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Abstract 

This research presents a comparative analysis of advanced fault detection methodologies in textile 
manufacturing, specifically focusing on clothes fabrication processes. The study integrates an IoT-enabled 
smart sensor network for real-time process monitoring and quality control using YOLOv8 as the primary 
detection model, with YOLOv5 serving as a comparative benchmark. Data collection was conducted 
across major textile manufacturing hubs in India—Tiruppur, Coimbatore, Surat, Ludhiana, and 
Bhilwara—encompassing 50 textile production units with continuous sensor data recorded over a six-
month period. The multi-modal data acquisition system incorporated optical sensors, thermal imaging, 
vibration monitoring, and RFID tracking to capture various fabric defect types including weaving 
inconsistencies, colour variations, and structural anomalies. The research introduces a novel Hybrid IoT-
AI Framework (HIAF) that combines real-time sensor networks, edge computing, and deep learning-based 
predictive analytics to enhance textile manufacturing processes. Performance metrics for each detection 
algorithm were evaluated based on mean Average Precision (mAP), inference time, and computational 
resource requirements in edge computing environments. Results demonstrate that the YOLOv8 
implementation achieved superior defect detection accuracy (93.7%) compared to YOLOv5 (89.2%), 
while maintaining acceptable inference speeds for real-time industrial deployment. The IoT framework 
facilitated seamless integration with manufacturing execution systems, enabling automated parameter 
adjustments that reduced false detection rates by 27.3% compared to conventional inspection methods. 
Additionally, a digital twin model was implemented to simulate manufacturing conditions, facilitating 
predictive maintenance and reducing fault detection errors by 32% through virtual environmental testing. 

Keywords: IoT-driven fault detection, YOLOv8, textile quality control, machine learning, real-time 
monitoring, computer vision, smart manufacturing, edge computing, Industry 4.0. 

1. INTRODUCTION 

     The textile industry is currently undergoing a significant transformation driven by Industry 4.0 
technologies, with the integration of Internet of Things (IoT) and advanced machine learning algorithms 
revolutionizing traditional manufacturing processes. This technological evolution addresses persistent 
challenges in the sector, including inconsistent quality control, high defect rates, and substantial material 
wastage that directly impact production efficiency and profitability (Nasim et al., 2024). Traditional textile 
manufacturing relies heavily on labour-intensive processes and human visual inspection, which are prone 
to inconsistencies, fatigue-induced errors, and limited scalability (Hu et al., 2020). Furthermore, these 
conventional approaches prove increasingly inadequate in addressing the complex quality control 
requirements of modern textile production, which demands real-time monitoring and rapid detection of 
defects across various fabric types. 

The global textile market's competitive landscape necessitates a paradigm shift toward automation and 
intelligent monitoring systems to maintain quality standards while optimizing production costs. Recent 
research indicates that automated defect detection systems can reduce inspection costs by up to 50% 
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while improving detection accuracy by 32-40% compared to manual inspection methods (Li et al., 2023). 
This significant improvement represents a compelling value proposition for textile manufacturers seeking 
to enhance operational efficiency and product quality. 

This research focuses on developing and evaluating an integrated approach that combines IoT-enabled 
sensor networks with state-of-the-art deep learning models, specifically YOLOv8, for real-time fabric defect 
detection across diverse textile types. Our approach addresses a critical gap in current research by 
providing a unified solution capable of simultaneously detecting defects in plain, regularly printed, and 
irregularly printed fabrics—a versatility not commonly found in existing systems. The study encompasses 
comprehensive data collection from major textile manufacturing hubs in India, including Tiruppur, 
Coimbatore, Surat, Ludhiana, and Bhilwara, covering 50 textile production units over a six-month period.  
The primary objectives of this research are to: (1) establish a robust methodology for real-time defect 
detection in diverse fabric types using YOLOv8; (2) compare the performance of YOLOv8 with YOLOv5 
within the novel Hybrid IoT-AI Framework (HIAF); (3) evaluate the models' effectiveness in detecting 
seven common defect types (baekra, colour issues, contamination, cut, gray stitch, selvet, and stain); and 
(4) implement digital twin modeling to enhance predictive maintenance and reduce fault detection errors 
in textile manufacturing workflows. 

The proposed approach leverages a multi-modal data acquisition system incorporating optical sensors, 
RFID tags, humidity sensors, and vibration monitoring to capture a comprehensive range of fabric defect 
types and production parameters. This holistic monitoring strategy enables not only defect detection but 
also predictive maintenance and process optimization, aligning with the broader goals of Industry 4.0 
adoption in textile manufacturing. By addressing these critical aspects of quality control, this research 
contributes to the advancement of smart, sustainable textile production techniques, potentially 
transforming industry practices and establishing new standards for automated quality assurance. 

2. LITERATURE REVIEW 

The evolution of fault detection methodologies in textile manufacturing has progressed through several 
technological paradigms, from statistical approaches to advanced deep learning techniques. This literature 
review synthesizes key developments across traditional methods, computer vision-based approaches, IoT 
integration, and recent advancements in deep learning for textile defect detection. 

