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Abstract: This study presents a comparative analysis of fuzzy logic and neural network-based predictive models for
estimating surface roughness (Ra) in the turning of AISI 304 stainless steel. Experimental trials were conducted using
a two-axis CNC lathe, with cutting speed, feed rate, and depth of cut as input parameters. A full factorial design of
experiments was used, and Ra measurements were obtained using a Mitutoyo SJ-210 surface roughness tester. A
Mamdani-type fuzzy inference system and a feedforward neural network (3-10-1 structure, trained using the Levenberg-
Marquardt algorithm in MATLAB) were developed. The performance of each model was evaluated in terms of RMSE
and R™2. The neural network model achieved an RMSE of 0.155 um and R2 of 0.98, slightly outperforming the
fuzzy logic system. Results indicate that both models provide reliable surface roughness predictions and can support
intelligent manufacturing systems.
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1. INTRODUCTION

Stainless steels, particularly AISI 304, are widely employed in the manufacturing industry due to their
exceptional corrosion resistance, formability, and weldability. However, their low thermal conductivity
and high work-hardening tendency make them difficult to machine efficiently (Gao et al., 2023). Surface
roughness, a critical quality indicator in machining operations, significantly affects functional
performance parameters such as friction, wear resistance, fatigue strength, and dimensional precision
(Aydin et al., 2013; Zhou et al., 2019).

In turning operations, surface roughness is predominantly influenced by cutting parameters, including
cutting speed (V¢), feed rate (f), and depth of cut (ap). Among these, feed rate is generally considered the
most critical factor affecting Ra values, as supported by both empirical studies and modeling approaches
(Naresh et al., 2021). While conventional statistical models like regression and Taguchi methods have
been traditionally used for surface quality prediction, they often fall short in capturing complex
nonlinearities inherent in machining processes (Chandrakasan et al., 2010).

To overcome these limitations, artificial intelligence (AI) techniques have emerged as powerful
alternatives for predictive modeling in manufacturing. Among these, fuzzy logic (FL) systems and artificial
neural networks (ANNSs) have shown significant promise due to their ability to approximate uncertain
and nonlinear relationships based on experimental data. FL uses linguistic rules and membership
functions to represent expert knowledge and manage ambiguity, making it especially suitable for
manufacturing environments where exact mathematical modeling is challenging (Chandrakasan et al.,
2010; Aydin et al., 2013). On the other hand, ANNs offer adaptive learning capabilities and robust
generalization performance without requiring predefined rule sets, as emphasized by Xu et al. (2023) and
Gao et al. (2023).

This study aims to develop and compare fuzzy logic and neural network models for predicting surface
roughness in AISI 304 stainless steel turning processes. The models are trained on experimental data
obtained through a fractional factorial design, considering three input variables—Vc, f, and ap—and one
output variable, Ra. The results are evaluated using statistical metrics such as RMSE and R?, and the
predictive accuracy of each model is assessed. The research contributes to intelligent process planning
and real-time surface quality estimation, supporting smart manufacturing applications.
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2. Experimental Procedure

2.1 Material and Equipment

The experiments were carried out on cylindrical AISI 304 stainless steel bars (100 mm diameter x 250
mm length) using a 2-axis CNC lathe. Cutting inserts were of type WNMG 080408. All tests were
conducted under dry cutting conditions. Ra measurements were recorded using a Mitutoyo SJ-210 surface
roughness tester as per [ISO 4287 standards.

2.2 Cutting Parameters and DOE Three levels were defined for each input:

e  Cutting speed (Vc): 120, 170, 250 m/min

e  Feed rate (f): 0.10, 0.25, 0.40 mm/rev

e Depth of cut (ap): 1.0, 1.5, 2.0 mm A half-factorial design was used, totaling 11 experiments. Each
condition was selected to represent a meaningful range of industrial turning parameters.

