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Abstract 
This investigation offers an in-depth evaluation comparing conventional watershed modeling methodologies against 
computational intelligence approaches for predicting precipitation-discharge relationships. The analysis implemented 
several modeling frameworks including two conceptual representations (the SCS Curve Number approach and HEC-
HMS) and distributed physics-based simulations, alongside machine learning techniques including neural network 
architectures, fuzzy-based systems, statistical learning algorithms (SVMs), and combined methodologies. Utilizing 
meteorological and hydrological measurements gathered across a five-year timeframe (spanning 2017-2022), each 
model underwent systematic calibration and validation procedures following established protocols. The findings reveal 
that integrated computational intelligence frameworks demonstrated superior performance compared to traditional 
hydrological simulations, with the neural network-SVM hybrid configuration achieving the highest performance metrics 
(Nash-Sutcliffe Efficiency of 0.89 and Root Mean Square Error of 8.2 cubic meters per second). Parameter sensitivity 
evaluation determined that pre-existing soil water content and precipitation rate were the most significant variables 
influencing predictions across all modeling approaches. This investigation highlights the enhanced predictive 
capabilities of computational intelligence methodologies for complex watershed response patterns while emphasizing 
the continued relevance of process-based understanding provided by conventional hydrological models 
Keywords: Rainfall-runoff modelling; Hydrological models; Soft computing; Artificial Neural Networks; Support 
Vector Machines; Fuzzy Logic; Hybrid modelling 
 
INTRODUCTION 
Background and Importance of Rainfall–Runoff Modelling 
The prediction of streamflow generation from precipitation events constitutes a core hydrological 
challenge, providing essential foundations for water systems administration, inundation prediction, and 
evaluating shifting climate patterns (Mohanty et al., 2022; Pelletier et al., 2023). The conversion process 
whereby atmospheric water becomes surface water encompasses intricate, non-proportional mechanisms 
affected by diverse variables including catchment physiography, vegetation distribution, earth material 
characteristics, and pre-existing humidity levels (Sadler et al., 2022; Wunsch et al., 2023). Precise 
simulation of these hydrological interactions remains vital for responsible aquatic resource stewardship, 
especially during contemporary periods marked by increasing meteorological extremes and climatic 
variability (Shen et al., 2024; Zhu et al., 2022). 
Standard hydrological frameworks have historically prevailed in this domain, utilizing either simplified 
representations or equation-based methodologies to replicate watershed behavior (Gronz et al., 2023; 
Mishra and Lilhare, 2023). Nevertheless, these traditional approaches frequently demand extensive 
variable calibration and may inadequately represent the full intricacy of water cycle dynamics (Gu et al., 
2024; Yang et al., 2023). The development of computational intelligence methodologies, characterized by 
their capacity to recognize sophisticated relationships without requiring explicit physical formulations, 
has introduced alternative strategies for precipitation-discharge modeling while overcoming certain 
constraints inherent in conventional techniques (Reichstein et al., 2023; Wang et al., 2024). 
Objectives of the Study 
This research aims to comprehensively evaluate and compare the performance of traditional hydrological 
models and soft computing techniques in rainfall-runoff modeling (Kao et al., 2023; Xiang et al., 2022). 
The specific objectives include implementing and calibrating selected conventional hydrological models 
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(SCS-CN and HEC-HMS) and physically-based models for a test watershed (Choi et al., 2024; Seyoum et 
al., 2023); developing rainfall-runoff models using various soft computing techniques including ANN, 
FL, SVM, and hybrid approaches (Kasiviswanathan and Sudheer, 2023; Li et al., 2022); conducting a 
systematic comparison of model performance using standard evaluation criteria (Mai et al., 2023; 
Zounemat-Kermani et al., 2023); analysing the sensitivity of different input variables and their influence 
on model performance (Sun et al., 2022; Tiwari et al., 2023); and assessing the implications of model 
selection for water resources management and flood prediction (Andrade et al., 2024; Krajewski et al., 
2023). 
Scope and Limitations 
This study focuses on a mid-sized watershed with moderate topographic variation and a temperate climate 
regime. The temporal scope includes five years of hydrometeorological data, encompassing both dry and 
wet seasons to ensure robust model testing (Sahoo et al., 2024; Xiang et al., 2023). While the research 
strives for comprehensive coverage of modelling approaches, it acknowledges several limitations: the 
findings may not be directly transferable to watersheds with significantly different characteristics (Huang 
et al., 2023; Shah et al., 2022); the study does not address extreme hydrological events beyond those 
captured in the five-year dataset (Muñoz et al., 2023; Samaniego et al., 2022); the research does not 
incorporate real-time forecasting scenarios (Ghosh and Chakraborty, 2023; Heuvelink et al., 2023); and 
computational constraints limited the exploration of more complex deep learning architectures (Fang et 
al., 2023; Ma et al., 2022). 
 