2.1 Traditional Fault Detection Methods 

Early approaches to fabric defect detection primarily relied on statistical and spectral-based algorithms. 
Zhu et al. (2015) utilized autocorrelation functions and Gray Level Co-occurrence Matrix (GLCM) to 
detect defects in yarn-dyed fabrics, demonstrating moderate effectiveness but with significant 
computational complexity. Similarly, Mak et al. (2009) employed morphological filters for defect 
detection, which proved adequate for structured defects but less effective for subtle or randomly 
distributed flaws. These statistical approaches, while foundational, struggled with the variability inherent 
in textile manufacturing and were highly dependent on controlled environmental conditions. Spectral-
based methods represented another significant branch of traditional fault detection. Hu et al. (2015) 
proposed an unsupervised defect detection technique based on Fourier analysis and wavelet shrinkage, 
which showed promise in identifying periodic pattern disruptions but faced limitations in detecting 
localized defects. Similarly, Zhu et al. (2014) explored over-complete basis sets for fabric defect detection, 
achieving improved sensitivity but at the cost of increased computational demands. These spectral 
approaches generally performed well for regular patterned fabrics but struggled with complex prints and 
irregular textures. 

Model-based algorithms, such as the autoregression model described by Cohen et al. (1991), attempted 
to characterize textile textures using parameter estimation methods. However, as noted by Jia et al. (2017), 
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these approaches exhibited significant computational complexity and diminished effectiveness for small 
defect detection, limiting their practical application in high-speed production environments. 

2.2 Computer Vision and Machine Learning Approaches 

The advancement of computer vision techniques marked a significant leap in defect detection capabilities. 
Anagnostopoulos et al. (2001) developed one of the early computer vision systems for textile quality 
control, demonstrating improved accuracy over traditional methods but highlighting challenges in real-
world implementation. Their research emphasized the importance of robust image acquisition and 
preprocessing for reliable defect detection. As machine learning techniques matured, they began to 
displace classical image processing methods. Chakraborty et al. (2021) implemented a deep convolutional 
neural network for printed fabric defect detection, focusing specifically on colour spots and print 
mismatches. Their model achieved 72% accuracy, representing a substantial improvement over statistical 
methods but highlighting continued challenges with printed fabric complexity. Lee et al. (2014) made a 
significant contribution by developing an RFID-based recursive process mining system for quality 
assurance in garment manufacturing. This research demonstrated the potential for integrating data from 
multiple sources to enhance defect detection, particularly in tracking work-in-progress and identifying 
process-related quality issues. Similarly, Zhang et al. (2012) explored the application of machine learning 
for defect classification, achieving promising results but noting challenges in model generalization across 
diverse fabric types. 

2.3 Deep Learning Advancements 

The emergence of deep learning architectures revolutionized fabric defect detection. Liu et al. (2019) 
implemented a lightweight YOLO-based neural network for fabric defect detection, achieving 97.2% 
accuracy on benchmark datasets while maintaining computational efficiency suitable for embedded 
systems. This research highlighted the potential for real-time defect detection in resource-constrained 
environments, making it particularly relevant for industrial applications. 

Hu et al. (2019) addressed the challenge of obtaining sufficient labeled data by proposing an unsupervised 
approach based on deep convolutional generative adversarial networks (DCGAN). Their method 
achieved an accuracy of 51.62% on the TILDA textile texture dataset, demonstrating the potential of 
unsupervised learning but also revealing limitations in detection precision compared to supervised 
approaches. Peng et al. (2021) made significant strides by incorporating attention mechanisms and multi-
task fusion modules into fabric defect detection systems. Their model achieved an F1 score of 0.987 on 
the AITEX dataset, demonstrating exceptional performance for plain fabrics. However, as noted by the 
authors, the approach was primarily validated on plain fabrics and required further adaptation for printed 
textiles. More recently, Zhang et al. (2022) developed a lightweight MobileNetV2-SSDLite architecture 
for cloud-edge computing, integrating channel attention and focal loss to improve detection of small-sized 
defects. Their model achieved accuracies ranging from 71.18% to 95.5% across different datasets, 
highlighting the potential of optimized architectures for resource-constrained environments. 

2.4 IoT Integration and Real-Time Monitoring 

The integration of IoT technologies with defect detection systems represents the frontier of textile quality 
control. Manglani et al. (2019) provided a comprehensive review of IoT applications in the textile 
industry, highlighting the transformative potential of connected sensors and real-time monitoring for 
quality assurance and process optimization. Their research emphasized the importance of standardized 
protocols and interoperability for successful IoT implementation. 

Ghoreishi and Happonen (2021) explored the emerging role of digitalization and IoT for circularity in 
fabric and textile manufacturing, emphasizing the environmental and economic benefits of integrated 
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monitoring systems. Similarly, Ramaiah (2021) analyzed applications of smart materials and IoT in textile 
technology, highlighting the synergistic potential of advanced materials and connected monitoring 
systems. Chang et al. (2021) developed a cloud-based analytics module for predictive maintenance in 
textile manufacturing, demonstrating how IoT-generated data could be leveraged for both defect detection 
and equipment maintenance optimization. Their research showed that predictive maintenance could 
reduce downtime by up to 25%, representing significant operational cost savings. 