2.3 Data Set Table 1 presents the experimental data including cutting parameters and corresponding
measured Ra values.

Experiment  Cutting Speed (Vc, Feed Rate  (f, Depth of Cut (ap, Surface Roughness (Ra,
No m/min) mm/rev) mm) pm)
1 120 0.10 1.0 0.42
2 250 0.10 1.0 0.34
3 120 0.40 1.0 3.52
4 250 0.40 1.0 3.74
5 250 0.40 2.0 4.10
6 120 0.40 2.0 3.40
7 250 0.10 2.0 0.42
8 120 0.10 2.0 1.62
9 170 0.25 1.5 1.42
10 170 0.25 1.5 1.38
11 170 0.25 1.5 1.38

The measured surface roughness (Ra) values ranged from 0.34 to 4.10 pm. Feed rate had the most
significant influence on Ra, followed by interactions between cutting speed and depth.

3. Fuzzy Logic Modeling

A Mamdani-type fuzzy inference system was constructed in MATLAB using triangular membership
functions for both input and output variables. The input parameters—cutting speed (Vc), feed rate (f),
and depth of cut (ap)—were each divided into three fuzzy sets: Low, Medium, and High. The output
variable, surface roughness (Ra), was categorized into three sets: Good, Acceptable, and Poor.

The system utilized a total of 15 fuzzy rules, which were derived from machining knowledge and observed
data trends. For example:

e IfVcis Low AND fis Low AND ap is Low THEN Ra is Good

e If Vcis High AND fis High AND ap is High THEN Ra is Poor

The rules were combined using the minimum (AND) operator and the max-min composition method.
The centroid method was used for defuzzification. The fuzzy logic model showed good performance
particularly in predicting surface roughness at lower and mid-range values. Its interpretability made it
useful for understanding parameter interactions, although extreme values were predicted with slightly less
precision. Figure 1 illustrates the triangular membership functions used for the fuzzy logic model:
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Figure 1la: Cutting Speed (Vc) Figure 1b: Feed Rate (f)
1.0t 1.0t
0.8 0.8}
0.6 Low 0.6 Low
—— Medium —— Medium
0.4+ —— High 0.4+t —— High
0.2t 0.2
O'O C L 1 I 1 1 L 1 0'0 L L L I 1 1 I 1
120 140 160 180 200 220 240 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Figure 1c: Depth of Cut (ap) Figure 1d: Surface Roughness (Ra)
1.0} 1.0t
0.8 0.8
0.6 Low 0.6 Good
—— Medium —— Acceptable
0.4+ —— High 0.4+ —— Poor
0.2 0.2
00 [ L L 1 1 L 1 00 [ L 1 I 1 Il 1 Il i
1.0 1.2 1.4 1.6 1.8 2.0 05 10 15 20 25 30 35 40

Figure 1la: Membership functions for Cutting Speed (Vc)
Figure 1b: Membership functions for Feed Rate (f)

Figure 1c: Membership functions for Depth of Cut (ap)
Figure 1d: Membership functions for Surface Roughness (Ra)

4. Neural Network Modeling The neural network model was implemented using MATLAB's Neural
Network Toolbox, aiming to capture complex nonlinear relationships between machining parameters
and surface roughness. A multilayer feedforward neural network (MLFFNN) architecture was used. The
input layer consisted of three neurons representing the input features: cutting speed (Vc), feed rate (f),
and depth of cut (ap). These were connected to a single hidden layer composed of 10 neurons using a
tangent sigmoid activation function. The output layer consisted of one neuron with a linear activation
function to predict surface roughness (Ra). Figure 2 presents the architecture of the developed neural
network model.

o1

Figure 2. Neural Network Architecture Used in the Study

Prior to training, the data were normalized to improve convergence. The dataset was divided into three
subsets: 70% for training, 15% for validation, and 15% for testing. The Levenberg-Marquardt
backpropagation algorithm was selected due to its robustness and efficiency in training small- to medium-
sized datasets.

During training, the model's performance was monitored through the mean squared error (MSE) on
validation data. Early stopping was implemented to prevent overfitting. Once trained, the model was
evaluated on the test dataset.