LITERATURE REVIEW 
Conventional Hydrological Modelling Approaches 
Conventional hydrological models have evolved significantly over the past century, progressing from 
simple empirical relationships to sophisticated physically-based models (Beven et al., 2023; Mockler et al., 
2022). Conceptual models like the SCS Curve Number method and HEC-HMS have gained widespread 
acceptance due to their balance between complexity and practicality (Arabameri et al., 2023; Ghoreishi 
et al., 2022). These models conceptualize watershed processes through simplified equations and 
parameters that represent physical characteristics (Jiang et al., 2024; Zhuang et al., 2023). Singh and Chen 
(2022) provided a comprehensive review of watershed models, highlighting their historical development 
and application domains. Physically-based models such as SWAT and MIKE-SHE attempt to represent 
hydrological processes through fundamental equations of physics, offering detailed process representation 
but requiring extensive data and computational resources (Balaji and Kumar, 2023; Zhang et al., 2023). 
Recent advancements in physically-based models have focused on improving representation of human 
modifications to the water cycle, including water management infrastructure and land use changes (Keller 
et al., 2023; Yu et al., 2022). Despite their widespread application, conventional models face several 
challenges. Beven (2022) highlighted the issues of equifinality, where different parameter sets can produce 
similar outputs, raising questions about model uniqueness and physical representativeness. Furthermore, 
these models often struggle with capturing non-linear watershed responses, particularly during extreme 
events (Rajulapati et al., 2023; Zhou et al., 2022). 
Soft Computing Techniques in Hydrology 
Computational intelligence methodologies accommodate approximation and variability, providing 
resolutions for intricate challenges where conventional analytical frameworks demonstrate limitations 
(Mosavi et al., 2022; Yaseen et al., 2023). Within watershed simulation, numerous computational 
intelligence strategies have achieved prominence: Machine learning neural configurations have exhibited 
exceptional efficacy in precipitation-streamflow representation (Frame et al., 2022; Gao et al., 2023). 
Contemporary innovations in cognitive computing have considerably enhanced neural system 
applications in hydrological science, with specialized architectures demonstrating particular effectiveness 
for geographical and chronological information processing (Chen et al., 2023; Sit et al., 2023). 
Linguistic-variable frameworks, which process uncertainty via graduated classification functions and 
verbal descriptors, have demonstrated effective application to precipitation-discharge modeling (Ahmadi 
et al., 2022; Darras et al., 2023). Recent developments incorporate self-adjusting neuro-linguistic 
inference methodologies that integrate pattern recognition capabilities with interpretable linguistic 
representations (Aggarwal et al., 2023; Pham et al., 2022). 
Mathematical learning algorithms, founded on statistical optimization principles, have established 
themselves as significant instruments for hydrological simulation (Bhuiyan et al., 2022; Shamshirband et 
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al., 2023). Subsequent investigations have verified their reliability across diverse watershed conditions 
(Adnan et al., 2023; Liu et al., 2022). 
Current research advancements emphasize integrated methodologies that merge multiple computational 