2.5 Comparative Studies and Model Selection 

Several recent studies have focused on comparative analysis of different models for fabric defect detection. 
Sabeenian et al. (2022) evaluated a modified VGG network for defect classification, achieving 93.92% 
accuracy but noting limitations in classifying printed fabrics with bands. Similarly, Zheng et al. (2022) 
developed a Siamese Feature Pyramid Network (FPN) for defect detection in printed fabrics, achieving 
83.3% accuracy but requiring template images for each pattern. Li et al. (2023) conducted extensive 
research on fabric defect detection for high-resolution images, implementing Cascade R-CNN with a 
multi-morphology data augmentation approach. Their model achieved 75.3% mAP but showed 
limitations in detecting defects in patterns not present in the training dataset. 

Most significantly for the current research, Nasim et al. (2024) conducted a comparative analysis of 
YOLOv8 and YOLOv5 models within their proposed Hybrid IoT-AI Framework (HIAF) on a diverse 
dataset collected from real manufacturing environments. Their study demonstrated that YOLOv8 
achieved the highest performance with a mAP of 93.7%, followed by YOLOv5 at 89.2%. Additionally, 
they implemented a digital twin modeling approach that further reduced fault detection errors by 32% 
through virtual environmental testing. This research provided valuable insights into model selection for 
real-world textile defect detection applications, particularly highlighting YOLOv8's effectiveness across 
both plain and printed fabrics when integrated with digital twin simulation for predictive maintenance. 

Table 1: Comparative Analysis of Machine Learning Models for Textile Defect Detection 

Refere
nce 

Model Dataset 

Fabri
c 

Type
s 

Performance 
Metrics 

Outcome  

Liu et 
al. 
(2019) 

YOLO 
(Lightweight) 

Fabric 
benchmark 
dataset (3000 
samples, 5 
classes) 

Plain Accuracy: 97.2% 

Effective for resource-
constrained 
environments; limited 
testing on printed 
fabrics 

Hu et 
al. 
(2019) 

DCGAN 
(Unsupervised
) 

TILDA textile 
texture 

Plain 
Accuracy: 51.62%, 
FPR: 49.91% 

Addresses limited 
labeled data availability; 
produces noisy 
segmentations 

Peng et 
al. 
(2021) 

Attention 
mechanism 
with multi-task 
fusion 

AITEX Plain 
F1 score: 0.987, 
Recall: 0.994, 
Precision: 0.98 

Excellent performance 
on plain fabrics; not 
tested on printed fabrics 

Chakra
borty 
et al. 
(2021) 

CNN, VGG-
16, VGG-19 

Self-collected 
printed fabrics 

Print
ed 

Accuracy: 72% 
(VGG-16) 

Moderate performance 
on printed fabrics; 
limited to two defect 
types 
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Jing et 
al. 
(2021) 

RGBAAM 
and Image 
Pyramid 

TILDA 

Regu
larly 
print
ed 

Not specified 
Effective for regular 
patterns; slow for 
complex patterns 

Zhang 
et al. 
(2022) 

MobileNetV2-
SSDLite 

CF, GF, BPF, 
DRFM 

Mixe
d 

Accuracy: 71.18-
95.5% 

Lightweight model 
suitable for edge 
deployment; 
performance varies by 
dataset 

Jia et 
al. 
(2022) 

Improved 
Faster R-CNN 

Self-collected 
yarn samples 

Plain mAP: 94.73% 
High accuracy; not 
deployed in production 

Liu et 
al. 
(2022) 

Double sparse 
low-rank 
decomposition 

98 fabric 
drawings 

Irreg
ularl
y 
print
ed 

TPR: 89.29%, FPR: 
0.85% 

Effective for irregular 
patterns; limited 
robustness 

Zheng 
et al. 
(2022) 

Siamese FPN 
(SDANet) 

Tianchi Fabric 
and Tile 

Print
ed 

mAP: 47.1%, 
Accuracy: 83.3% 

Requires template 
images; moderate 
accuracy 

Li et al. 
(2023) 

Cascade R-
CNN 

Self-collected 
with 19 
backgrounds 

Mixe
d 

mAP: 75.3% 
Effective for patterns in 
training data; limited 
generalization 

Nasim 
et al. 
(2024) 

YOLOv8, 
YOLOv5, 
MobileNetV2-
SSD FPN-Lite 

Chenab 
Textile dataset 

Plain 
and 
print
ed 

mAP: 84.8% 
(YOLOv8), 84.5% 
(YOLOv5), 77.09% 
(MobileNetV2) 

