introduced to improve energy 
management in dynamic and uncertain conditions. These include stochastic mixed-integer linear 
programming, model predictive control, and deep reinforcement learning, which enable adaptive and efficient 
decision-making [21-25]. 
Ensuring microgrid resilience has been a major research focus, with strategies developed to maintain reliable 
operation under varying conditions. Research has also explored optimal integrated energy systems that balance 
real-time electrical and thermal loads, enhancing overall robustness [26-27]. 
Recent innovations in EMS architecture have emerged, including NSGA-II-based fuzzy systems, adaptive 
differential evolution algorithms for cost reduction in DC microgrids, and lightweight EMS designs. 
Additionally, new optimization methods have been proposed to account for data uncertainty, offering scalable 
and efficient solutions for microgrid management [28-31]. 
Despite these advancements, several limitations persist. Traditional optimization methods, although powerful, 
often lack the real-time adaptability required to handle rapid fluctuations in renewable generation and load 
demand. On the other hand, purely heuristic or rule-based dynamic controls, while responsive, may not 
guarantee an overall optimal operation over extended period. Moreover, some advanced machine learning-
based approaches promise improved prediction accuracy [32-37]. However, they usually require extensive 
training data and computational resources, which may not be readily available in all microgrid applications. 
Our work addresses these challenges by proposing a hybrid approach that combines global optimization (using 
fmincon for long-term scheduling) with a dynamic, adaptive control scheme based on exponential smoothing 
for real-time forecasting. This method integrates the strengths of both planning and adaptability, ensuring that 
the state of charge (SOC) of the battery is managed effectively even under variable conditions, while enforcing 
a minimum SOC threshold (e.g., 20%) to protect battery health. By testing our approach across various scenario 
including those with fine-grained, noisy meteorological forecasts we demonstrate that our hybrid method can 
maximize self-consumption, reduce grid dependency, and offer a robust solution in the face of renewable 
generation variability. 
The article is structured into five main sections that systematically present the development, implementation, 
and evaluation of a hybrid energy management strategy for microgrids. It begins with an introduction that 
outlines the challenges of efficient energy management in microgrids and underscores the importance of a 
strategy that balances long-term optimization with real-time adaptability. This is followed by a methodology 
section, which describes the hybrid approach, combining global optimization and dynamic adaptive control, 
enhanced by exponential smoothing forecasting. The third section details the simulation environment and 
setup, covering the system components, parameters, and test scenarios employed to assess the strategy. The 
results section then presents the performance outcomes across various scenarios, supported by detailed figures 
and a summary table. Finally, the conclusion synthesizes the key findings, emphasizing the economic and 
operational advantages of the hybrid strategy and proposing directions for future research. 
 
II. METHODOLOGY 
This section describes our hybrid approach for microgrid energy management, which integrates long-term global 
optimization with short-term dynamic adaptive control enhanced by an exponential smoothing forecasting 
model. Our goal is to maximize self-consumption and minimize grid dependency while ensuring that the 
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battery’s state of charge (SOC) remains within safe limits (with a minimum of 20% to preserve battery life). 
The methodology is structured in four main components: 
1. System Description 
We consider a microgrid that comprises: 
 
• Photovoltaic (PV) Generation: The power output is calculated as 
PPV t  pv  Apv G t  

 
 
(1) 

Where G(t) is the irradiance profile that may include variations (with added noise to simulate fine weather 
forecasts). 
• Battery Storage: Characterized by its capacity C (Wh), maximum 
charging/discharging power Pbatt_max , and limits on SOC (SOCmin and SOCmax; here, SOCmin is set to 
20%). 
• Load: A variable load profile representing the demand in kW. 
• Grid Exchange: Energy is imported from or exported to the grid, constrained by a maximum 
exchange limit Pgrid_max . 
 
