
International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 20s, (2025) 
https://theaspd.com/index.php/ijes 
 

2358 
 

Decoding the Sustainability-Finance Nexus: Green Bonds and 
Their Interactions with Global Financial Indicators 
 
Haseen Ahmed1, Kavita Berwal2, Shadab Mohd Khan3, Quazi Shams Aaghaz4 

 1,2New Delhi Institute of Management, India 
3,4Jamia Millia Islamia, India 
 
Abstract 
This study explores the dynamic interactions between green bonds and major global financial indicators, 
green bonds, global commodity and equity indices, Bitcoin, crude oil, and US dollar index, employing 
Granger causality tests and a Vector Autoregression (VAR) framework. The empirical results underscore 
the responsiveness of green bonds, represented by the S&P Green Bond Index (SPGB), to global equity 
market movements, particularly the MSCI Global Equity Index (MSCIE). A strong unidirectional 
causality from MSCIE to SPGB suggests that green bond performance is shaped significantly by trends in 
global equity markets, reflecting broader macroeconomic sentiment and capital availability for sustainable 
investments. Additionally, the bidirectional causality between MSCIE and the US Dollar Index (USDX) 
illustrates the tight interlinkage between currency dynamics and global equity flows. In contrast, the 
analysis finds no significant causal relationship between green bonds and more speculative or volatile 
assets such as crude oil and Bitcoin, likely due to differences in investor profiles, investment horizons, 
and market structures. The VAR results further validate that green bonds are primarily influenced by 
their own lags and by equity and currency markets, with limited influence on other assets. These findings 
suggest that green bonds currently play a reactive rather than leading role in the global financial ecosystem, 
shaped by their emerging status, relatively lower liquidity, and alignment with ESG-focused investment 
mandates. 
Keywords - Green Bonds, Global Equity Index, US Dollar Index, Crude Oil, Bitcoin, Sustainable Finance, 
Financial Market Integration 
 
1. INTRODUCTION 
The intersection of sustainability and finance has garnered significant academic and policy interest in 
recent years, particularly with the emergence of green bonds as a pivotal instrument in mobilizing capital 
for climate-resilient infrastructure and environmentally sustainable development. Green bonds—debt 
securities issued to finance projects with positive environmental outcomes—have evolved from niche 
financial products into globally recognized vehicles supporting the transition to a low-carbon economy. 
As climate change, environmental degradation, and energy transition dominate global economic 
discourse, understanding the dynamic interactions of green bonds with traditional and emerging financial 
indicators has become crucial. 
The literature increasingly emphasizes the complex linkages between green bonds and key financial 
variables, including oil prices, cryptocurrencies, renewable energy indices, and environmental risk factors. 
For instance, Yadav et al. (2025) demonstrated that green bonds, while receiving volatility spillovers from 
renewable energy and crypto markets, provide limited short-term diversification but exhibit stronger 
interdependence over longer horizons. Similarly, Zeng et al. (2025) reported intensified return 
connectedness between green bonds and both green energy-related metals and cryptocurrencies, 
particularly in the post-COVID-19 period. This interconnectedness suggests that green bonds are not 
insulated from broader financial market dynamics and may serve both as recipients and transmitters of 
risk. 
Moreover, oil and energy markets significantly influence green bond performance. Empirical evidence 
points to negative volatility spillovers from crude oil to green bonds (Yousaf et al., 2024), while certain 
studies find green bonds acting as effective hedging instruments against oil price shocks (Huang et al., 
2022). Wang et al. (2023) uncovered asymmetric and quantile-dependent relationships between oil prices 
and green bond indices, further highlighting the contextual sensitivity of this nexus. Additionally, the 
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role of cryptocurrencies—especially Bitcoin—has gained traction. Wang et al. (2024) noted long-term 
significant effects of Bitcoin prices on the Chinese green bond market, underscoring the need for 
regulatory oversight to safeguard green finance from crypto-induced volatility. 
Environmental and geopolitical risks also shape green bond dynamics. Mejri et al. (2025) established that 
green bonds offer long-term stability under geopolitical stress, functioning as defensive assets in diversified 
portfolios. Meanwhile, Kartal et al. (2024) and Marín-Rodríguez et al. (2022) emphasized the feedback 
mechanisms between green bonds, CO₂ emissions, and environmental degradation, revealing the role of 
green bonds not just as financial tools but as environmental signals. 
Against this backdrop, decoding the sustainability-finance nexus requires a granular understanding of 
how green bonds interact with global financial indicators across time and frequency domains. This 
investigation is essential for investors, policymakers, and regulators aiming to leverage green bonds as 
tools for financial resilience and environmental sustainability. The present study seeks to contribute to 
this emerging discourse by mapping these multifaceted relationships, thereby illuminating the positioning 
of green bonds in the global financial ecosystem. 
 