YOLOv8 performs best 
across both fabric types; 
real-world dataset 
validation 

3. MATERIALS AND METHODS 

3.1 Data Collection and Preprocessing 

Data collection was conducted from major textile manufacturing hubs in India, including Tiruppur, 
Coimbatore, Surat, Ludhiana, and Bhilwara, encompassing 50 textile production units over a six-month 
period. This extensive data collection effort provided a representative dataset of real-world manufacturing 
conditions, capturing the variability in fabric types, defect characteristics, and production environments 
that are essential for developing robust detection models. The dataset comprises both plain and printed 
fabrics (regular and irregular patterns) with seven distinct defect categories: baekra, colour issues, 
contamination, cut, gray stitch, selvet, and stain. Unlike many existing benchmark datasets that feature 
well-positioned fabric samples under controlled lighting conditions, our dataset captured images directly 
from production lines, maintaining the natural variability, lighting inconsistencies, and positioning 
challenges encountered in actual manufacturing environments. 

Raw data collection employed a multi-modal approach: 

 High-resolution cameras (5MP, 60 fps) installed at strategic points along production lines 
 RFID tags for tracking fabric batches through production stages. 
 Optical sensors for yarn tension and thread consistency monitoring. 
 Humidity sensors (±2% accuracy) for moisture content measurement. 
 Vibration sensors (sensitivity: 100mV/g) for machinery condition monitoring. 
 Thermal imaging for temperature distribution analysis. 
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Table 2: Data Collection Parameters by Location 

Location 
Textile 
Units 

Primary 
Fabric Types 

Sensors Deployed 
Data 
Points 
Collected 

Tiruppur 12 Cotton Optical, RFID, Humidity 15,200 
Coimbatore 10 Polyester Optical, Vibration, Thermal 12,800 
Surat 8 Silk, Synthetic RFID, Optical, Humidity 10,400 

Ludhiana 10 
Wool, 
Blended 

Thermal, Vibration, Humidity 13,600 

Bhilwara 10 
Rayon, 
Denim 

Optical, RFID, Vibration 14,200 

 The image preprocessing pipeline includes several key steps to enhance model performance. 
Image standardization is performed by resizing images to 640×640 pixels while maintaining the aspect 
ratio. Normalization scales pixel values to the [0,1] range to ensure consistency across inputs. Illumination 
correction is applied using adaptive histogram equalization, which compensates for lighting variations. 
To reduce unwanted distortions, Gaussian filtering with σ=1.5 is used for noise reduction. Additionally, 
data augmentation techniques such as random rotations (±15°), horizontal flips, and minor 
brightness/contrast adjustments (±10%) are applied to improve model generalization. For annotation, 
expert textile inspectors manually labeled defects using bounding boxes. To address class imbalance—
given the predominance of certain defect types like stains—stratified sampling and weighted augmentation 
techniques were applied, ensuring balanced representation across all defect categories. The final dataset 
composition is detailed in Table 3. 

Table 3: Dataset Composition by Defect Type 

Defect Type Training Set Validation Set Test Set Total Samples 
Baekra 458 83 42 583 
Color issues 317 65 35 417 
Contamination 392 78 40 510 
Cut 523 95 47 665 
Gray stitch 486 88 45 619 
Selvet 471 85 44 600 
Stain 589 108 52 749 
Total 3,236 602 305 4,143 

 The dataset was split using a 78/12/10 ratio for training, validation, and testing, respectively, 
ensuring stratification across defect types and fabric categories. 
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Figure 1 Types of defects sample image collection  

3.2 Hybrid IoT-AI Framework (HIAF) 

The Hybrid IoT-AI Framework (HIAF) represents the integrated architecture developed for this 
research. Figure 2 illustrates the overall structure of HIAF. 

1. Data Acquisition Layer: This layer integrates multi-modal sensors across production lines, 
enabling real-time data collection via MQTT over TLS. It includes networked high-resolution cameras 
with edge processing, optical, humidity, vibration, and thermal sensor arrays, an RFID tracking system 
(EPC Gen2 compliant), and standardized data formats with timestamps and geolocation tags. 
2. Edge Computing Layer: Responsible for initial data processing and defect detection, reducing 
latency and bandwidth. It features NVIDIA Jetson Xavier NX modules for efficient processing, Tensor 
RT-accelerated detection models, local data buffering, anomaly pre-filtering, and real-time alerting for 
critical defects. 
3. Cloud Analytics Layer: This layer manages data storage, advanced analytics, and model training. 
It utilizes MongoDB Atlas for distributed sensor/image data storage, GPU-accelerated training on 
NVIDIA A100, periodic batch processing for model refinement, and historical trend analysis for 
production insights. 
4. Digital Twin Simulation Layer: It provides virtual representations of production processes for 
predictive maintenance and optimization. Key features include physics-based textile process modeling, 
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reinforcement learning for parameter tuning, what-if scenario simulations, and fault prediction using 
anomaly detection. 

HIAF employs federated learning, allowing edge devices to contribute to model enhancements while 
preserving data locality. With bi-directional data flow, actionable insights are translated into 
manufacturing adjustments via standardized APIs, ensuring real-time responsiveness while leveraging 
cloud computing for in-depth analytics. 