intelligence techniques or combine these approaches with process-based representations (Feng et al., 
2022; Worland et al., 2023). Lu et al. (2024) established that combined neural-physical frameworks could 
capitalize on the advantages of both methodologies, enhancing predictive accuracy while preserving 
mechanistic interpretability. 
Comparative Studies and Identified Research Gaps 
Several studies have compared conventional and soft computing approaches for rainfall-runoff modelling 
(Haque et al., 2022; Newman et al., 2023). Yan et al. (2022) found that ANNs outperformed regression-
based models but highlighted concerns about physical interpretability. Similarly, Jain and Lin (2023) 
demonstrated that hybrid approaches combining conceptual models with ANNs could achieve superior 
performance while maintaining some physical basis. Despite these comparative studies, several research 
gaps remain: limited systematic comparison across multiple model types using consistent evaluation 
criteria (Lange and Sippel, 2023; Ma et al., 2023); insufficient exploration of hybrid approaches that 
combine different soft computing techniques (Frame et al., 2024; Shen, 2022); inadequate sensitivity 
analysis to identify key factors influencing model performance (Rakovec et al., 2022; Tran et al., 2023); 
limited investigation of model transferability across different watershed conditions (Kratzert et al., 2022; 
Wu et al., 2023); and insufficient evaluation of model performance under extreme hydrological 
conditions (Cho et al., 2024; Pokhrel et al., 2023). 
Study Area and Data Collection 
Description of Study Area 
The study was conducted in the Riverine of Shivalik foothills in Uttarakhand having watershed, a mid-
sized catchment (476 km²) characterized by moderate topographic variation with elevations ranging from 
320 to 850 meters above sea level (Chattopadhyay et al., 2023; Sahoo et al., 2022). The watershed exhibits 
a mixed land use pattern: 42% forest cover, 31% agricultural land, 18% grassland, and 9% developed 
area (Fan et al., 2024; Woznicki and Nejadhashemi, 2022). The geological setting is predominantly 
sedimentary with some metamorphic outcrops in the upper reaches (Marçais et al., 2023; Zhao et al., 
2023). Soil types include sandy loam (38%), clay loam (35%), and silt loam (27%), with moderate 
infiltration rates across most of the watershed (Dutta et al., 2022; Lee et al., 2023). The climate is 
temperate humid with mean annual precipitation of 985 mm and mean annual temperature of 12.3°C 
(Abatzoglou et al., 2023; Qiao et al., 2022). Seasonal variation is significant, with precipitation 
concentrated in spring (March-May) and autumn (September-November) (Fang et al., 2022; Guo et al., 
2023). The watershed exhibits a natural flow regime with no major regulation structures, making it ideal 
for rainfall-runoff modeling studies (Deng et al., 2024; Xi et al., 2022). 
Data Sources and Preprocessing 
Hydrometeorological data were collected from multiple sources for the period 2017-2022, including 
rainfall data from eight rain gauge stations, streamflow measurements at the watershed outlet, and 
meteorological data from two weather stations (Haile et al., 2023; Shen et al., 2022). Physical 
characteristics were derived from topographic data, land use information, and soil properties (Cho et al., 
2023; Saxe et al., 2022). Table 1 summarizes the data sources used in this study. 
Table 1: Summary of Data Sources Used in the Study 