2. LITERATURE REVIEW 
The growing prominence of green bonds as a tool for sustainable finance has attracted extensive empirical 
investigation into their interrelationship with various financial and commodity markets. A substantial 
body of literature has examined these dynamics across different frequencies, market conditions, and asset 
classes (Fernandes et al., 2023; Hasan et al., 2024; Cagli et al., 2023; Nguyen et al., 2021; Ahmed and 
Kaur, 2025; Tsagkanos et al., 2022; Mezghani et al., 2025; Kocaarslan, 2021; Ghanbari, 2024; Mensi et 
al., 2023; Kaur and Ahmed, 2025). 
Yadav et al. (2025) explored the time- and frequency-domain interlinkages between green bonds, 
renewable energy indices, and cryptocurrencies using dynamic conditional correlation (DCC), Diebold 
and Yilmaz (2012) spillover index, and the Baruník and Kř ehlík (2018) frequency spillover model. Their 
findings suggest that green bonds act as net receivers of volatility spillovers, especially in longer horizons, 
indicating reduced diversification potential in the long term. Similarly, Zeng et al. (2025) applied 
advanced methodologies including TVP-VAR, wavelet coherence, and quantile-based connectedness 
models to assess co-movements among green bonds, cryptocurrencies, and green-energy-related metals. 
They found stronger connectedness post-COVID-19, with green bonds being net recipients of return 
spillovers. 
Focusing on the impact of Bitcoin, Wang et al. (2024) employed the quantile autoregressive distributed 
lag (QARDL) model to assess the asymmetric impact of Bitcoin prices on Chinese green bonds. Their 
results confirmed significant long-term effects, highlighting the necessity of policy interventions to buffer 
market shocks from volatile crypto assets. Hassan et al. (2022) also investigated the spillover effects of 
cryptocurrency environmental attention on green bonds and ESG-related stocks using wavelet and 
quantile regression techniques, identifying negative impacts on green bonds during periods of heightened 
attention. 
In a geopolitical context, Mejri et al. (2025) used wavelet-based quantile analyses and portfolio 
optimization to examine the responses of green bonds, gold, and Bitcoin to geopolitical risk shocks. Their 
study revealed green bonds as stable long-term assets, with greater defensive capacity during uncertainty, 
particularly in variance-minimizing portfolios. 
Oil market dynamics also play a significant role in the behaviour of green bonds. Yousaf et al. (2024) 
found short-term spillovers from oil to green bonds using the BK-18 framework, DCC-GARCH, and 
wavelet coherence. The negative volatility spillovers further supported green bonds as a hedge against oil 
shocks. Wang et al. (2023) confirmed this asymmetric relationship through rolling-window and quantile-
based Granger causality tests, indicating that high oil prices affect green bond indices more severely. In a 
similar line, Azhgaliyeva et al. (2022) analyzed the effects of various oil shocks—supply, demand, and 
speculative—on corporate green bond issuance using multilevel models, concluding that such shocks 
significantly influence issuance probabilities but not issuance shares. 
Exploring the safe-haven role of green bonds, Huang et al. (2022) compared their performance with 
precious metals under extreme conditions using the Baur and McDermott (2010) framework. They 
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concluded that green bonds serve as strong hedges and safe havens, especially during crises like COVID-
19 and geopolitical conflict, outperforming traditional safe assets like gold and silver. Abakah et al. (2023), 
using GARCH-family models and frequency-domain causality tests, found green bonds to be effective 
hedges against gas price volatility, especially shale gas, and highlighted their potential to support low-
carbon transitions. 
Environmental variables such as CO₂ emissions have also been analysed in relation to green bonds. 
Marín-Rodríguez et al. (2022) used DCC-GARCH and Granger causality approaches to identify 
unidirectional causality from green bonds to oil and CO₂ futures, reinforcing the role of green bonds as 
market influencers during crises. Kartal et al. (2024) employed the WLMC method in a sectoral context 
and confirmed that green bonds significantly affect environmental degradation metrics, particularly CO₂ 
emissions, albeit with variations across time and frequency domains. 
 
