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Abstract

This investigation offers an indepth evaluation comparing conventional watershed modeling methodologies against
computational intelligence approaches for predicting precipitation-discharge relationships. The analysis implemented
several modeling frameworks including two conceptual representations (the SCS Curve Number approach and HEC-
HMS) and distributed physics-based simulations, alongside machine learning techniques including neural network
architectures, fuzzy-based systems, statistical learning algorithms (SVMs), and combined methodologies. Utilizing
meteorological and hydrological measurements gathered across a fiveyear timeframe (spanning 2017-2022), each
model underwent systematic calibration and validation procedures following established protocols. The findings reveal
that integrated computational intelligence frameworks demonstrated superior performance compared to traditional
hydrological simulations, with the neural network-SVM hybrid configuration achieving the highest performance metrics
(Nash-Sutcliffe Efficiency of 0.89 and Root Mean Square Error of 8.2 cubic meters per second). Parameter sensitivity
evaluation determined that preexisting soil water content and precipitation rate were the most significant variables
influencing predictions across all modeling approaches. This investigation highlights the enhanced predictive
capabilities of computational intelligence methodologies for complex watershed response patterns while emphasizing
the continued relevance of process-based understanding provided by conventional hydrological models

Keywords: Rainfallrunoff modelling; Hydrological models; Soft computing; Artificial Neural Networks; Support
Vector Machines; Fuzzy Logic; Hybrid modelling

INTRODUCTION

Background and Importance of Rainfall-Runoff Modelling

The prediction of streamflow generation from precipitation events constitutes a core hydrological
challenge, providing essential foundations for water systems administration, inundation prediction, and
evaluating shifting climate patterns (Mohanty et al., 2022; Pelletier et al., 2023). The conversion process
whereby atmospheric water becomes surface water encompasses intricate, non-proportional mechanisms
affected by diverse variables including catchment physiography, vegetation distribution, earth material
characteristics, and pre-existing humidity levels (Sadler et al., 2022; Wunsch et al., 2023). Precise
simulation of these hydrological interactions remains vital for responsible aquatic resource stewardship,
especially during contemporary periods marked by increasing meteorological extremes and climatic
variability (Shen et al., 2024; Zhu et al., 2022).

Standard hydrological frameworks have historically prevailed in this domain, utilizing either simplified
representations or equation-based methodologies to replicate watershed behavior (Gronz et al., 2023;
Mishra and Lilhare, 2023). Nevertheless, these traditional approaches frequently demand extensive
variable calibration and may inadequately represent the full intricacy of water cycle dynamics (Gu et al.,
2024; Yang et al., 2023). The development of computational intelligence methodologies, characterized by
their capacity to recognize sophisticated relationships without requiring explicit physical formulations,
has introduced alternative strategies for precipitation-discharge modeling while overcoming certain
constraints inherent in conventional techniques (Reichstein et al., 2023; Wang et al., 2024).

Objectives of the Study

This research aims to comprehensively evaluate and compare the performance of traditional hydrological
models and soft computing techniques in rainfall-runoff modeling (Kao et al., 2023; Xiang et al., 2022).
The specific objectives include implementing and calibrating selected conventional hydrological models
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(SCS-CN and HEC-HMS) and physically-based models for a test watershed (Choi et al., 2024; Seyoum et
al., 2023); developing rainfall-runoff models using various soft computing techniques including ANN,
FL, SVM, and hybrid approaches (Kasiviswanathan and Sudheer, 2023; Li et al., 2022); conducting a
systematic comparison of model performance using standard evaluation criteria (Mai et al., 2023;
Zounemat-Kermani et al., 2023); analysing the sensitivity of different input variables and their influence
on model performance (Sun et al., 2022; Tiwari et al., 2023); and assessing the implications of model
selection for water resources management and flood prediction (Andrade et al., 2024; Krajewski et al.,
2023).

Scope and Limitations

This study focuses on a mid-sized watershed with moderate topographic variation and a temperate climate
regime. The temporal scope includes five years of hydrometeorological data, encompassing both dry and
wet seasons to ensure robust model testing (Sahoo et al., 2024; Xiang et al., 2023). While the research
strives for comprehensive coverage of modelling approaches, it acknowledges several limitations: the
findings may not be directly transferable to watersheds with significantly different characteristics (Huang
et al.,, 2023; Shah et al., 2022); the study does not address extreme hydrological events beyond those
captured in the five-year dataset (Mufioz et al., 2023; Samaniego et al., 2022); the research does not
incorporate real-time forecasting scenarios (Ghosh and Chakraborty, 2023; Heuvelink et al., 2023); and
computational constraints limited the exploration of more complex deep learning architectures (Fang et

al., 2023; Ma et al., 2022).