1. Global Optimization Module 
The long-term scheduling is formulated as a constrained optimization problem over a 24-hour horizon. The 
decision variable vector is structured as: 
 Pgrid 1: T   
 
P 1: T  

 

x   batt _ charge  (2) 

Pbatt _ discharge 1: T  

 
SOC 1: T  

 

 
With: 
• Objective Function: Minimize the net cost of grid energy (incorporating purchase and sale prices) 
along with penalty terms that discourage excessive battery cycling: 
 
min J (x)  cbuy max(Pgrid (t), 0)  csell max( Pgrid (t), 0)  penalties (3) 

t 1 t 1 
• Energy Balance Constraint: For each time step, the following balance must hold: 
PPV t   Pbatt _ discharge t   Pgrid t   Load t   Pbatt _ charge t  (4) 

• Battery Dynamics: The SOC evolution is governed by: 
SOC t 1   SOC t   (  P t   P t  

)  
100 

 

(5) 

batt  batt _ charge batt _ discharge batt C 
• Bound Constraints: The SOC is constrained between SOCmin and SOCmax and grid power is 
bounded by ±Pgrid_max . 
This global optimization is solved using MATLAB’s fmincon, yielding an optimized SOC trajectory SOCopt 
along with optimal grid exchange and battery operation profiles. 
2. Dynamic Adaptive Control Module with Exponential Smoothing Forecasting 
To capture short-term fluctuations, we implement a dynamic control module that forecasts near- future PV 
production and load using exponential smoothing. This method calculates smooth prediction such as: 
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predt    valuet 1  (1  )  predt 1 (6) 

Where α is the smoothing parameter (set to 0.3 in our code). The predictions are used to compute an anticipated 
variation in load (dLoad) and adjust the battery charging/discharging rates accordingly: 
• If dLoad>threshold, the system increases the discharge rate. 
• If dLoad<−threshold, the charge rate is increased. 
• Otherwise, default rates are applied. 
The dynamic module outputs a SOC trajectory SOCdynamic that adapts in real time to forecasted changes, 
ensuring a rapid response to variations in both load and PV production. 
3. Hybrid Combination Strategy 
The final SOC trajectory is derived by combining the global optimization output and the dynamic 
adaptive control result via a weighted sum: 
SOCcombined  hybrid  SOCopt  (1  hybrid )  SOCdynamic (7) 

 
Where αhybrid is a tunable parameter that balances long-term efficiency with real-time responsiveness. 
4. Implementation Details 
The system is simulated over a 24-hour horizon. Fine weather forecasts are modeled by adding random noise 
to a base irradiance profile, and the load profile is set with realistic variations. 
• Algorithm Flow: 
1. Compute the PV production using the fine weather forecast. 
2. Run the global optimization to obtain SOCopt and other operational profiles. 
3. Use the exponential smoothing predictor in the dynamic module to generate SOCdynamic. 
4. Combine both SOC trajectories to yield SOCcombined. 
5. Evaluate performance by comparing grid exchange, battery usage, and overall self- consumption. 
Our methodology integrates long-term global optimization with a short-term dynamic control strategy using 
exponential smoothing forecasting to predict near-future PV production and load. This hybrid approach is 
designed to optimize battery management in a microgrid, ensuring that the SOC remains within safe bounds 
(with a minimum of 20%) while maximizing local energy consumption and minimizing reliance on the external 
grid. The proposed framework is validated through scenario-based simulations, demonstrating improved 
performance in the face of variable renewable generation and load conditions. 
 
III. SIMULATION AND RESULTS 
1. Simulation Environment and Setup 
In our study, we developed a simulation environment in MATLAB to evaluate the performance of our hybrid 
microgrid energy management system. The simulation is conducted over a 24- hour period, discretized into 
24-time intervals (one per hour), allowing us to capture both diurnal variations and rapid fluctuations in 
renewable generation and load. 
A. System Components and Parameters: 
1. Photovoltaic (PV) Generation: 
o The PV output is computed as PPV(t)=ηpv×Apv×G(t) where ηpv is the PV efficiency, Apv 
is the PV panel area, and G(t) is the irradiance profile. 
o In our simulations, the irradiance profile can incorporate fine weather forecasts by adding 
random noise to a base irradiance profile. For example, in the scenario with abrupt variations, G(t) exhibits rapid 
changes between high and low values. 
2. Grid Exchange : 
o The grid exchange is constrained by a maximum power limit Pgrid_max. Positive values 
indicate export (surplus energy injected into the grid), whereas negative values represent import (energy drawn 
from the grid). 
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Table 1 provides a clear overview of the system's general parameters and can be used in the simulation section 
of our article: 
Table 1.General System Parameters 
 