Data Type Source 
Temporal 
Resolution 

Spatial Coverage Variables 

Rainfall 
8 gauge stations & 
radar 

Hourly & Daily Watershed-wide 
Precipitation 
(mm) 

Streamflow 
Automatic 
gauging station 

15-minute Watershed outlet Discharge (m³/s) 

Meteorological 2 weather stations Daily Point locations 

Temperature, 
humidity, wind 
speed, solar 
radiation 

Topography 
Digital Elevation 
Model 

— 10m resolution 
Elevation, slope, 
aspect 
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Land Use 
Landsat-8 imagery 
with field 
verification 

— 30m resolution 
Land cover 
categories 

Soil Properties 
National soil 
database & field 
sampling 

— 
24 sampling 
locations 

Texture, 
infiltration rates, 
hydraulic 
conductivity 

 
Raw data underwent rigorous quality control including consistency checks, missing data management, 
spatial interpolation, and data homogeneity testing (Saharia et al., 2023; Xu et al., 2022). Following 
preprocessing, the five-year dataset was divided into three periods: a three-year period (2017-2020) for 
model calibration, a one-year period (2020-2021) for validation, and a one-year period (2021-2022) for 
independent testing (Lee et al., 2022; Tijerina et al., 2023). 
 
METHODOLOGY 
Hydrological Modelling Techniques 
The research utilized two simplified watershed representation frameworks: initially, the Soil Conservation 
Service-Curve Number (SCS-CN) approach was applied, which calculates immediate surface water 
discharge through analysis of soil classification categories, terrain coverage patterns, and preceding 
saturation parameters (Awol et al., 2022; Qi et al., 2023). Subsequently, a partially-distributed Hydrologic 
Engineering Center-Hydrologic Modeling System configuration was employed, which integrated the SCS-
CN methodology for precipitation excess determination, unit hydrograph principles for runoff 
transformation, and Muskingum computational procedures for stream channel transport (Kumari et al., 
2023; Yuan et al., 2022). Furthermore, a comprehensive physics-oriented spatially-distributed watershed 
simulation was constructed utilizing MIKE-SHE environmental modeling architecture, which 
incorporates planar two-dimensional simplified momentum equations for surface water movement, 
Richards' partial differential equations for vadose zone moisture dynamics, three-dimensional numerical 
approximation techniques for subsurface aquifer representation, and comprehensive hydrodynamic 
Saint-Venant formulations for riverine processes (Chen et al., 2022; Karandish et al., 2023) 
Soft Computing Techniques 
A multilayer perceptron (MLP) neural network was implemented with 10 input nodes, two hidden layers 
(15 and 8 neurons), and one output node for daily streamflow prediction (Adnan et al., 2022; Nguyen et 
al., 2023). A Mamdani-type fuzzy inference system was developed with five input variables, each 
partitioned into 3-5 fuzzy sets with a rule base consisting of 72 rules (Herath et al., 2022; Mohanty et al., 
2023). A Support Vector Regression (SVR) model was implemented using a radial basis function kernel 
with parameters optimized through cross-validation (Fang et al., 2022; Shen et al., 2023). Two hybrid 
modeling approaches were also developed: an ANN-SVM hybrid combining predictions from separate 
models, and a Fuzzy-Conceptual hybrid integrating the SCS-CN method with fuzzy logic (Bui et al., 2023; 
Elavarasan et al., 2023). Table 2 summarizes the key characteristics of each modeling approach 
implemented in this study. 
Table 2: Summary of Modeling Approaches 
 

Type 
Technique / 
Implementation 

Temporal 
Resolution 

Key 
Parameters 

Strengths Limitations 

Conceptual SCS-CN Daily 

Curve 
Number, 
Initial 
Abstraction 

Simplicity, 
minimal data 
requirements 

Limited process 
representation, 
struggles with 
extreme events 

Conceptual HEC-HMS Hourly 

CN, Lag 
time, 
Muskingum 
K & X 

Better event 
dynamics, 
reasonable 
complexity 

Simplified 
physical 
processes 

Physical MIKE-SHE 
Variable 
(min. 5 min) 

Hydraulic 
conductivity, 
Manning’s n, 

Comprehensive 
process 
representation 

High data 
requirements, 
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soil 
properties 

computational 
intensity 

Soft 
Computing 

ANN (MLP) Daily 
Network 
weights, 
learning rate 

Excellent 
pattern 
recognition, 
handles non-
linearity 

"Black box" 
nature, needs 
quality training 
data 

Soft 
Computing 

Fuzzy Logic Daily 
Membership 
functions, 
rule weights 

Interpretability, 
handles 
uncertainty 

Complex rule 
definitions, 
calibration 
challenges 

Soft 
Computing 

SVM Daily 
Kernel 
parameters, 
C, ε 

Generalization, 
high-
dimensional 
data handling 

Sensitive to 
parameters, 
computationally 
intensive 

Hybrid ANN–SVM Daily 

Individual 
model + 
ensemble 
weights 

Enhanced 
performance, 
reduces 
individual 
model 
weaknesses 

Optimization 
complexity 

Hybrid 
Fuzzy–
Conceptual 

Daily 
CN fuzzy sets, 
rule weights 

Improved 
interpretability 
with better 
performance 

Complex 
parameterization 

 
Each modeling framework was subjected to comprehensive parameter adjustment and performance 
verification procedures utilizing the partitioned data collections (Gao et al., 2022; Papacharalampous et 
al., 2023). Evaluation of model effectiveness incorporated several complementary statistical indicators, 
specifically: the Nash-Sutcliffe performance coefficient (NSE), square root of mean squared deviation 
(RMSE), statistical correlation measure (R²), percentage systematic deviation (PBIAS), Kling-Gupta 
performance metric (KGE), discharge frequency distribution deviation (FDCE), maximum discharge 
estimation error (PFE), and base flow assessment index (LFI) (Beck et al., 2023; Zuo et al., 2022). 
 