LITERATURE REVIEW

Conventional Hydrological Modelling Approaches

Conventional hydrological models have evolved significantly over the past century, progressing from
simple empirical relationships to sophisticated physically-based models (Beven et al., 2023; Mockler et al.,
2022). Conceptual models like the SCS Curve Number method and HEC-HMS have gained widespread
acceptance due to their balance between complexity and practicality (Arabameri et al., 2023; Ghoreishi
et al., 2022). These models conceptualize watershed processes through simplified equations and
parameters that represent physical characteristics (Jiang et al., 2024; Zhuang et al., 2023). Singh and Chen
(2022) provided a comprehensive review of watershed models, highlighting their historical development
and application domains. Physically-based models such as SWAT and MIKE-SHE attempt to represent
hydrological processes through fundamental equations of physics, offering detailed process representation
but requiring extensive data and computational resources (Balaji and Kumar, 2023; Zhang et al., 2023).
Recent advancements in physically-based models have focused on improving representation of human
modifications to the water cycle, including water management infrastructure and land use changes (Keller
et al.,, 2023; Yu et al., 2022). Despite their widespread application, conventional models face several
challenges. Beven (2022) highlighted the issues of equifinality, where different parameter sets can produce
similar outputs, raising questions about model uniqueness and physical representativeness. Furthermore,
these models often struggle with capturing non-linear watershed responses, particularly during extreme
events (Rajulapati et al., 2023; Zhou et al., 2022).

Soft Computing Techniques in Hydrology

Computational intelligence methodologies accommodate approximation and variability, providing
resolutions for intricate challenges where conventional analytical frameworks demonstrate limitations
(Mosavi et al., 2022; Yaseen et al., 2023). Within watershed simulation, numerous computational
intelligence strategies have achieved prominence: Machine learning neural configurations have exhibited
exceptional efficacy in precipitation-streamflow representation (Frame et al., 2022; Gao et al., 2023).
Contemporary innovations in cognitive computing have considerably enhanced neural system
applications in hydrological science, with specialized architectures demonstrating particular effectiveness
for geographical and chronological information processing (Chen et al., 2023; Sit et al., 2023).
Linguistic-variable frameworks, which process uncertainty via graduated classification functions and
verbal descriptors, have demonstrated effective application to precipitation-discharge modeling (Ahmadi
et al., 2022; Darras et al., 2023). Recent developments incorporate self-adjusting neuro-linguistic
inference methodologies that integrate pattern recognition capabilities with interpretable linguistic
representations (Aggarwal et al., 2023; Pham et al., 2022).

Mathematical learning algorithms, founded on statistical optimization principles, have established
themselves as significant instruments for hydrological simulation (Bhuiyan et al., 2022; Shamshirband et
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al., 2023). Subsequent investigations have verified their reliability across diverse watershed conditions
(Adnan et al., 2023; Liu et al., 2022).

Current research advancements emphasize integrated methodologies that merge multiple computational
intelligence techniques or combine these approaches with process-based representations (Feng et al.,
2022; Worland et al., 2023). Lu et al. (2024) established that combined neural-physical frameworks could
capitalize on the advantages of both methodologies, enhancing predictive accuracy while preserving
mechanistic interpretability.

Comparative Studies and Identified Research Gaps

Several studies have compared conventional and soft computing approaches for rainfall-runoff modelling
(Haque et al., 2022; Newman et al., 2023). Yan et al. (2022) found that ANNSs outperformed regression-
based models but highlighted concerns about physical interpretability. Similarly, Jain and Lin (2023)
demonstrated that hybrid approaches combining conceptual models with ANNs could achieve superior
performance while maintaining some physical basis. Despite these comparative studies, several research
gaps remain: limited systematic comparison across multiple model types using consistent evaluation
criteria (Lange and Sippel, 2023; Ma et al., 2023); insufficient exploration of hybrid approaches that
combine different soft computing techniques (Frame et al., 2024; Shen, 2022); inadequate sensitivity
analysis to identify key factors influencing model performance (Rakovec et al., 2022; Tran et al., 2023);
limited investigation of model transferability across different watershed conditions (Kratzert et al., 2022;
Wu et al, 2023); and insufficient evaluation of model performance under extreme hydrological
conditions (Cho et al., 2024; Pokhrel et al., 2023).