3. RESEARCH METHODOLOGY 
3.1 Johansen Cointegration 
The Johansen co-integration test, introduced by Johansen in 1988 and 1991, is a multivariate method 
designed to assess the presence of long-term equilibrium relationships among non-stationary time series 
variables that are integrated to the same degree, typically I (1). In contrast to the Engle-Granger two-step 
approach, which is limited to two variables, the Johansen test is capable of handling multiple time series, 
making it more robust in multivariate contexts. 
The methodology is based on the VAR model of order p.  
 
                                                    𝑋𝑡 = 𝐴1𝑋𝑡−1 + 𝐴2𝑋𝑡−2 +⋯+ 𝐴𝑝𝑋𝑡−𝑝 + ε𝑡                                                     
(1) 
where 𝑋𝑡 is an n×1 vector of non-stationary I (1) variables, 𝐴𝑖 are coefficient matrices, and 𝜀 is a vector of 
white noise processes. The Johansen method reformulates this VAR model into a VECM: 
                                                                Δ𝑋𝑡 = Π𝑋𝑡−1 + ∑ Γ𝑖Δ𝑋𝑡−𝑖

𝑝−1
𝑖=1 + ε𝑡                                                       

(2)                           
In the Johansen co-integration framework, the VAR model is transformed into a VECM to capture both 
the short-run and long-run dynamics of the system. In this representation, Δ𝑋𝑡 denotes the differenced 
series of the original non-stationary variables, capturing short-term changes. The matrix Π = ∑ 𝐴𝑖

𝑝
𝑖=1 − 𝐼 

is referred to as the long-run impact matrix, and it contains crucial information about the existence and 
number of co-integrating relationships among the variables. The matrices Γ𝑖 = −∑ 𝐴𝑗

𝑝
𝑗=𝑖+1  represent the 

short-run adjustment dynamics. 
The central component of the Johansen test is the rank of the matrix 𝛱. If rank (𝛱) = 0, there is no co-
integration among the variables, implying that they do not share a long-run equilibrium relationship. 
When 0 < 𝑟𝑎𝑛𝑘(𝛱) = 𝑟 < 𝑛 , it suggests the presence of r co-integrating vectors, meaning that r linear 
combinations of the variables are stationary despite the individual series being non-stationary. If rank 
(𝛱) = 𝑛, it indicates that all variables in the system are stationary in levels. To determine the number of 
co-integrating relationships, the Johansen procedure employs two likelihood ratio test statistics: the trace 
statistic and the maximum eigenvalue statistic. The trace statistic is defined as: 
                                            Trace statistic(𝑟) = −𝑇∑ l n(1 − 𝜆𝑖̂)

𝑛
𝑖=𝑟+1                                                             (3) 

where 𝑇 is the sample size, and 𝜆𝑖̂ are the estimated eigenvalues derived from the Π matrix. This statistic 
tests the null hypothesis that the number of co-integrating vectors is less than or equal to 𝑟, against a 
general alternative. 
 
4. RESULTS AND ANALYSIS 
The descriptive statistics, in table 1 reveal distinct characteristics across the selected financial variables. 
Green bonds (RSPGB) exhibit a near-zero mean return (-0.0018) with moderate volatility, indicating 
stability but a slight left skew and high kurtosis, suggesting occasional extreme losses. The Global 
Commodity Index (RSPGCI) shows a negative average return with high variability and extremely high 
kurtosis (16.12), implying frequent large price swings. The US Dollar Index (RUSDX) is relatively stable 
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with a modest positive mean and low volatility, showing minimal skewness and moderate tail risk. In 
contrast, the Global Equity Index (RMSCIE) displays a positive average return but is highly volatile, left-
skewed, and leptokurtic, pointing to the possibility of large downside movements. Bitcoin (RBTC) stands 
out with extreme volatility and the highest kurtosis (17.83), driven by large outliers and a positive skew. 
Crude oil (ROIL) is also volatile, with a slight negative mean and heavy tails. Overall, the data reflect 
significant non-normality and high-risk characteristics, especially in RBTC and RSPGCI. Further, all the 
series were found to be non-stationary at the level, pre-requisite for the  
Table 1 - Descriptive Statistics 