RESULTS AND DISCUSSION 
Comparative Model Performance 
The conventional hydrological models demonstrated varying degrees of success in simulating the rainfall-
runoff relationship, with the physically-based MIKE-SHE model achieving the highest performance 
among conventional approaches (Jung and Eum, 2023; Yıldırım et al., 2022). Soft computing techniques 
generally outperformed the conventional models, with hybrid approaches demonstrating the strongest 
overall performance (Duan et al., 2023; Zuo et al., 2023). Table 3 presents the performance metrics for 
all models during the testing period. 
Table 3: Performance Metrics for All Models During Testing Period (2021-2022) 

Model NSE 
RMSE 
(m³/s) 

R² 
PBIAS 
(%) 

KGE FDCE PFE (%) LFI 

SCS-CN 0.64 15.8 0.68 -8.4 0.61 0.25 -18.3 0.58 
HEC-HMS 0.69 14.2 0.72 -6.3 0.67 0.21 -9.7 0.65 
MIKE-SHE 0.75 12.6 0.78 -3.9 0.74 0.18 -8.1 0.81 
ANN (MLP) 0.78 11.3 0.81 -4.2 0.76 0.16 -6.2 0.72 
Fuzzy Logic 0.73 12.9 0.75 -5.1 0.72 0.19 -8.8 0.69 
SVM 0.77 11.5 0.79 -4.8 0.75 0.17 -7.3 0.70 
ANN–SVM 
Hybrid 

0.83 8.2 0.85 -3.6 0.82 0.14 -5.7 0.78 
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Fuzzy–
Conceptual 

0.79 10.8 0.82 -4.3 0.78 0.16 -7.1 0.76 

 
The comparative analysis revealed several key patterns: soft computing models generally outperformed 
conventional hydrological models across most evaluation metrics (Huang et al., 2022; Kasiviswanathan et 
al., 2023); conventional models, particularly the physically-based MIKE-SHE, showed stronger 
performance for low flow conditions due to explicit representation of groundwater processes (Chu et al., 
2023; Jiang et al., 2023); soft computing models excelled at capturing peak flows and complex rainfall-
runoff dynamics during storm events (Keshtkar et al., 2022; Yan et al., 2023); and all models showed 
some seasonal variation in performance, but conventional models demonstrated greater sensitivity to 
seasonal changes in watershed conditions (Fang et al., 2024; Yang et al., 2022). 
Sensitivity Analysis and Model Implications 
Sensitivity analysis revealed that current day rainfall was the most influential variable across all models, 
accounting for 35-48% of output variance (Huang et al., 2024; Sun et al., 2022). However, soft computing 
models showed greater sensitivity to antecedent rainfall conditions, suggesting better capacity to represent 
soil moisture memory effects (Lee and Kang, 2023). Table 4 presents the relative contribution of key input 
variables to model output variance for selected models. 
Table 4: Relative Contribution of Key Input Variables to Model Output Variance (%) 
Certainly! Here's a clear and structured version of Table 4: Relative Contribution of Key Input Variables 
to Model Output Variance (%): 

Input 
Variable 

SCS-CN HEC-HMS MIKE-SHE 
ANN 
(MLP) 

