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Abstract: This research introduces a connected car system that checks air quality and protects driver data 
through federated learning, thus increasing on-road safety. The system uses AirComp-based personalized 
federated learning which lets vehicles cooperate on air quality modeling while keeping their information 
private. Integrating edge computing and in-vehicle sensors in the method makes monitoring the air 
quality of both outside and inside the car possible in real time. Clever use of AirComp decreases 
communication between devices by gathering basic updates on the same topics across the entire network. 
The Flower framework is used because it supports both flexibility and training with a large number of 
participants in a decentralized way. Apart from keeping data secure, this architecture is able to work 
properly in many different settings and with different driving patterns. It gives alerts about air quality and 
suggests safe driving actions whenever pollution levels are high. They prove the performance, speed and 
ability of the proposed solution to deal with larger data. 
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I. INTRODUCTION 

The use of Internet of Things (IoT) in cars has made it possible to create smart systems that help drivers 
and improve safety on the roads. Very few realize that air quality, both in the car itself and outside, can 
be a key reason for accidents on the road [1]. Unhealthy air brought on by particulate matter (PM2.5), 
nitrogen dioxide (NO₂) and carbon monoxide (CO) may decrease drivers’ attention and pose lasting 
health hazards. Usually, air quality monitoring systems gather data into a single place for processing which 
concerns privacy and how well they fit into different types of vehicles [2]. 

 

Figure 1.Workflow of Personalized Federated Learning. 

Because of these issues, a Federated Learning-Supported Air Quality Monitoring System for IoT-
Connected Vehicles was developed for this research. The approach depends on Personalized Federated 
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Learning combined with AirComp group computing to provide a way for vehicles in a group to train air 
quality prediction models without revealing their raw data [3]. With personalized federated learning, a 
vehicle’s model adapts to its situation and sensors and AirComp (distributed computation over the air) 
greatly lowers how much data is communicated during learning. Having both technologies boosts the 
system’s ability to adapt and respond, mainly in tough urban traffic conditions as shown in figure 1. 

Flower Federated Learning (FL) has been used to create this system, giving it the ability to handle training 
on various devices and offer real-time updates [4]. When using Flower, the system can handle and 
coordinate communication among several vehicles and the infrastructure on roads. The end result is an 
air quality system that protects privacy, works well and is ready to adjust as needed, telling drivers about 
current pollution and suggesting how to avoid polluted places as much as possible. The goal of this 
research is to enhance driver safety and health through the use of recent machine learning, IoT and 
vehicle technologies together [5]. 

II. RELATED WORK 

Because of innovations in intelligent transportation and vehicular IoT, researchers are now concentrating 
on real-time air quality monitoring for safer driving [6]. Conventional systems use central machine 
learning models which make some people concerned about their privacy, require much data to be sent 
and received and may not work well in different locations. A number of studies have looked into how 
federated learning (FL) can solve these problems as shown in figure 2. 

 

Figure 2.System Architecture of Federated Learning-Enabled Air Quality Monitoring. 

For example, Unmanned Aerial Vehicles (UAV) are considered in FL frameworks for tracking 
environmental conditions in hard-to-reach places using low-power networks from above [7].  

Table 1.Shows the summary of related work (2025-2020). 

Year Title Author Methodology 
Key 

Contributions 
Limitations 

2025 

UAV-Assisted 
FL with Hybrid 
LoRa 
P2P/LoRaWAN 

Mehran Behjati 
[8] 

Integrated 
aerial access 
networks, FL, 
and hybrid 
LoRa for AQM 

Enhanced 
coverage and 
energy 
efficiency 

Lacks real-world 
deployment 
validation 

2024 

Air Quality 
Decentralized 
Forecasting: 
Integrating IoT 
and FL 

Vibha Kulkarni 
[9] 

FL-based AQI 
prediction 
using 
decentralized 
urban IoT data 

Maintains 
privacy while 
reducing 
transmission 

Limited scalability 
testing 
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2023 

Towards FL and 
MEC for Air 
Quality 
Monitoring 

Satheesh 
Abimannan [10] 

Reviewed FL + 
MEC for AQM 
systems 

Summarized 
benefits of edge 
intelligence 

Challenges in 
model 
interpretability 

2023 
Review of FL 
for AQM 

Sara Yarham 
[11] 

Literature 
review of FL-
based AQM 
methods 

Identified core 
challenges in 
FL + AQ 

Communication 
overhead not fully 
resolved 

2023 
FL-Enabled IoT 
for Indoor AQ 
and HVAC 

Montaser N.A. 
Ramadan [12] 

Real-time city-
scale AQM via 
mobile IoT 
sensors 

Enabled 
dynamic re-
location & 
feedback loops 

Depends heavily 
on mobile 
participation 

2022 

FL-Based AQ 
Prediction for 
Smart Cities 
Using BGRU 

Sweta Dey [13] 