Statistic RSPGB 
(Green 
Bonds) 

RSPGCI 
(Global 
Commodity 
Index) 

RUSDX 
(US Dollar 
Index) 

RMSCIE 
(Global 
Equity 
Index) 

RBTC 
(Bitcoin) 

ROIL 
(Crude Oil) 

Mean -0.001805 -0.020016 0.006571 0.152714 26.86373 -0.010274 
Median 0.010000 0.360000 0.000000 0.300000 1.100000 0.050000 
Maximum 2.730000 134.6500 2.280000 32.23000 12146.80 8.890000 
Minimum -3.410000 -107.8900 -2.370000 -45.05000 -7955.300 -16.60000 
Std. Dev. 0.484632 14.28747 0.417709 4.744757 1124.397 1.570452 
Skewness -0.255962 -0.169250 -0.129282 -0.863528 0.312550 -0.773404 
Kurtosis 7.175942 16.11910 5.534274 11.95440 17.83531 12.12225 

Source – Author’s Work 
4.1 Johansen Cointegration Test 
The Johansen cointegration test was conducted to examine the presence of any long-run equilibrium 
relationship among six variables: Green Bonds RSPGB, RSPGCI, RUSDX, RMSCIE, RBTC, and ROIL. 
The results indicate that the trace statistic for the null hypothesis of no cointegrating equation is 93.47, 
which is slightly below the 5% critical value of 95.75, with a p-value of 0.0711. Since this p-value is greater 
than the 0.05 threshold, we fail to reject the null hypothesis. Similarly, for all subsequent hypotheses 
(from "at most 1" to "at most 5" cointegrating equations), the trace statistics are significantly lower than 
their respective critical values, and the associated p-values remain high, further supporting the absence of 
cointegration. Therefore, the analysis concludes that there is no statistically significant long-run 
equilibrium relationship among the selected variables, although short-run interdependencies may still 
exist. 
Table 2 - Johansen Cointegration Test 
Unrestricted Cointegration Rank Test (Trace) 

Hypothesized 
No. of CE(s) 

Eigenvalue Trace Statistic 0.05 Critical 
Value 

Prob.** 

None 0.014233 93.46898 95.75366 0.0711 
At most 1 0.007325 49.93355 69.81889 0.6407 
At most 2 0.004651 27.60524 47.85613 0.8304 
At most 3 0.003201 13.44826 29.79707 0.8701 
At most 4 0.001220 3.711082 15.49471 0.9254 
At most 5 8.74E-07 0.002653 3.841466 0.9564 

Trace test indicates no cointegration at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values 
The Johansen cointegration test using the Max-Eigenvalue statistic provides further insights into potential 
long-run relationships among the six variables: Green Bonds, Global Commodity Index, US Dollar Index, 
Global Equity Index, Bitcoin, and Crude Oil. The test reveals that the Max-Eigenvalue statistic for the 
null hypothesis of no cointegrating equation is 43.54, which exceeds the 5% critical value of 40.08, with 
a p-value of 0.0196. This indicates a statistically significant result at the 5% level, suggesting the presence 
of at least one cointegrating relationship. However, for all subsequent hypotheses (from "at most 1" to "at 
most 5"), the Max-Eigen statistics fall well below their respective critical values, and the associated p-values 
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are considerably higher than 0.05, implying no additional cointegrating vectors. In summary, the Max-
Eigenvalue test suggests the existence of a single long-run equilibrium relationship among the variables. 
Table 3 - Table Unrestricted Cointegration Rank Test (Maximum Eigenvalue) 

Hypothesized 
No. of CE(s) 