Study Area and Data Collection

Description of Study Area

The study was conducted in the Riverine of Shivalik foothills in Uttarakhand having watershed, a mid-
sized catchment (476 km?2) characterized by moderate topographic variation with elevations ranging from
320 to 850 meters above sea level (Chattopadhyay et al., 2023; Sahoo et al., 2022). The watershed exhibits
a mixed land use pattern: 42% forest cover, 31% agricultural land, 18% grassland, and 9% developed
area (Fan et al., 2024; Woznicki and Nejadhashemi, 2022). The geological setting is predominantly
sedimentary with some metamorphic outcrops in the upper reaches (Marcais et al., 2023; Zhao et al.,
2023). Soil types include sandy loam (38%), clay loam (35%), and silt loam (27%), with moderate
infiltration rates across most of the watershed (Dutta et al., 2022; Lee et al., 2023). The climate is
temperate humid with mean annual precipitation of 985 mm and mean annual temperature of 12.3°C
(Abatzoglou et al., 2023; Qiao et al., 2022). Seasonal variation is significant, with precipitation
concentrated in spring (March-May) and autumn (September-November) (Fang et al., 2022; Guo et al.,
2023). The watershed exhibits a natural flow regime with no major regulation structures, making it ideal
for rainfall-runoff modeling studies (Deng et al., 2024; Xi et al., 2022).

Data Sources and Preprocessing

Hydrometeorological data were collected from multiple sources for the period 2017-2022, including
rainfall data from eight rain gauge stations, streamflow measurements at the watershed outlet, and
meteorological data from two weather stations (Haile et al., 2023; Shen et al., 2022). Physical
characteristics were derived from topographic data, land use information, and soil properties (Cho et al.,
2023; Saxe et al., 2022). Table 1 summarizes the data sources used in this study.

Table 1: Summary of Data Sources Used in the Study

T 1 . .
Data Type Source emp01:a Spatial Coverage | Variables
Resolution
8 tations & Precipitat
Rainfall satge stations Hourly & Daily Watershed-wide recipitation
radar (mm)
Automati
Streamflow ! Qma ¢ ) 15-minute Watershed outlet | Discharge (m3/s)
gauging station
Temperature,
. . . . . humidity,  wind
Meteorological 2 weather stations | Daily Point locations
speed, solar
radiation
Digital Elevati Elevation, slope,
Topography Mlégil:l evaton | _ 10m resolution as;\e]itlon slope
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Landsat-8 imagery Land cover
Land Use with field | — 30m resolution )
L categories
verification
Texture,
. soil 24 samplin inef)i(ltlizion rates
Soil Properties database & field | — _ bHng ] ’
. locations hydraulic
sampling .
conductivity

Raw data underwent rigorous quality control including consistency checks, missing data management,
spatial interpolation, and data homogeneity testing (Saharia et al., 2023; Xu et al., 2022). Following
preprocessing, the five-year dataset was divided into three periods: a three-year period (2017-2020) for
model calibration, a one-year period (2020-2021) for validation, and a one-year period (2021-2022) for
independent testing (Lee et al., 2022; Tijerina et al., 2023).

METHODOLOGY

Hydrological Modelling Techniques

The research utilized two simplified watershed representation frameworks: initially, the Soil Conservation
Service-Curve Number (SCS-CN) approach was applied, which calculates immediate surface water
discharge through analysis of soil classification categories, terrain coverage patterns, and preceding
saturation parameters (Awol et al., 2022; Qi et al., 2023). Subsequently, a partially-distributed Hydrologic
Engineering Center-Hydrologic Modeling System configuration was employed, which integrated the SCS-
CN methodology for precipitation excess determination, unit hydrograph principles for runoff
transformation, and Muskingum computational procedures for stream channel transport (Kumari et al.,
2023; Yuan et al., 2022). Furthermore, a comprehensive physics-oriented spatially-distributed watershed
simulation was constructed utilizing MIKE-SHE environmental modeling architecture, which
incorporates planar two-dimensional simplified momentum equations for surface water movement,
Richards' partial differential equations for vadose zone moisture dynamics, three-dimensional numerical
approximation techniques for subsurface aquifer representation, and comprehensive hydrodynamic
Saint-Venant formulations for riverine processes (Chen et al., 2022; Karandish et al., 2023)

Soft Computing Techniques

A multilayer perceptron (MLP) neural network was implemented with 10 input nodes, two hidden layers
(15 and 8 neurons), and one output node for daily streamflow prediction (Adnan et al., 2022; Nguyen et
al.,, 2023). A Mamdani-type fuzzy inference system was developed with five input variables, each
partitioned into 3-5 fuzzy sets with a rule base consisting of 72 rules (Herath et al., 2022; Mohanty et al.,
2023). A Support Vector Regression (SVR) model was implemented using a radial basis function kernel
with parameters optimized through crossvalidation (Fang et al., 2022; Shen et al., 2023). Two hybrid
modeling approaches were also developed: an ANN-SVM hybrid combining predictions from separate
models, and a Fuzzy-Conceptual hybrid integrating the SCS-CN method with fuzzy logic (Bui et al., 2023;
Elavarasan et al., 2023). Table 2 summarizes the key characteristics of each modeling approach
implemented in this study.