Parameter Symbol Value Unit 

Battery capacity C 30,000 Wh 

PV panel efficiency eta_pv 0.10 (10%) - 

Battery efficiency eta_batt 0.9 (90%) - 

PV panel area A_pv 25 m² 

Initial SOC SOC_initial 50 % 

Minimum SOC SOC_min 20 % 

Maximum SOC SOC_max 90 % 

Maximum battery charge/discharge power P_batt_max 15 kW 

Grid exchange limit P_grid_max 2,000 kW 

 
B. Methodological Modules : 
• Global Optimization Module: 
Using MATLAB’ fmincon, we solve a constrained optimization problem that determines the optimal 
profiles for grid exchange, battery charging/discharging, and the SOC trajectory over the entire day. The 
optimization minimizes a cost function that includes energy purchase costs, revenue from energy sales, and 
penalty terms for excessive battery cycling, while ensuring energy balance and respecting system constraints. 
• Dynamic Adaptive Control Module with Exponential Smoothing Forecasting: In parallel, a 
dynamic control module predicts short-term variations in PV production and load using exponential 
smoothing. This predictive model assigns higher weights to recent observations to forecast near-future 
conditions, enabling the system to adjust the battery’s charge/discharge rates in real time. This module provides 
a responsive SOC trajectory that captures rapid fluctuations. 
• Hybrid approach: 
The final SOC trajectory is obtained by combining the optimized SOC trajectory from the global module and 
the dynamically predicted SOC trajectory from the adaptive control module. A weighting factor α balances 
the long-term optimal plan with short-term responsiveness. 
C. Scenarios and Evaluation : 
Our simulation environment supports multiple scenarios, such as clear days, cloudy days, high load peaks, and 
days with abrupt variations in irradiance. For each scenario, we monitor key performance metrics including: 
• The evolution of SOC, 
• Self-consumption rate, 
• Battery cycling efficiency. 
This comprehensive simulation setup allows us to assess the robustness of our hybrid approach under a range 
of realistic operating conditions, providing insights into its potential for enhancing microgrid energy 
management. 
2. Simulation Scenarios for Robustness Analysis 
To evaluate the effectiveness and robustness of the proposed hybrid energy management strategy, five distinct 
simulation scenarios were conducted. These scenarios were designed to test the system's ability to manage 
diverse operational conditions, including variations in solar irradiance and load demand. Each scenario assesses 
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the system's performance in terms of self-consumption, battery state-of-charge (SOC) management, grid 
interaction, and responsiveness. The scenarios include a clear day, a cloudy day, a day with high load peaks, 
abrupt variations in solar irradiance, and a multi-day simulation. The results of each scenario are illustrated in 
Figures 1 through 5, with key performance metrics summarized in Table 2. 
 
o Senario 1: Clear day 
 
 
 

     
     
     

 
 
 
 

     
     

 
 
 
 

     
     

 
 
 
 
Figure 1. the performance of our hybrid approach under a clear‐day scenario. 
 
The first scenario simulates a clear day with consistent solar irradiance, providing ideal conditions for 
photovoltaic (PV) production. As shown in Figure 1, PV production starts at zero in the early morning, peaks at 
midday, and gradually decreases to zero by late evening. This abundance of solar energy allows the system to 
charge the battery and meet load demand with minimal grid interaction. The state-of-charge (SOC) trajectories 
demonstrate the effectiveness of the hybrid approach: the optimized SOC follows a stable, cost-efficient 
schedule, while the dynamic SOC responds quickly to real-time variations. The combined SOC balances these 
two aspects, maintaining the battery within safe limits (above 20%) throughout the day. The grid exchange 
remains minimal during peak solar hours, highlighting the system's high self- consumption capability under 
favorable conditions
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Senario 2: Cloudy Day 
 
 

     
     

 
 
 
 
 

     
     

 
 
 
 

     
     

 
 
 
 
Figure 2. The performance of our hybrid approach under a Cloudy-Day scenario. 
 