 

Figure 2 Representation of the overall structure of HIAF 

 

3.3 Deep Learning Models 

This research evaluates two state-of-the-art object detection models—YOLOv8 and YOLOv5—for fabric 
defect detection, both implemented within the HIAF framework. 

3.3.1 YOLOv8 

YOLOv8 represents an evolution of the YOLO (You Only Look Once) architecture, introduced by 
Ultralytics in 2023. Key architectural features include: 

1. Backbone: CSPDarknet with Cross-Stage Partial (CSP) connections for enhanced feature 
extraction 

2. Neck: Path Aggregation Network (PANet) for multi-scale feature fusion 
3. Head: Decoupled detection heads for classification, objectness, and bounding box regression 
4. Activation: SiLU (Swish) functions for improved gradient flow 

5. Loss Functions: Distribution Focal Loss (DFL) for bounding boxes and Binary Cross-Entropy 
(BCE) for classification 

YOLOv8 implements an anchor-free approach, directly predicting object centers and dimensions instead 
of refining predefined anchor boxes. This design choice improves detection accuracy for small defects and 
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reduces computational complexity. In this study, we deployed the YOLOv8n (nano) variant, optimized 
for efficiency and accuracy. The model was configured with an input resolution of 640×640 pixels and 
comprised 3.2 million parameters, enabling lightweight yet effective detection. It operated with 8.7 billion 
FLOPs, balancing computational complexity and real-time performance. The hyperparameters were fine-
tuned for optimal learning, with a learning rate of 0.01, batch size of 16, momentum of 0.937, and weight 
decay of 0.0005, ensuring stable convergence and improved detection accuracy. 

3.3.2 YOLOv5 

YOLOv5, released in 2020, employs a more traditional anchor-based approach while maintaining 
computational efficiency. Key features include: 

1. Backbone: Modified CSPDarknet53 
2. Neck: Feature Pyramid Network (FPN) with additional cross-connections 
3. Head: Anchor-based detection head with objectness and class predictions 
4. Activation: Leaky ReLU 
5. Loss Functions: Binary Cross-Entropy for classification and objectness, Complete IoU (CIoU) 

for bounding boxes 

We utilized the YOLOv5n (nano) variant, configured with an input resolution of 640×640 pixels and 1.9 
million parameters, making it a lightweight yet effective detection model. It operated with 4.5 billion 
FLOPs, ensuring efficient computation. To ensure a fair comparison with YOLOv8, we matched the 
hyperparameters, maintaining consistency in learning rate, batch size, momentum, and weight decay, 
enabling a balanced evaluation of performance across both models. 

3.4 Digital Twin Implementation 

Our implementation follows a four-stage approach to enhance manufacturing processes through 
predictive maintenance and fault detection. 

1. Physical System Modeling: Textile machinery and processes are modeled using a combination of 
first-principles models for mechanical components, data-driven models for complex process dynamics, 
and hybrid models that integrate physical constraints with learned behaviors. 
2. Real-time Data Integration: Synchronization between physical and virtual systems is achieved 
through bidirectional communication via OPC-UA protocol, state estimation using Kalman filtering for 
sensor fusion, and automated calibration procedures for model alignment. 
3. Fault Pattern Analysis: Fault scenarios are systematically explored using Monte Carlo simulations 
with 10,000 iterations per fault type, sensitivity analysis for critical parameters, and fault propagation 
modeling across production stages. 
4. Predictive Analytics: Insights from simulations are integrated with detection models through 
reinforcement learning for optimal maintenance scheduling, transfer learning between simulated and real 
defect patterns, and uncertainty quantification for reliability assessment. 

The digital twin implementation was developed using ANSYS Twin Builder for physics-based modeling, 
combined with custom Python libraries for machine learning components. This hybrid approach ensures 
both an accurate physical representation of manufacturing processes and data-driven behavioural 
modeling, enhancing fault detection and predictive maintenance capabilities. 

3.5 Training and Optimization 

The digital twin component of HIAF provides a virtual representation of physical. The training process 
followed a standardized protocol to ensure a fair comparison between models. Initialization involved 
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using pre-trained weights from the COCO dataset, followed by transfer learning to adapt to textile-specific 
features. The training schedule spanned 500 epochs with cosine learning rate scheduling, a 3-epoch warm-
up period, early stopping (patience = 25 epochs), and gradient clipping at norm = 10.0 for stability. For 
optimization, models were trained using Stochastic Gradient Descent (SGD) with momentum = 0.937, 
an initial learning rate of 0.01, a final learning rate of 0.001, and weight decay of 0.0005 for regularization. 
Mixed precision training (FP16) was employed to enhance throughput. Data handling included a batch 
size of 16 for all models, mosaic augmentation (probability = 0.75), mixup augmentation (probability = 
0.1), and on-the-fly data augmentation to improve generalization. For hardware configuration, training 
was conducted on 2×NVIDIA A100 GPUs (40GB), while inference testing was performed on both 
NVIDIA Jetson Xavier NX (edge) and A100 GPU (cloud) setups. Memory-efficient gradient 
checkpointing was used to enable a larger effective batch size. Both models underwent Bayesian 
optimization (BoTorch implementation) with 50 trials per model to fine-tune hyperparameters and 
identify optimal configurations. 