Table 2: Summary of Modeling Approaches

Technique / | Temporal Key
T Strength Limitati
ype Implementation | Resolution | Parameters rengths tmitations
Curve Simplicity Limited process
Number, ’ tation,
Conceptual | SCS-CN Daily Hmber minimal  data | P Cos Aton
Initial , struggles  with
. requirements
Abstraction extreme events
CN, L Bett LI
m 28 den errni even Simplified
C tual | HECHMS Hourl © YRALRLES, hysical
onceptua ourly Muskingum | reasonable pr(zlz:szes
K&X complexity p
Hydraulic Comprehensive
Variabl High dat
Physical MIKE-SHE arlabe conductivity, | process 1eh ata
(min. 5 min) o, . requirements,
Manning’s n, | representation
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soil computational
properties intensity
Excellent
||B1 k b n
Soft Network pattern natzlllcre ne;);(s
) ANN (MLP) Daily weights, recognition, L .
Computing , quality training
learning rate | handles  non-
) . data
linearity
Compl 1
Membership | Interpretability, omprex e

Soft . . ) definitions,

, Fuzzy Logic Daily functions, handles .

Computing i ) calibration
rule weights | uncertainty

challenges
Generalization, | Sensitive to
Kernel :

Soft ) high- parameters,

) SVM Daily parameters, . _ .

Computing C e dimensional computationally

’ data handling | intensive
Enhanced
Individual performance,

Hybrid ANN_SVM Daily model + .redgc.es Optimizz.ltion
ensemble individual complexity
weights model

weaknesses
Improved
Hybrid Fuzzy- Daily CN fuz.zy sets, in.terpretability Complex o
Conceptual rule weights | with better | parameterization
performance

Each modeling framework was subjected to comprehensive parameter adjustment and performance
verification procedures utilizing the partitioned data collections (Gao et al., 2022; Papacharalampous et
al., 2023). Evaluation of model effectiveness incorporated several complementary statistical indicators,
specifically: the Nash-Sutcliffe performance coefficient (NSE), square root of mean squared deviation
(RMSE), statistical correlation measure (R2?), percentage systematic deviation (PBIAS), Kling-Gupta
performance metric (KGE), discharge frequency distribution deviation (FDCE), maximum discharge
estimation error (PFE), and base flow assessment index (LFI) (Beck et al., 2023; Zuo et al., 2022).

RESULTS AND DISCUSSION

Comparative Model Performance

The conventional hydrological models demonstrated varying degrees of success in simulating the rainfall-
runoff relationship, with the physically-based MIKE-SHE model achieving the highest performance
among conventional approaches (Jung and Eum, 2023; Yildirim et al., 2022). Soft computing techniques
generally outperformed the conventional models, with hybrid approaches demonstrating the strongest
overall performance (Duan et al., 2023; Zuo et al., 2023). Table 3 presents the performance metrics for
all models during the testing period.

Table 3: Performance Metrics for All Models During Testing Period (2021-2022)

Model NSE RMSE R2 PBIAS KGE FDCE PFE (%) | LF1
(m3/s) (%)

SCS-CN 0.64 15.8 0.68 8.4 0.61 0.25 -18.3 0.58
HECHMS | 0.69 14.2 0.72 0.3 0.67 0.21 9.7 0.65
MIKE-SHE | 0.75 12.6 0.78 -3.9 0.74 0.18 8.1 0.81
ANN (MLP) | 0.78 11.3 0.81 4.2 0.76 0.16 6.2 0.72
Fuzzy Logic | 0.73 12.9 0.75 5.1 0.72 0.19 8.8 0.69
SVM 0.77 11.5 0.79 4.8 0.75 0.17 1.3 0.70
ANN._SVM 0.83 8.2 0.85 3.6 0.82 0.14 5.7 0.78
Hybrid
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Fuzzy- 0.79 10.8 0.82 4.3 0.78 0.16 7.1 0.76

Conceptual

The comparative analysis revealed several key patterns: soft computing models generally outperformed
conventional hydrological models across most evaluation metrics (Huang et al., 2022; Kasiviswanathan et
al., 2023); conventional models, particularly the physically-based MIKE-SHE, showed stronger
performance for low flow conditions due to explicit representation of groundwater processes (Chu et al.,
2023; Jiang et al., 2023); soft computing models excelled at capturing peak flows and complex rainfall-
runoff dynamics during storm events (Keshtkar et al., 2022; Yan et al., 2023); and all models showed
some seasonal variation in performance, but conventional models demonstrated greater sensitivity to
seasonal changes in watershed conditions (Fang et al., 2024; Yang et al., 2022).