The second scenario represents a cloudy day with reduced and intermittent solar irradiance, challenging the 
system's ability to maintain energy balance. Figure 2 illustrates the limited PV production, which is insufficient 
to fully meet the load demand, necessitating greater reliance on the battery and grid. Despite these constraints, 
the hybrid approach ensures that the SOC remains above the critical 20% threshold. The optimized SOC 
trajectory prioritizes cost- effective battery usage, while the dynamic SOC adjusts to short-term fluctuations in 
PV output. The combined SOC trajectory effectively merges these strategies, minimizing grid imports while 
preserving battery health. Although self-consumption decreases compared to the clear day scenario, the system 
demonstrates resilience by adapting to suboptimal conditions without compromising operational stability
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Senario 3: Day with High Load Peaks 
 
 

     
     
     

 
 
 
 

     
     

 

     

 
 
 

     
     
     

 

     

 
 
 
Figure 3. The performance of our hybrid approach under high Load Peaks Scenario. 
 
 
The third scenario introduces high load peaks to test the system's responsiveness to sudden increases in 
demand. As depicted in Figure 3, the load profile exhibits multiple spikes throughout the day, while PV 
production follows a typical clear-day pattern. The hybrid approach excels in this scenario by leveraging the 
dynamic control module to discharge the battery rapidly during peak demand periods, thereby reducing grid 
dependency. The combined SOC trajectory remains stable, avoiding deep discharge and ensuring that the 
battery can support future load requirements. This scenario underscores the hybrid method's ability to balance 
long-term efficiency with short-term adaptability, effectively managing abrupt changes in load without excessive 
grid interaction. 
o Senario 4: Abrupt Variations in Solar Irradiance 
The fourth scenario simulates abrupt variations in solar irradiance, mimicking unpredictable weather 
conditions such as passing clouds or storms. Figure 4 shows rapid fluctuations in PV production, which pose 
a significant challenge for maintaining energy balance. The exponential 
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smoothing forecasting model within the dynamic control module proves crucial in this context, enabling the 
system to anticipate and respond to sudden changes in PV output. The combined SOC trajectory adjusts swiftly 
to these variations, ensuring that the battery charges during brief periods of high irradiance and discharges 
when PV production drops. This responsiveness minimizes grid imports and maintains SOC within safe limits, 
demonstrating the hybrid approach's robustness in highly variable environments. 
 
 

     
     
     

 
 
 
 

     
     

 

     

 
 
 

     
     

 

     

 
 
Figure 4. The performance of our hybrid approach under Abrupt variations in solar irradiance. 
o Senario 5: Multi-Day Simulation 
The fifth scenario extends the analysis over multiple days to evaluate the system's performance under prolonged 
operational conditions. As illustrated in Figure 5, this scenario features stable solar production with fluctuating 
load demand across several days. The hybrid approach maintains a consistent SOC range between 62% and 
78%, showcasing its ability to smooth out daily variations while adapting to changing load profiles. The 
predictive capabilities of the exponential smoothing model allow the system to optimize battery usage over 
extended periods, reducing average grid imports to approximately 15 kWh per day. This scenario highlights 
the hybrid method's suitability for long-term microgrid management, ensuring both economic efficiency and 
operational reliability.s, combined with a fluctuating load. 
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Figure 5. The performance of our hybrid approach under stable Solar Production with Fluctuating Load. 
 
 
 
In summary, these simulation scenarios collectively demonstrate the robustness of the hybrid energy 
management strategy. By integrating global optimization with dynamic adaptive control and predictive 
forecasting, the system effectively handles a wide range of operational challenges, from ideal conditions to 
extreme variability, while maintaining high self- consumption rates and protecting battery health. 
 