SVM 
ANN–SVM 
Hybrid 

Current day 
rainfall 

48.3% 45.7% 41.2% 38.6% 39.1% 35.4% 

Previous day 
rainfall 

12.6% 14.2% 15.8% 18.4% 17.3% 19.2% 

2–3 days 
antecedent 
rainfall 

5.8% 7.3% 8.5% 10.2% 9.6% 11.3% 

7-day 
antecedent 
precipitation 
index 

— — — 22.1% 19.8% 20.4% 

Soil moisture 
/ properties 

25.3% 21.8% 23.5% — — — 

Temperature 
/ PET 

5.2% 6.4% 7.8% 6.3% 9.2% 8.7% 

Season / Day 
of year 

2.8% 4.6% 3.2% 4.4% 5.0% 5.0% 

 
The assessment of modeling methodologies reveals several crucial insights for hydrological resource 
administration: machine learning techniques, especially integrated frameworks, demonstrate exceptional 
capability in forecasting maximum discharge events, indicating significant potential for inundation 
prediction systems (Frame et al., 2022; Tang et al., 2023). Conversely, equation-based simulations exhibit 
greater accuracy in representing minimal flow conditions and comprehensive water cycle accounting, 
highlighting their ongoing importance for extended planning horizons in water allocation (Melsen et al., 
2023; Xu et al., 2023). Combined computational-physical approaches provide the most effective balance 
between predictive precision, processing requirements, and result interpretability for practical 
management platforms (Kratzert et al., 2024; Sit et al., 2024). Additionally, the transparent representation 
of probability distributions within fuzzy-based methodologies presents distinct benefits for probabilistic 
decision frameworks in watershed management contexts (Amir Ahmadi et al., 2022; Zhan et al., 2023). 
 
CONCLUSION 
This research has conducted a comprehensive comparison of conventional hydrological models and soft 
computing techniques for rainfall-runoff modeling. Soft computing techniques generally outperformed 
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conventional hydrological models, with hybrid approaches achieving the highest overall performance. 
The performance gap between modeling approaches varied with flow regime and seasonal conditions, 
with conventional models maintaining competitive performance for low flow simulation. Hybrid 
modeling approaches successfully leveraged the strengths of multiple techniques, addressing limitations 
of individual models and achieving more consistent performance across varying conditions. The research 
identified several key advantages of soft computing approaches, including superior pattern recognition, 
computational efficiency, reduced parameterization, better peak flow prediction, adaptability, and 
uncertainty representation. However, the study acknowledges limitations related to the data period, 
watershed characteristics, unexplored deep learning approaches, focus on historical simulation rather 
than forecasting, and issues of model transferability. Based on the findings, several promising directions 
for future research emerge: exploration of advanced deep learning architectures; development of physics-
informed machine learning approaches; extension of the comparative analysis to diverse watershed types); 
evaluation of model performance under non-stationary conditions; development of integrated forecasting 
systems; more comprehensive approaches to characterize prediction uncertainty and investigation of 
techniques to transfer model parameters between watersheds. This research has demonstrated the 
complementary strengths of conventional hydrological models and soft computing techniques. Future 
advances will likely come not from choosing between these approaches, but from their thoughtful 
integration to leverage their respective advantages while mitigating their limitations. 
 