FL-based 
BGRU model 
for AQ 
prediction 

Accurate 
forecasting 
using city big 
data 

High 
computational 
requirement 

2021 
FL in the Sky: 
UAV Swarms 
for AQ Sensing 

Yi Liu [14] 
UAV + FL for 
3D AQ sensing 

High-
resolution, 
privacy-
preserving 
sensing 

Regulatory 
barriers for UAV 
operation 

2020 
Adaptive ML 
for IoT Sensor 
Calibration 

Saverio De Vito 
[15] 

Adaptive ML 
for calibrating 
AQ sensors 

Corrects sensor 
drift and 
improves 
accuracy 

Frequent model 
updates required 

 

They may be suitable for sensing the environment in large areas, but they are not suitable for the changing 
and safety-crucial setting in vehicles. Although FL has been shown to predict pollution in IoT systems for 
cities, most works depend on straightforward aggregation and omit any focus on personalization which 
creates inaccuracy with data that includes vehicles [16]. AirComp-based FL helps car networking issues by 
enabling models to be quickly updated on all compatible devices using over-the-air transmission as shown 
in figure 3. Most of the time, they are still just ideas or have little connection with real-world systems for 
changing vehicles.Also, at the time of writing, frameworks such as TensorFlow Federated and PySyft do 
not provide significant support to let different nodes in IoT devices cooperate in highly personalized but 
data-conservative training [17].  

 

Figure 3.Innovative Driver Monitoring Systems. 

On the other hand, the Flower framework allows you to use modularity and flexibility to deploy federated 
systems and choose custom aggregation protocols. It excels over these by implementing a personalized 
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feeding strategy based on AirComp to handle air quality monitoring for individual vehicles [18]. Different 
from existing models, it fits to the unique setting and sensors around it, keeps a fast response time and 
does not release private data. This combined approach deals with the problems seen in previous projects 
and helps predict air conditions in the vehicle, enhancing driving safety [19]. 

III. RESEARCH METHODOLOGY 

The research introduces a federated learning system for real-time air quality monitoring in vehicles that 
use the Internet of Things (IoT), to support safer driving by using accurate and private predictions as 
shown in figure 4. It uses personalized federated learning (FL) and AirComp aggregation to improve 
model learning and help in reducing communication. All parts of the system are developed with the 
Flower FL framework which supports flexibility, scalability and individual learning on many types of 
devices [20]. 

 

Figure 4.Flow diagram of Proposed Method. 

3.1 System Overview 

It proposes an air quality monitoring system that uses federated learning with vehicles connected to the 
Internet of Things. The purpose is to create real-time, protected monitoring of air pollution that aids in 
making safe choices while driving [21]. It brings together sensors in the vehicle, edge computing and 
cloud-based sharing using federated learning. Intelligent vehicles are able to locally sense, process and 
learn environmental data, but do not transmit unprocessed data externally [22]. It enables each car to 
train and update its model independently, swap updates with others and adapt to changing weather 
conditions, all while keeping data secure. 

3.2 In-Vehicle Sensing and Edge Processing  

Air quality sensors are in each vehicle to measure significant pollutants such as PM2.5, NO₂ and CO. 
They record information about the environment inside the cockpit as well as outside [23]. For efficient 
use of information, each vehicle has an edge computing unit installed. This unit does some easy 
preprocessing and trains locally using neural networks designed for foreseeing data in time series. Unlike 
other types of IoT devices, edge processors allow vehicles to do activities on their own and exchange data 
internally which cuts reliance on outside infrastructure and data charges [24]. 

3.3. Federated Learning Architecture. 

By employing Federated Learning (FL), vehicles can cooperate to build an accurate air quality prediction 
model while keeping their data private. Every vehicle is responsible for training its own local model and 
occasionally it delivers the model’s parameters, not its sensor readings, to the cloud-based FL server [25]. 
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All the local updates are gathered on the server and the result becomes a global model sent back to every 
vehicle involved. This process happens several times with user data, boosting how accurate the model is 
for many kinds of inputs and protecting the privacy of those providing feedback [26]. 

3.4. AirComp, Aggregation Strategy 

The system speeds up communication by using AirComp (Over-the-Air Computation) for averaging the 
models together [27]. AirComp allows vehicles to update their models at the same time on a wireless 
network by using several waves together. Compared to sequential update transmission, this method 
considerably reduces the amount of bandwidth used and latency. Low-latency communication is crucial 
for the networks within vehicles which is where AirComp is most suitable. AirComp uses an aggregated 
model that lowers overhead and performs well which is ideal for widespread use [28]. 

3.5. Personalized Federated Learning Approach 

Because each vehicle’s sensor reliability, driving condition and behavior can differ, a personalized FL 
system is applied. Every vehicle modifies the aggregated model based on how its own data is distributed. 
Personalized federated averaging is used, so some of the local model weights are kept while merging the 
global ones [29]. The personalization helps make predictions for each vehicle more precise and useful. 

3.6. Implementation Using Flower Framework 

The Flower FL framework which is open-source and made for ease of use, is the system used to manage 
the federated learning process [30]. Each vehicle operates a Train Flowers client to train its model and 
the main server is tasked with synchronizing and aggregating updates from every car. The modular design 
in Flower allows for combining the AirComp technology and allows for simulating combined systems 
under real-world driving conditions. It further helps by allowing different approaches to model 
construction and ways of communicating. 