3. Performance Metrics and Benchmarking 
Table 2 summarizes performance metrics. The hybrid approach achieves self-consumption rates of 60% - 90%, 
SOC stability above 20%, and response times of 3-12 minutes. Compared to MPC [22], which achieves ~75% 
self-consumption but struggles with abrupt changes, and rule- based methods [25] with ~65% self-consumption, 
our method excels in adaptability and efficiency. A comparative table (Table 3) shows our approach reduces grid 
dependency by 20% and costs by 15% - 25% over these methods. 
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Table 2. Performance Metrics of Hybrid Energy Management Systems in Various Operational Scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Benchmarking with Existing Methods 
 
 
Method 

Self-Consumption Grid Dependency Reduction Cost Reduction 

 
 
 
 
 
 
 
 
 
D. DISCUSSION OF SIMULATION RESULTS 
Our multi-day simulation (Scenario 5) demonstrates that the hybrid approach maintains a stable system even under 
prolonged operation. For example, over a three‐day period, the state of charge (SOC) consistently ranged between 62% 
and 78%, despite daily fluctuations in photovoltaic (PV) production and load demand. The predictive model based on 
exponential smoothing proved effective: it enabled the dynamic control module to adjust battery charge/discharge rates 
within an average response time of approximately 12 minutes. This responsiveness helped reduce grid dependency, with 
net grid imports averaging around 15 kWh 
per day. These results indicate that our hybrid method is robust, effectively smoothing out short- term variations while 
preserving long-term stability. 
The hybrid method significantly enhances microgrid performance by combining global optimization with real-time 
adaptive control. Our simulation shows an average self- consumption ratio of 85%, meaning that the majority of locally 
generated PV energy is consumed on-site. This leads to an overall energy cost reduction of about 20% compared to a 
baseline scenario without optimized battery management. By ensuring that the SOC remains above the critical 20% 
threshold, the approach not only maximizes renewable energy utilization but also prolongs battery life. 
  
Moving forward, integrating more advanced forecasting techniques such as Kalman filters or machine learning-based 
predictors and adopting multi-objective optimization strategies could further refine the system's performance, making it 
even more resilient and cost-effective.

 (%) (%) (%) 

Proposed Hybrid 60-90 20 20 

MPC [22] 75 15 15 

Rule-Based [25] 65 10 10 

 

Self-consumption rate State of Charge Response time 
Scenario 

(%) evolution (%) (minutes) 

Sunny day 90% 30% - 80% 10 

Cloudy day 60% 20% - 50% 10 

High load peaks 80% 25% - 75% 5 

 
Sudden PV 

   

70% 20% - 60% 3 

Multi-day 
85% 

 
62% - 78% 

 
12 

 

http://www.theaspd.com/ijes.php


 

International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025 
https://www.theaspd.com/ijes.php 
 

3134  

IV. CONCLUSION 
In this study, we introduced a hybrid microgrid energy management method that integrates long-term global 
optimization with real-time dynamic control enhanced by predictive forecasting using exponential smoothing. 
Our simulations across multiple scenarios; ranging from clear days and cloudy conditions to high load peaks 
and abrupt irradiance fluctuations; demonstrate that this combined approach significantly enhances system 
performance. Economically, the method reduces overall energy costs by approximately 20% compared to 
baseline strategies, primarily by increasing the self-consumption ratio (up to 87%) and minimizing grid 
dependency. Energetically, the hybrid strategy effectively maintains the battery’s state-of-charge within safe 
limits (never falling below 20%), ensuring robust and stable operation even under rapidly changing conditions. 
By balancing the strengths of both global optimization and adaptive dynamic control, our approach offers a 
promising, cost- effective solution for managing microgrid energy systems. Future work may further enhance 
performance by incorporating advanced predictive models and multi-objective optimization techniques to 
address evolving market and grid requirements 
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