The neural network demonstrated strong generalization ability, with an RMSE of 0.155 pm and a
coefficient of determination (R2) of 0.98 on the test set. The predicted Ra values closely matched the
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experimental measurements. Residual analysis revealed random distribution, indicating good model fit.
Compared to the fuzzy logic model, the neural network achieved slightly better predictive accuracy,
especially for samples with extreme Ra values, which are generally harder to model with rule-based
systems.

In conclusion, the neural network proved effective in surface roughness prediction, leveraging its capacity
to learn from data patterns without explicit rule formulation.

Table 1. Experimental Results and Model Predictions

Experiment | Vc f ap Actual Fuzzy NN
No (m/min) | (mm/rev) | (mm) | Ra(um) | Predicted Ra | Predicted Ra
(pm) (um)
1 120 0.10 1.0 0.42 0.53 0.48
2 250 0.10 1.0 0.34 0.39 0.36
3 120 0.40 1.0 3.52 3.25 3.39
4 250 0.40 1.0 3.74 3.55 3.65
5 250 0.40 2.0 4.10 391 4.00
6 120 0.40 2.0 3.40 3.20 3.33
7 250 0.10 2.0 0.42 0.55 0.47
8 120 0.10 2.0 1.62 1.65 1.70
9 170 0.25 1.5 1.42 1.35 1.40
10 170 0.25 1.5 1.38 1.31 1.34
11 170 0.25 1.5 1.38 1.32 1.36

Figure 3 compares the actual surface roughness values obtained from experiments with the values
predicted by the fuzzy logic and neural network models. The graph demonstrates the effectiveness of both
models in approximating the true Ra values, with the neural network performing slightly better in terms
of closeness to actual results.
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Figure 3. Actual nd Predicted Surface Roughness (Ra)
Prior to training, the data were normalized to improve convergence. The dataset was divided into three
subsets: 70% for training, 15% for validation, and 15% for testing. The Levenberg-Marquardt
backpropagation algorithm was selected due to its robustness and efficiency in training small- to medium-
sized datasets.
During training, the model's performance was monitored through the mean squared error (MSE) on
validation data. Early stopping was implemented to prevent overfitting. Once trained, the model was
evaluated on the test dataset.
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The neural network demonstrated strong generalization ability, with an RMSE of 0.155 pym and a
coefficient of determination (R2) of 0.98 on the test set. The predicted Ra values closely matched the
experimental measurements. Residual analysis revealed random distribution, indicating good model fit.
Compared to the fuzzy logic model, the neural network achieved slightly better predictive accuracy,
especially for samples with extreme Ra values, which are generally harder to model with rule-based
systems.
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Figure 4 provides another visual comparison between actual Ra values and those predicted by both the
fuzzy logic and neural network models across all experiments.
In conclusion, the neural network proved effective in surface roughness prediction, leveraging its capacity
to learn from data patterns without explicit rule formulation.

5. CONCLUSION

This study explored the use of two intelligent modeling techniques—fuzzy logic and neural networks—for
predicting surface roughness during the turning of AISI 304 stainless steel. The experimental results
clearly showed that feed rate was the most influential parameter on surface roughness, in agreement with
prior research (Aydin et al., 2013; Chandrakasan et al., 2010). High feed rates resulted in deeper tool
marks and higher Ra values, while lower feeds produced smoother surfaces.

The fuzzy logic model, based on expert-derived rules and triangular membership functions, demonstrated
reasonable prediction performance. However, the neural network model showed superior accuracy with
an RMSE of 0.155 pm and R? of 0.98, validating its strong learning ability without requiring an explicit
rule base—consistent with findings from Naresh et al. (2021), Zhou et al. (2019), Gao et al. (2023), and
Xu et al. (2023), which emphasize deep learning and hybrid modeling in surface finish predictions.
Overall, both methods proved viable for predictive modeling of surface roughness, but neural networks
offered a slight edge in precision and generalization. These findings support the application of intelligent
systems for process optimization and quality prediction in advanced manufacturing environments.
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