Eigenvalue Max-Eigen 
Statistic 

0.05 Critical 
Value 

Prob.** 

None* 0.014233 43.53543 40.07757 0.0196 
At most 1 0.007325 22.32831 33.87687 0.5822 
At most 2 0.004651 14.15697 27.58434 0.8116 
At most 3 0.003201 9.737181 21.13162 0.7689 
At most 4 0.001220 3.708429 14.26460 0.8888 
At most 5 8.74E-07 0.002653 3.841466 0.9564 

Max-eigenvalue test indicates 1 cointegrating equation(s) at the 0.05 level 
* denotes rejection of the hypothesis at the 0.05 level 
**MacKinnon-Haug-Michelis (1999) p-values 
4.2 VAR Results 
The Vector Autoregression (VAR) results provide insights into the dynamic interrelationships among the 
six studied variables. The coefficients, standard errors, and t-statistics (in brackets) suggest both significant 
and insignificant influences across lagged variables. 
Focusing on the equation for RSPGB, its own first lag has a significantly negative impact (coefficient = -
0.1227, t = -4.76), indicating a strong mean-reverting behaviour. RSPGB also responds negatively to its 
second lag and the first lag of RUSDX (t = -3.27), suggesting that a stronger dollar index reduces green 
bond returns. RMSCIE(-2) has a positive and significant effect, highlighting some delayed influence from 
global equities. In the RSPGCI equation, its own lags are highly significant (t = 6.70 and 4.18), implying 
strong autoregressive behavior. Other variables, however, exert limited influence. The US Dollar Index is 
significantly affected by its own lags and by RMSCIE(-1), which has a strong negative impact (t = -5.08), 
indicating that rising equity markets may dampen the dollar. 
RMSCIE shows strong self-dependence (t > 3.8) and is also positively influenced by RSPGB(-2) and 
RUSDX(-1), suggesting feedback from green bonds and the dollar. Bitcoin (RBTC) displays minimal 
significant influence across the system except for its own lag (RBTC(-1), t = -2.75), reflecting volatility with 
limited spillover effects. Crude oil (ROIL) reacts significantly to its own second lag (t = -2.22) and RSPGB(-
1), implying some backward-looking response and weak connections with green bonds. Overall, the 
system is marked by significant own-lag effects, weak cross-variable spillovers, and meaningful 
interdependence particularly between green bonds, dollar index, and global equities. 
Table 4 - VAR Results 

Variable RSPGB RSPGCI RUSDX RMSCIE RBTC ROIL 
RSPGB(-1) -0.122660 

(0.02575) 
[-4.76271] 

0.165310 
(0.77754) 
[0.21261] 

-0.074678 
(0.02287) 
[-3.26602] 

-0.476827 
(0.25986) 
[-1.83495] 

-17.47612 
(61.4932) 
[-0.28420] 

0.092238 
(0.08640) 
[1.06760] 

RSPGB(-2) -0.015495 
(0.02465) 
[-0.62868] 

1.277313 
(0.74410) 
[1.71659] 

-0.010109 
(0.02188) 
[-0.46199] 

0.499491 
(0.24868) 
[2.00855] 

86.80599 
(58.8483) 
[1.47508] 

-0.079571 
(0.08268) 
[-0.96238] 

RSPGCI(-
1) 

0.000818 
(0.00060) 
[1.36276] 

0.121317 
(0.01812) 
[6.69513] 

-0.000515 
(0.00053) 
[-0.96617] 

0.001170 
(0.00606) 
[0.19319] 

0.829881 
(1.43306) 
[0.57910] 

0.001652 
(0.00201) 
[0.82051] 

RSPGCI(-
2) 

-0.000937 
(0.00060) 
[-1.56362] 

0.075554 
(0.01810) 
[4.17534] 

0.000968 
(0.00053) 
[1.81868] 

0.003105 
(0.00605) 
[0.51345] 

0.968475 
(1.43109) 
[0.67674] 

0.002577 
(0.00201) 
[1.28143] 

RUSDX(-1) -0.292816 
(0.02881) 
[-10.1643] 

0.143369 
(0.86975) 
[0.16484] 

-0.075008 
(0.02558) 
[-2.93269] 

-0.768339 
(0.29067) 
[-2.64331] 

16.24605 
(68.7851) 
[0.23619] 