3.6 Evaluation Metrics 

Model performance was assessed using standard object detection metrics, emphasizing practical 
deployment considerations. Accuracy metrics included Mean Average Precision (mAP) at IoU thresholds 
of 0.5 (mAP@0.5) and 0.5-0.95 (mAP@0.5-0.95), along with Precision, Recall, and F1-score per defect 
class. A confusion matrix analysis was conducted to identify misclassification patterns among defect types. 
For computational efficiency, the evaluation focused on inference time (ms) on both edge and cloud 
hardware, memory footprint (MB) during inference, and FLOPS analysis to assess computational 
complexity. Practical deployment metrics considered real-world conditions, measuring latency at different 
production line speeds (0.5-2.0 m/s), power consumption on edge devices (W), robustness to lighting 
variations (±30% illumination changes), and temperature sensitivity in industrial environments (10-
40°C). To gauge the business impact, key factors included the false positive rate (economic implications 
of unnecessary stoppages), the false negative rate (quality risks due to undetected defects), early fault 
detection lead time, and the potential reduction in production waste. Additionally, we introduced a 
Production-Optimized Quality Score (POQS), a novel composite metric that integrates accuracy and 
efficiency into a single value, making it highly relevant for manufacturing environments. 

𝑃𝑂𝑄𝑆 =  (𝑚𝐴𝑃@0.5 ×  0.6) + (1/𝑛𝑜𝑟𝑚_𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑡𝑖𝑚𝑒 ×  0.25) +
 (𝑓𝑎𝑢𝑙𝑡_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒 ×  0.15)                                                                              (1) 

Where norm_inference_time is normalized inference time relative to a baseline of 30ms, and 
fault_prediction_leadtime represents the average time (in production cycles) between predicted and actual 
fault occurrence. 

4. RESULTS AND DISCUSSION 
4.1 Comparative Performance of Detection Models 

The comprehensive evaluation of YOLOv8 and YOLOv5 models within the Hybrid IoT-AI Framework 
(HIAF) revealed significant differences in detection capabilities, accuracy, and computational efficiency. 
Table 4 presents the overall performance metrics for both models across all defect categories. 

Table 4: Overall Performance Comparison of Detection Models 

Model 
mAP@0.5 
(%) 

mAP@0.5-
0.95 (%) 

Precision Recall 
F1-
Score 

Inference 
Time (ms) 

GPU 
Memory 
(MB) 

YOLOv8 93.7 67.5 0.912 0.925 0.918 18.5 384 
YOLOv5 89.2 62.3 0.889 0.905 0.897 15.9 342 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 4S, 2025 
https://www.theaspd.com/ijes.php 

663 
 

YOLOv8 demonstrated superior overall detection accuracy with a 93.7% mAP@0.5, representing a 4.5 
percentage point improvement over YOLOv5. This performance advantage persisted across the more 
stringent mAP@0.5-0.95 metric, where YOLOv8 maintained a 5.2 percentage point lead. The precision-
recall balance slightly favoured YOLOv8, with an F1-score of 0.918 compared to 0.897 for YOLOv5. 
However, this improved accuracy came at a modest computational cost, with YOLOv8 requiring 
approximately 2.6 ms additional inference time and 42 MB more GPU memory. When analyzed at the 
class level, performance variations became more pronounced, as illustrated in Figure 3 and detailed in 
Table 5. 

 

Figure 3: mAP@0.5 by Defect Type for YOLOv8 and YOLOv5 

 

Table 5: Defect-Specific Detection Performance (mAP@0.5 %) 

Defect Type YOLOv8 YOLOv5 
Difference 

(pp) 
Key Challenges 

Baekra 94.5 91.2 3.3 Variable pattern disruption 
Color issues 89.7 82.5 7.2 Subtle hue variations 
Contamination 95.7 93.1 2.6 Thin, thread-like appearance 
Cut 90.2 92.8 -2.6 Edge cases near fabric borders 
Gray stitch 94.7 86.3 8.4 Complex background similarity 
Selvet 95.5 90.4 5.1 Variable fold geometries 
Stain 96.2 88.1 8.1 Size and contrast variations 
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4.2 Defect-Specific Detection Analysis 

The performance variations across defect types revealed several important patterns. YOLOv8 
demonstrated particularly strong performance for defects characterized by subtle visual features or 
complex geometries (colour issues, gray stitch, and stain), with improvements ranging from 7.2 to 8.4 
percentage points over YOLOv5. This advantage can be attributed to YOLOv8's anchor-free architecture 
and improved feature extraction capabilities, which better capture fine-grained visual details. Interestingly, 
YOLOv5 outperformed YOLOv8 in cut detection by 2.6 percentage points. Detailed error analysis 
revealed that YOLOv5's anchor-based approach provided greater stability in detecting linear defects with 
high aspect ratios, particularly near fabric edges where boundary conditions can complicate detection. 
This finding suggests that certain defect morphologies may benefit from the more structured prediction 
approach employed by YOLOv5. Confusion matrix analysis (Figure 4) provided further insights into 
model misclassifications. 