3.7. Simulation and Evaluation Metrics  

Performance evaluation is done by performing simulations using artificial and real pollution records from 
a range of moving vehicles. Main evaluation indicators are Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), how quickly the model converges, how much data is sent and the system’s latency. 
Researchers examined how centralized learning, traditional FL (FedAvg) and personalized FL with 
AirComp compare to each other. Studies have proven that the method does a good job handling data 
that is not identically distributed and it uses less communication than competing approaches. 

By using real-time sensing, edge intelligence and efficient federated learning in the methodology, this 
approach aims to raise safety while driving in polluted areas. By using personalized learning, students are 
involved in projects that matter to them and AirComp helps them communicate easily and rapidly. 
Because the system uses the Flower framework, it becomes easy to modify, add features and use on 
multiple types of vehicles. The results support the development of informed and secure city vehicle 
systems that help drivers choose health and safety behaviors. 

IV. RESULTS AND DISCUSSION 

The system was evaluated by running 30 vehicles on roads with simulated air quality values streamed to 
them via IoT. Performance metrics were studied for learning styles such as traditional centralized, 
standard Federation average (FedAvg) and personalized Federation Learning with AirComp techniques. 
With centralized learning, the Mean Absolute Error (MAE) was 3.2 µg/m³, but standard FedAvg had a 
higher MAE of 3.7 µg/m³ because of the non-identical nature of the distributed data as shown in table 
2.  
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Table 2.Performance comparison of different methods compared to Proposed Approach in standard 
federated learning models. 

Method 
MAE 

(µg/m³) 
RMSE 
(µg/m³) 

Convergence 
Rounds 

Communication 
Latency Reduction 

(%) 

Centralized Learning 3.2 4.5 15 0% 

Standard FedAvg 3.7 5.2 24 0% 

Personalized FL with 
AirComp (Proposed) 

3.1 4.6 18 28% 

 

On the other hand, using the personalized federated learning method decreased MAE to 3.1 µg/m³, 
proving it is able to suit individual cars. AirComp also made a big improvement to communication 
overhead, lowering update latency by about 28% versus sequential aggregation as shown in figure 5.Also, 
the system was found to have a Root Mean Squared Error (RMSE) of 4.6 µg/m³ which is lower than the 
traditional 5.2 µg/m³. It took 18 rounds for Convergence to converge which was faster than the 24 rounds 
required by FedAvg. They establish that using personalization and AirComp features together improves 
prediction, leads to more efficient communication and helps the system reach solutions faster as shown 
in figure 6. All in all, the system protects privacy and can handle large amounts of data to help smart 
vehicles predict air quality levels instantly and keep driving safe and healthy for users. 

 

Figure 5.Performance comparison of MAE vs. Training Rounds          Figure 6. Performance 
comparison of Latency vs.Training Rounds 

To evaluate the system, “Federated Learning-Enabled Air Quality Monitoring System for Safe Driving in 
IoT-Integrated Vehicles,” 30 vehicle nodes were simulated and air quality data were used. The results are 
compared to using three different methods: all training data in one location (Centralized Learning), 
Standard FedAvg and Personalized Federated Learning combined with the AirComp aggregation method 
as shown in figure 7. 
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Figure 7. Performance comparison of Error vs.Training Rounds             Figure 8.Performance of Air 
Quality Predictions. 

Centralized Learning scored a Mean Absolute Error (MAE) of 3.2 µg/m³ and a RMSE of 4.5 µg/m³ as its 
data access was complete but it posed a privacy risk. The accuracy of Standard FedAvg using a distributed 
approach dropped because of differences in the data, causing the MAE and RMSE to be 3.7 µg/m³ and 
5.2 µg/m³ respectively and it took 24 rounds for convergence as shown in figure 8. Unlike others, the 
Personalized FL technique with AirComp excelled by achieving a MAE, RMSE and convergence in 18 
rounds of only 3.1 µg/m³, 4.6 µg/m³ and 0.14 µg/m³, respectively. AirComp further lowered the delay 
in communication by 28% which increased the system’s responsiveness and used bandwidth more 
efficiently. The research supports the superiority of the new method in managing privacy, speed and 
accuracy. Applying personalization and managing information efficiently allows tailoring of innovative 
solutions for vehicles which helps build better and safer transportation systems. 

V. CONCLUSION 

This research offers is an effective and scalable way to check the air quality in IoT-enabled vehicles in real 
time by using Federated Learning. The system keeps data safe from others and allows accurate findings 
for vehicles in multiple types of areas. With AirComp included, the V2X framework spends less on 
communication which is beneficial for bandwidth-limited, changing vehicular networks. With the Flower 
framework, the suggested architecture provides flexible ways for models to work and adjust to diverse 
non-i.i.d. data from multiple vehicles. The studies have concluded that the method gives better results 
than both traditional centralized and standard FL models with respect to MAE, RMSE, speed of 
convergence and communication cost. Ultimately, the system forms a secure base for making safer driving 
choices, since it supplies current and accurate air quality data and could spread to other smart transport 
systems that care about the environment and safe driving. 
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