0.193086 
(0.09664) 
[1.99796] 
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RUSDX(-2) -0.059770 
(0.02921) 
[-2.04606] 

0.906678 
(0.88194) 
[1.02805] 

-0.029605 
(0.02594) 
[-1.14149] 

0.056728 
(0.29475) 
[0.19246] 

57.73459 
(69.7492) 
[0.82775] 

0.078638 
(0.09800) 
[0.80246] 

RMSCIE(-
1) 

0.016523 
(0.00197) 
[8.37335] 

-0.081539 
(0.05958) 
[-1.36865] 

-0.008898 
(0.00175) 
[-5.07894] 

0.075743 
(0.01991) 
[3.80416] 

2.447166 
(4.71166) 
[0.51939] 

0.016218 
(0.00662) 
[2.44988] 

RMSCIE(-
2) 

0.004418 
(0.00200) 
[2.20686] 

-0.016959 
(0.06044) 
[-0.28061] 

0.002905 
(0.00178) 
[1.63459] 

0.041172 
(0.02020) 
[2.03840] 

2.161160 
(4.77966) 
[0.45216] 

0.015757 
(0.00672) 
[2.34647] 

RBTC(-1) 1.90E-07 
(7.9E-06) 
[0.02417] 

0.000411 
(0.00024) 
[1.72668] 

4.72E-06 
(7.0E-06) 
[0.67504] 

0.000127 
(7.9E-05) 
[1.59272] 

-0.051786 
(0.01881) 
[-2.75309] 

2.49E-05 
(2.6E-05) 
[0.94295] 

RBTC(-2) -1.55E-05 
(7.9E-06) 
[-1.96438] 

-0.000130 
(0.00024) 
[-0.54395] 

1.24E-05 
(7.0E-06) 
[1.77213] 

-3.88E-05 
(8.0E-05) 
[-0.48675] 

0.019337 
(0.01885) 
[1.02563] 

-1.06E-05 
(2.6E-05) 
[-0.40205] 

ROIL(-1) -0.014161 
(0.00557) 
[-2.54148] 

0.010685 
(0.16822) 
[0.06352] 

-0.003979 
(0.00495) 
[-0.80444] 

-0.050045 
(0.05622) 
[-0.89017] 

9.309275 
(13.3039) 
[0.69974] 

0.008946 
(0.01869) 
[0.47860] 

ROIL(-2) -0.002545 
(0.00558) 
[-0.45590] 

-0.021508 
(0.16857) 
[-0.12759] 

-0.004210 
(0.00496) 
[-0.84927] 

0.080817 
(0.05634) 
[1.43457] 

3.590330 
(13.3313) 
[0.26932] 

-0.041624 
(0.01873) 
[-2.22231] 

C -0.002405 
(0.00849) 
[-0.28318] 

-0.019904 
(0.25638) 
[-0.07763] 

0.007863 
(0.00754) 
[1.04298] 

0.139253 
(0.08568) 
[1.62522] 

27.30044 
(20.2760) 
[1.34644] 

-0.017795 
(0.02849) 
[-0.62465] 

 
4.3 Granger Causality Results 
The Granger causality test examines whether past values of one variable help predict another. The results 
indicate that most relationships among the variables are statistically insignificant at the 5% level. 
Specifically, there is no evidence of bidirectional Granger causality between Green Bonds and Global 
Commodity Index, Crude Oil, or Bitcoin, as all p-values exceed 0.05. However, Global Equity Index 
significantly Granger-causes Green Bonds (F = 18.11, p < 0.01), suggesting that movements in global 
equities help predict green bond returns, but the reverse is not true. There is also no significant causality 
between USD Index  and SPGCI, nor between USDX and Oil, or Bitcoin. Interestingly, MSCIE Granger-
causes USDX (F = 8.31, p < 0.01), and USDX Granger-causes MSCIE (F = 3.19, p = 0.0071), indicating 
a bidirectional relationship between equity markets and the dollar index. Similarly, SPGCI Granger-
causes BTC (p = 0.0492), suggesting that commodity prices may influence Bitcoin in the short run. Lastly, 
MSCIE Granger-causes Oil (p = 0.0214), but not the other way around. 
Overall, the results highlight the predictive power of global equity markets across multiple variables, 
including green bonds, oil, and the dollar index. However, green bonds themselves appear to have limited 
predictive influence, emphasizing their role more as a dependent variable within the system. 
Table 5 Granger Causality 