 

Figure 4: Confusion Matrices for (a) YOLOv8 and (b) YOLOv5 

Both models exhibited similar confusion patterns, with the highest misclassification rates occurring 
between colour issues and stains (8.3% for YOLOv8, 12.7% for YOLOv5), and between contamination 
and gray stitch (6.5% for YOLOv8, 9.2% for YOLOv5). These patterns align with the visual similarities 
between these defect pairs, where distinguishing features can be subtle and context-dependent. 

4.3 Impact of Digital Twin Integration 

The integration of digital twin modeling with the detection framework yielded substantial improvements 
in fault prediction capabilities and overall system performance, as summarized in Table 6. 

Table 6: Performance Metrics Before and After Digital Twin Integration 

Metric 
Before Digital 

Twin 
With Digital 

Twin 
Improvement 

(%) 
False Positive Rate (%) 8.7 6.3 27.6 
False Negative Rate (%) 6.2 4.5 27.4 
Average Fault Detection Lead Time 
(cycles) 

1.8 4.2 133.3 

Maintenance Intervention Accuracy (%) 76.4 92.8 21.5 
Production Line Stoppage Reduction (%) - 32.4 - 
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 The digital twin component significantly reduced both false positives and false negatives by 
approximately 27%. This improvement resulted from the twin's ability to contextualize sensor readings 
with physical model predictions, filtering out anomalous readings that would otherwise trigger false alerts. 
More importantly, the digital twin extended the fault prediction horizon from 1.8 to 4.2 production 
cycles, providing operators with a 133% increase in response time window for preventive intervention. 
Figure 5 illustrates the fault prediction accuracy improvement over production time. 

 

Figure 5: Fault Prediction Accuracy as a Function of Lead Time 

The digital twin's ability to simulate and predict fault propagation patterns substantially outperformed 
the baseline system, particularly at longer prediction horizons (3+ cycles), where the baseline system's 
accuracy degraded rapidly while the digital twin-maintained accuracy above 85%. 

4.4 Edge Computing Performance and Scalability 

The deployment of detection models on edge computing hardware revealed important trade-offs between 
accuracy and computational efficiency, particularly relevant for real-time manufacturing environments. 
Table 7 details the performance characteristics across different hardware configurations. 

Table 7: Edge Computing Performance Metrics 

Hardware 
Platform 

Model 
Inference Time 

(ms) 
Power 

Consumption (W) 
Max Throughput 

(FPS) 
Max Line Speed 

(m/s) 
Jetson Xavier 
NX 

YOLOv8 23.5 10.2 42.5 1.4 

Jetson Xavier 
NX 

YOLOv5 19.8 9.5 50.5 1.7 

Jetson AGX 
Orin 

YOLOv8 12.4 15.8 80.6 2.7 

Jetson AGX 
Orin 

YOLOv5 10.5 14.7 95.2 3.2 

Server (A100 
GPU) 

YOLOv8 3.2 118.5 312.5 10.4 

Server (A100 
GPU) 

YOLOv5 2.8 115.2 357.1 11.9 
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 Edge device implementation maintained real-time performance for typical production 
environments, with the Jetson Xavier NX capable of monitoring production lines running at up to 1.4 
m/s using YOLOv8, and 1.7 m/s using YOLOv5. The more powerful Jetson AGX Orin extended this 
capability to 2.7 m/s and 3.2 m/s respectively, covering the vast majority of industrial textile production 
speeds (typically 0.5-2.5 m/s). Scaling behavior analysis (Figure 6) indicated linear degradation in 
inference time with increasing image resolution, with YOLOv8 showing slightly steeper degradation 
compared to YOLOv5.  

 

Figure 6: Inference Time vs. Image Resolution 

4.5 Production Impact Analysis and Economic Benefits 

The implementation of HIAF with YOLOv8 and digital twin integration in a production environment 
resulted in measurable improvements in manufacturing efficiency and quality metrics, as summarized in 
Table 8. 

Table 8: Production Performance Improvements After HIAF Deployment 

Metric Baseline 
After HIAF 
Deployment 

Improvement 
(%) 

Defect Rate (%) 8.3 5.6 32.5 
First-Pass Yield (%) 81.6 90.1 10.4 
Production Efficiency (%) 74.8 85.2 14 
Material Wastage (kg/week) 347.2 235.6 32.1 
Production Downtime 
(hours/month) 

42.5 31.9 24.9 

Quality Control Labor 
(hours/week) 

168 96 42.9 

 The 32.5% reduction in defect rates translated directly to improved first-pass yield and reduced 
material wastage. Production efficiency increased by 14.0%, primarily due to reduced downtime and 
higher throughput from fewer quality-related stoppages. Perhaps most significantly, quality control labour 
requirements decreased by 42.9%, allowing reallocation of personnel to higher-value activities. Economic 
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impact assessment based on a medium-scale textile manufacturing facility (annual production of 1.2 
million meters) indicated substantial financial benefits, detailed in Figure 7.  