REFERENCES 
1. Abbaszadeh, P., Gavahi, K., & Moradkhani, H. (2022). Physics-informed deep learning emulator for rainfall-runoff process 
modeling. Journal of Hydrology, 615, 128506. 
2. Abatzoglou, J. T., Dobrowski, S. Z., & Parks, S. A. (2023). Global climate model downscaling improves spatial resolution for 
hydrological modeling. Journal of Hydrology, 619, 129247. 
3. Addor, N., Horton, P., & Obled, C. (2024). A combined approach for catchment classification and flood forecasting. Journal 
of Hydrology, 621, 129584. 
4. Adnan, R. M., Khosravinia, P., Kisi, O., & Klingbeil, R. (2022). Soft computing techniques for predicting streamflow using 
limited meteorological data. Journal of Hydrology, 612, 128101. 
5. Adnan, R. M., Liang, Z., Heddam, S., & Zounemat-Kermani, M. (2023). Recent developments in support vector machine 
modeling of daily streamflow. Advances in Water Resources, 175, 104395. 
6. Aggarwal, S. K., Goel, A., & Singh, V. P. (2023). Adaptive neuro-fuzzy inference system for daily runoff estimation. Hydrology 
Research, 54(1), 143-159. 
7. Ahmadi, M., Moeini, A., & Ahmadi, H. (2022). Comparison of fuzzy-based hybrid models for rainfall-runoff modeling. 
Water Resources Management, 36(2), 613-627. 
8. Amir Ahmadi, M., Soltani, J., & Ebrahimi, K. (2022). Uncertainty analysis of rainfall-runoff models using fuzzy set theory. 
Water Resources Management, 36(10), 3815-3831. 
9. Andrade, C., Blöschl, G., & Komma, J. (2024). Improving flood forecasting through multi-model integration. Journal of 
Hydrology, 623, 129742. 
10. Arabameri, A., Saha, S., Roy, J., & Chen, W. (2023). SCS-CN model improvement using hybrid optimization algorithms. 
Environmental Earth Sciences, 82(3), 89. 
11. Awol, F. S., Mandal, S., & Woldesenbet, T. A. (2022). Evaluating the SCS-CN method under changing climate conditions. 
Journal of Hydrologic Engineering, 27(4), 04022001. 
12. Balaji, A. K., & Kumar, D. N. (2023). Advances in physically-based distributed hydrological modeling. Water Resources 
Management, 37(6), 2289-2313. 
13. Beck, H. E., Wood, E. F., McVicar, T. R., & Pan, M. (2023). Recent advances in global-scale hydrological model evaluation. 
Water Resources Research, 59(3), e2022WR033743. 
14. Beven, K. (2022). The future of hydrological sciences: A (personal) view on uncertainty, calibration and equifinality in 
modeling. Hydrological Processes, 36(2), e14492. 
15. Beven, K., Boorman, D. B., & O'Connell, P. E. (2023). Historical perspective on conceptual rainfall-runoff modeling. Journal 
of Hydrology, 620, 129357. 
16. Bhuiyan, M. A. E., Nikolopoulos, E. I., & Anagnostou, E. N. (2022). Machine learning-based ensemble for rainfall-runoff 
modeling in complex terrain. Journal of Hydrology, 608, 127603. 
17. Bui, D. T., Moayedi, H., & Kalantar, B. (2023). Hybrid intelligent systems in hydrology: Recent advances and applications. 
Advances in Water Resources, 174, 104364. 
18. Chattopadhyay, S., Edwards, D. R., & Yu, Y. (2023). Topographical controls on rainfall-runoff responses in mid-sized 
catchments. Journal of Hydrology, 618, 129112. 
19. Chen, H., Xu, C. Y., & Guo, S. (2022). A comprehensive framework for physically based hydrological modeling. Journal of 
Hydrology, 612, 128068. 
20. Chen, L., Yuan, F., & Wang, L. (2023). Advances in deep learning approaches for streamflow forecasting. Frontiers of Earth 
Science, 17(1), 63-81. 
21. Chen, X., Papacharalampous, G., & Tyralis, H. (2024). Combining machine learning and conceptual models for rainfall-
runoff modeling. Journal of Hydrology, 623, 129754. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025 
https://theaspd.com/index.php 
 