Null Hypothesis F-Statistic Prob. 
SPGCI does not Granger 
Cause SPGB 

1.08740 0.3651 

SPGB does not Granger Cause 
SPGCI 

1.07558 0.3718 

OIL does not Granger Cause 
SPGB 

1.85845 0.0983 

SPGB does not Granger Cause 
OIL 

1.48262 0.1920 
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MSCIE does not Granger 
Cause SPGB 

18.1131 9.E-18 

SPGB does not Granger Cause 
MSCIE 

1.75059 0.1197 

BTC does not Granger Cause 
SPGB 

2.19444 0.0522 

SPGB does not Granger Cause 
BTC 

0.85212 0.5127 

USDX does not Granger 
Cause SPGCI 

0.93430 0.4574 

SPGCI does not Granger 
Cause USDX 

0.90814 0.4746 

OIL does not Granger Cause 
SPGCI 

0.07574 0.9959 

SPGCI does not Granger 
Cause OIL 

0.88165 0.4924 

MSCIE does not Granger 
Cause SPGCI 

1.23151 0.2915 

SPGCI does not Granger 
Cause MSCIE 

1.13572 0.3390 

BTC does not Granger Cause 
SPGCI 

1.45590 0.2010 

SPGCI does not Granger 
Cause BTC 

2.22582 0.0492 

OIL does not Granger Cause 
USDX 

1.56108 0.1677 

USDX does not Granger 
Cause OIL 

0.88375 0.4910 

MSCIE does not Granger 
Cause USDX 

8.31443 8.E-08 

USDX does not Granger 
Cause MSCIE 

3.18812 0.0071 

BTC does not Granger Cause 
USDX 

1.46813 0.1969 

USDX does not Granger 
Cause BTC 

1.10287 0.3566 

MSCIE does not Granger 
Cause OIL 

2.64922 0.0214 

OIL does not Granger Cause 
MSCIE 

1.31359 0.2551 

BTC does not Granger Cause 
OIL 

1.14454 0.3344 

OIL does not Granger Cause 
BTC 

0.82430 0.5322 

BTC does not Granger Cause 
MSCIE 

1.50693 0.1842 

MSCIE does not Granger 
Cause BTC 

2.04382 0.0696 
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5. CONCLUSION  
The results from the Granger causality tests and VAR analysis provide important insights into the 
interconnectedness of green bonds with major global financial and commodity markets. A key finding is 
the strong predictive influence of the Global Equity Index (MSCIE) on Green Bonds (SPGB), while green 
bonds themselves do not significantly influence other variables. This suggests that green bond 
performance is highly responsive to global equity market trends, which may reflect broader investor 
sentiment, macroeconomic conditions, and the availability of green investment capital that often 
correlates with bullish equity markets. Similarly, the bidirectional causality between MSCIE and the US 
Dollar Index (USDX) reflects the close interaction between global stock markets and currency 
movements, possibly driven by capital flows and interest rate expectations. 
The lack of causality between green bonds and traditional assets like crude oil and Bitcoin could be due 
to their differing investor bases, time horizons, and risk-return characteristics. Green bonds are typically 
held by long-term, risk-averse institutional investors seeking stable returns and sustainability alignment, 
whereas oil and Bitcoin are more volatile, speculative assets. The non-significant causal influence of SPGB 
on commodities or Bitcoin reinforces the idea that green bonds may act more as followers rather than 
drivers in global asset dynamics. 
The VAR results further support this interpretation by showing that green bonds are significantly 
influenced by their own lags and by global equity and currency movements, rather than exerting influence 
outward. Moreover, Bitcoin and crude oil exhibit minimal spillover effects into the green bond market, 
which aligns with their largely uncorrelated fundamentals and market structures. Overall, the findings 
highlight that green bonds are more reactive than influential in the global financial system, possibly due 
to their relatively newer status, lower liquidity, and the niche nature of ESG investing compared to 
conventional asset classes. 
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