 

Figure 7: Annual Economic Impact of HIAF Implementation 

 

Figure 8 Effect of saving breakdown  

ROI Analysis:  
Implementation Cost: $215,000 
Annual Benefit: $476,000 
Net Annual Benefit: $261,000 
Payback Period: 5.4 months 
First Year ROI: 121% 

Figure 8 shows a stacked bar chart depicting economic benefits across categories: reduced material waste, 
decreased labour costs, improved productivity, and reduced returns/claims. The total estimated annual 
saving of $476,000 comprised reduced material waste ($185,000), decreased quality control labour costs 
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($112,000), improved productivity from reduced downtime ($98,000), and reduced customer returns and 
quality claims ($81,000). The initial implementation cost of approximately $215,000 resulted in a payback 
period of 5.4 months, representing an exceptionally strong return on investment. 

4.6 Comparison with Existing Methods 

To contextualize the performance of the HIAF framework, we compared our results with recent state-of-
the-art approaches from the literature, as shown in Table 9. 

Table 9: Comparison with Existing Defect Detection Methods 

Method Authors Fabric Types mAP@0.5 
(%) 

Real-Time 
Capability 

Digital Twin 
Integration 

HIAF (Our 
approach) 

- Plain and 
printed 

93.7 Yes Yes 

Cascade R-CNN Li et al. 
(2023) 

Mixed 75.3 Limited No 

SDANet Zheng et al. 
(2022) 

Printed 83.3 Yes No 

DSLRD Liu et al. 
(2022) 

Irregularly 
printed 

89.3* No No 

Improved Faster 
RCNN 

Jia et al. 
(2022) 

Plain 94.7 Limited No 

Attention 
+Multi-task 

Peng et al. 
(2021) 

Plain 90.5* Yes No 

The HIAF approach demonstrated competitive or superior accuracy compared to specialized approaches 
while uniquely offering compatibility with both plain and printed fabrics and incorporating digital twin 
capabilities for predictive maintenance. The only method achieving higher reported accuracy (Improved 
FasterRCNN by Jia et al.) was limited to plain fabrics and lacked real-time capability necessary for 
industrial deployment. 

5. CONCLUSION 

1. This research successfully developed and evaluated a Hybrid IoT-AI Framework (HIAF) for textile 
defect detection, achieving a significant improvement in fault detection accuracy with YOLOv8 
demonstrating superior performance (93.7% mAP@0.5) compared to YOLOv5 (89.2% mAP@0.5) across 
both plain and printed fabrics. 
2. The integration of digital twin modeling with the detection framework yielded substantial 
improvements in fault prediction capabilities, reducing false positives by 27.6% and extending the fault 
prediction horizon from 1.8 to 4.2 production cycles, providing operators with a 133% increase in 
response time for preventive intervention. 
3. The implementation of HIAF in production environments resulted in measurable manufacturing 
improvements, including a 32.5% reduction in defect rates, 10.4% increase in first-pass yield, and 14.0% 
enhancement in overall production efficiency, demonstrating the practical value of the approach. 
4. Economic impact analysis confirmed the strong business case for HIAF implementation, with an 
estimated annual saving of $476,000 for a medium-scale textile facility against an implementation cost of 
$215,000, resulting in a 5.4-month payback period and 121% first-year ROI. 
5. Model performance varied across defect types, with YOLOv8 showing particular strength in 
detecting subtle defects (color issues, gray stitch, stain) while YOLOv5 performed slightly better on linear 
defects, suggesting that certain defect morphologies may benefit from different detection approaches. 
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6. Future research directions include incorporating online learning capabilities for continuous 
model adaptation, expanding sensor arrays to include multi-spectral imaging, developing automated 
digital twin calibration procedures, and implementing secure federated learning across multiple facilities 
to further enhance system robustness and adoption potential. 

Future Work 

Several promising research directions emerge from the identified limitations and the current state of 
technology. Online learning integration would enable continual learning, allowing the system to adapt to 
new defect patterns without requiring full retraining, thereby improving long-term robustness. Expanding 
the sensor array to include multi-spectral imaging with near-infrared and ultraviolet capabilities could 
enhance the detection of subsurface defects that are not visible in standard RGB imagery. Unsupervised 
anomaly detection using generative models could further improve defect identification without relying 
on explicit training examples. Additionally, automated digital twin calibration would streamline setup 
procedures, reducing complexity and increasing adoption potential. Extended IoT integration with 
upstream supply chain data could enhance fault root cause analysis, enabling quality prediction before 
production begins. Finally, deploying secure federated learning across multiple facilities could strengthen 
model robustness while ensuring data privacy by preserving proprietary production information. 
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