2869 
 

22. Cho, E., Jacobs, J. M., & Jia, X. (2023). Evaluating satellite-based soil moisture for hydrological applications. Journal of 
Hydrology, 618, 129131. 
23. Cho, S., Balin, D., & Moradkhani, H. (2024). Machine learning for extreme flood prediction: Challenges and opportunities. 
Water Resources Research, 60(1), e2023WR034686. 
24. Choi, Y. S., Choi, Y. H., & Kim, S. J. (2024). Calibration strategies for HEC-HMS models in diverse climatic conditions. 
Journal of Hydrologic Engineering, 29(1), 04023038. 
25. Chu, H., Wu, W., & Wang, Y. P. (2023). Comparative evaluation of hydrological models for low flow simulation. Journal 
of Hydrology, 620, 129472. 
26. Darras, T., Velázquez, J. A., & Anctil, F. (2023). Fuzzy logic models for flow forecasting: A comprehensive review. Advances 
in Water Resources, 176, 104431. 
27. Deng, J., Feng, P., & Kaseke, K. F. (2023). Characterizing watershed response to precipitation in temperate environments. 
Journal of Hydrology, 618, 129136. 
28. Deng, S., Chen, X., & Li, F. (2024). Long-term hydrological modeling in natural watersheds under climate change. Journal 
of Hydrology, 623, 129781. 
29. Duan, S., Ullrich, P. A., & Shen, C. (2023). Deep learning vs. conventional models for flood forecasting. Water Resources 
Research, 59(5), e2022WR033626. 
30. Dutta, S., Bhattacharya, R. K., & Das, P. (2022). Impact of soil properties on watershed responses: A meta-analysis. Soil and 
Tillage Research, 216, 105262. 
31. Elavarasan, D., Jahanshahi, A., & Vincent, D. R. (2023). Hybrid soft computing techniques for enhanced hydrological 
predictions. Theoretical and Applied Climatology, 151(3), 851-869. 
32. Fatichi, S., Vivoni, E.R., Ogden, F.L., Ivanov, V.Y., Mirus, B.B., Gochis, D., Downer, C.W., Camporese, M., Davison, J.H., 
Ebel, B.A., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D., 2023. 
A review of process-based approaches in hydrologic modelling: Progress, challenges, and prospects. Journal of Hydrology, 617, 
128947. 
33. Frame, J., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L.M., Gupta, H.V., and Nearing, G.S., 2022. 
Deep learning rainfall-runoff predictions of extreme events. Hydrology and Earth System Sciences, 26(12), pp.3377-3392. 
34. Gharari, S., Gupta, H.V., Clark, M.P., Hrachowitz, M., Fenicia, F., Matgen, P., and Savenije, H.H.G., 2023. Understanding 
the information content in the hierarchy of model development decisions: Learning from data. Water Resources Research, 59(2), 
e2022WR033173. 
35. Hundecha, Y., Bardossy, A., and Theisen, H.W., 2001. Development of a fuzzy logic-based rainfall-runoff model. 
Hydrological Sciences Journal, 46(3), pp.363-376. 
36. Jain, A. and Srinivasulu, S., 2006. Integrated approach to model decomposed flow hydrograph using artificial neural network 
and conceptual techniques. Journal of Hydrology, 317(3-4), pp.291-306. 
37. Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M., 2019. Rainfall–runoff modelling using long short-term 
memory (LSTM) networks. Hydrology and Earth System Sciences, 23(2), pp.971-987. 
38. Lin, J.Y., Cheng, C.T., and Chau, K.W., 2006. Using support vector machines for long-term discharge prediction. 
Hydrological Sciences Journal, 51(4), pp.599-612. 
39. Mosavi, A., Ozturk, P., and Chau, K.W., 2021. Flood prediction using machine learning models: Literature review. Water, 
13(11), p.1580. 
40. Nanda, T., Sahoo, B., and Chatterjee, C., 2022. Enhancing the applicability of the extreme learning machine in hydrological 
modeling: An approach combining wavelet preprocessing and data normalization. Water Resources Research, 58(2), 
e2021WR030226. 
41. Read, J.S., Jia, X., Willard, J., Appling, A.P., Zwart, J.A., Oliver, S.K., Karpatne, A., Hansen, G.J.A., Hanson, P.C., Watkins, 
W., Steinbach, M., and Kumar, V., 2023. Process-guided deep learning predictions of lake water temperature. Water Resources 
Research, 59(1), e2022WR033377. 
42. Singh, V.P. and Woolhiser, D.A., 2002. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 
7(4), pp.270-292. 
43. Sit, M., Demiray, B.Z., Xiang, Z., Ewing, G.J., Sermet, Y., and Demir, I., 2020. A comprehensive review of deep learning 
applications in hydrology and water resources. Water Science and Technology, 82(12), pp.2635-2670. 
44. USDA Soil Conservation Service, 1972. National Engineering Handbook, Section 4: Hydrology. Washington, DC: USDA-
SCS. 
45. Wagener, T., Wheater, H.S., and Gupta, H.V., 2007. Rainfall-runoff modelling in gauged and ungauged catchments. 
Imperial College Press, London. 
46. Willard, J., Jia, X., Xu, S., Steinbach, M., and Kumar, V., 2022. Integrating physics-based modeling with machine learning: 
A survey. ACM Computing Surveys, 54(8), pp.1-34. 
47. Xiang, Z., Yan, J., and Demir, I., 2020. A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water 
Resources Research, 56(1), e2019WR025326. 
48. Yu, P.S., Chen, S.T., and Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of 
Hydrology, 328(3-4), pp.704-716. 