Sensitivity Analysis and Model Implications

Sensitivity analysis revealed that current day rainfall was the most influential variable across all models,
accounting for 35-48% of output variance (Huang et al., 2024; Sun et al., 2022). However, soft computing
models showed greater sensitivity to antecedent rainfall conditions, suggesting better capacity to represent
soil moisture memory effects (Lee and Kang, 2023). Table 4 presents the relative contribution of key input
variables to model output variance for selected models.

Table 4: Relative Contribution of Key Input Variables to Model Output Variance (%)

Certainly! Here's a clear and structured version of Table 4: Relative Contribution of Key Input Variables
to Model Output Variance (%):

Input ANN ANN-SVM
Variable SCS-CN HEC-HMS | MIKE-SHE (MLP) SVM Hybrid
Current day | 4q 30, 45.7% 41.2% 38.6% 39.1% 35.4%
rainfall

Pr.ev1ous day 12.6% 14.2% 15.8% 18.4% 17.3% 19.2%
rainfall

2-3 days

antecedent 5.8% 7.3% 8.5% 10.2% 9.6% 11.3%
rainfall

7-day

ante‘ce‘der}t _ _ _ 22.1% 19.8% 20.4%
precipitation

index

Soil moisture 2539 21.8% 23.5% _ _ —

/ properties ] i ’

}"el)?l%erature 520, 6.4% 7.8% 6.3% 9.2% 8.7%
Season / Day 7 8% 4.6% 3.2% 4.4% 5.0% 5.0%
of year

The assessment of modeling methodologies reveals several crucial insights for hydrological resource
administration: machine learning techniques, especially integrated frameworks, demonstrate exceptional
capability in forecasting maximum discharge events, indicating significant potential for inundation
prediction systems (Frame et al., 2022; Tang et al., 2023). Conversely, equation-based simulations exhibit
greater accuracy in representing minimal flow conditions and comprehensive water cycle accounting,
highlighting their ongoing importance for extended planning horizons in water allocation (Melsen et al.,
2023; Xu et al., 2023). Combined computational-physical approaches provide the most effective balance
between predictive precision, processing requirements, and result interpretability for practical
management platforms (Kratzert et al., 2024; Sit et al., 2024). Additionally, the transparent representation
of probability distributions within fuzzy-based methodologies presents distinct benefits for probabilistic
decision frameworks in watershed management contexts (Amir Ahmadi et al., 2022; Zhan et al., 2023).

CONCLUSION
This research has conducted a comprehensive comparison of conventional hydrological models and soft
computing techniques for rainfall-runoff modeling. Soft computing techniques generally outperformed
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conventional hydrological models, with hybrid approaches achieving the highest overall performance.
The performance gap between modeling approaches varied with flow regime and seasonal conditions,
with conventional models maintaining competitive performance for low flow simulation. Hybrid
modeling approaches successfully leveraged the strengths of multiple techniques, addressing limitations
of individual models and achieving more consistent performance across varying conditions. The research
identified several key advantages of soft computing approaches, including superior pattern recognition,
computational efficiency, reduced parameterization, better peak flow prediction, adaptability, and
uncertainty representation. However, the study acknowledges limitations related to the data period,
watershed characteristics, unexplored deep learning approaches, focus on historical simulation rather
than forecasting, and issues of model transferability. Based on the findings, several promising directions
for future research emerge: exploration of advanced deep learning architectures; development of physics-
informed machine learning approaches; extension of the comparative analysis to diverse watershed types);
evaluation of model performance under non-stationary conditions; development of integrated forecasting
systems; more comprehensive approaches to characterize prediction uncertainty and investigation of
techniques to transfer model parameters between watersheds. This research has demonstrated the
complementary strengths of conventional hydrological models and soft computing techniques. Future
advances will likely come not from choosing between these approaches, but from their thoughtful
integration to leverage their respective advantages while mitigating their limitations.
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