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Abstract

This study explores the dynamic interactions between green bonds and major global financial indicators,
green bonds, global commodity and equity indices, Bitcoin, crude oil, and US dollar index, employing
Granger causality tests and a Vector Autoregression (VAR) framework. The empirical results underscore
the responsiveness of green bonds, represented by the S&P Green Bond Index (SPGB), to global equity
market movements, particularly the MSCI Global Equity Index (MSCIE). A strong unidirectional
causality from MSCIE to SPGB suggests that green bond performance is shaped significantly by trends in
global equity markets, reflecting broader macroeconomic sentiment and capital availability for sustainable
investments. Additionally, the bidirectional causality between MSCIE and the US Dollar Index (USDX)
illustrates the tight interlinkage between currency dynamics and global equity flows. In contrast, the
analysis finds no significant causal relationship between green bonds and more speculative or volatile
assets such as crude oil and Bitcoin, likely due to differences in investor profiles, investment horizons,
and market structures. The VAR results further validate that green bonds are primarily influenced by
their own lags and by equity and currency markets, with limited influence on other assets. These findings
suggest that green bonds currently play a reactive rather than leading role in the global financial ecosystem,
shaped by their emerging status, relatively lower liquidity, and alignment with ESG-focused investment
mandates.

Keywords - Green Bonds, Global Equity Index, US Dollar Index, Crude Qil, Bitcoin, Sustainable Finance,
Financial Market Integration

1. INTRODUCTION

The intersection of sustainability and finance has garnered significant academic and policy interest in
recent years, particularly with the emergence of green bonds as a pivotal instrument in mobilizing capital
for climate-resilient infrastructure and environmentally sustainable development. Green bonds—debt
securities issued to finance projects with positive environmental outcomes—have evolved from niche
financial products into globally recognized vehicles supporting the transition to a low-carbon economy.
As climate change, environmental degradation, and energy transition dominate global economic
discourse, understanding the dynamic interactions of green bonds with traditional and emerging financial
indicators has become crucial.

The literature increasingly emphasizes the complex linkages between green bonds and key financial
variables, including oil prices, cryptocurrencies, renewable energy indices, and environmental risk factors.
For instance, Yadav et al. (2025) demonstrated that green bonds, while receiving volatility spillovers from
renewable energy and crypto markets, provide limited short-term diversification but exhibit stronger
interdependence over longer horizons. Similarly, Zeng et al. (2025) reported intensified return
connectedness between green bonds and both green energy-related metals and cryptocurrencies,
particularly in the postCOVID-19 period. This interconnectedness suggests that green bonds are not
insulated from broader financial market dynamics and may serve both as recipients and transmitters of
risk.

Moreover, oil and energy markets significantly influence green bond performance. Empirical evidence
points to negative volatility spillovers from crude oil to green bonds (Yousaf et al., 2024), while certain
studies find green bonds acting as effective hedging instruments against oil price shocks (Huang et al.,
2022). Wang et al. (2023) uncovered asymmetric and quantile-dependent relationships between oil prices
and green bond indices, further highlighting the contextual sensitivity of this nexus. Additionally, the
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role of cryptocurrencies—especially Bitcoin—has gained traction. Wang et al. (2024) noted long-term
significant effects of Bitcoin prices on the Chinese green bond market, underscoring the need for
regulatory oversight to safeguard green finance from crypto-induced volatility.

Environmental and geopolitical risks also shape green bond dynamics. Mejri et al. (2025) established that
green bonds offer long-term stability under geopolitical stress, functioning as defensive assets in diversified
portfolios. Meanwhile, Kartal et al. (2024) and Marin-Rodriguez et al. (2022) emphasized the feedback
mechanisms between green bonds, CO, emissions, and environmental degradation, revealing the role of
green bonds not just as financial tools but as environmental signals.

Against this backdrop, decoding the sustainability-finance nexus requires a granular understanding of
how green bonds interact with global financial indicators across time and frequency domains. This
investigation is essential for investors, policymakers, and regulators aiming to leverage green bonds as
tools for financial resilience and environmental sustainability. The present study seeks to contribute to
this emerging discourse by mapping these multifaceted relationships, thereby illuminating the positioning
of green bonds in the global financial ecosystem.

2. LITERATURE REVIEW

The growing prominence of green bonds as a tool for sustainable finance has attracted extensive empirical
investigation into their interrelationship with various financial and commodity markets. A substantial
body of literature has examined these dynamics across different frequencies, market conditions, and asset
classes (Fernandes et al., 2023; Hasan et al., 2024; Cagli et al., 2023; Nguyen et al., 2021; Ahmed and
Kaur, 2025; Tsagkanos et al., 2022; Mezghani et al., 2025; Kocaarslan, 2021; Ghanbari, 2024; Mensi et
al., 2023; Kaur and Ahmed, 2025).

Yadav et al. (2025) explored the time- and frequency-domain interlinkages between green bonds,
renewable energy indices, and cryptocurrencies using dynamic conditional correlation (DCC), Diebold
and Yilmaz (2012) spillover index, and the Barunik and Kiehlik (2018) frequency spillover model. Their
findings suggest that green bonds act as net receivers of volatility spillovers, especially in longer horizons,
indicating reduced diversification potential in the long term. Similarly, Zeng et al. (2025) applied
advanced methodologies including TVP-VAR, wavelet coherence, and quantile-based connectedness
models to assess co-movements among green bonds, cryptocurrencies, and green-energy-related metals.
They found stronger connectedness post-COVID-19, with green bonds being net recipients of return
spillovers.

Focusing on the impact of Bitcoin, Wang et al. (2024) employed the quantile autoregressive distributed
lag (QARDL) model to assess the asymmetric impact of Bitcoin prices on Chinese green bonds. Their
results confirmed significant long-term effects, highlighting the necessity of policy interventions to buffer
market shocks from volatile crypto assets. Hassan et al. (2022) also investigated the spillover effects of
cryptocurrency environmental attention on green bonds and ESG-related stocks using wavelet and
quantile regression techniques, identifying negative impacts on green bonds during periods of heightened
attention.

In a geopolitical context, Mejri et al. (2025) used wavelet-based quantile analyses and portfolio
optimization to examine the responses of green bonds, gold, and Bitcoin to geopolitical risk shocks. Their
study revealed green bonds as stable long-term assets, with greater defensive capacity during uncertainty,
particularly in variance-minimizing portfolios.

Oil market dynamics also play a significant role in the behaviour of green bonds. Yousaf et al. (2024)
found shortterm spillovers from oil to green bonds using the BK-18 framework, DCC-GARCH, and
wavelet coherence. The negative volatility spillovers further supported green bonds as a hedge against oil
shocks. Wang et al. (2023) confirmed this asymmetric relationship through rolling-window and quantile-
based Granger causality tests, indicating that high oil prices affect green bond indices more severely. In a
similar line, Azhgaliyeva et al. (2022) analyzed the effects of various oil shocks—supply, demand, and
speculative—on corporate green bond issuance using multilevel models, concluding that such shocks
significantly influence issuance probabilities but not issuance shares.

Exploring the safe-haven role of green bonds, Huang et al. (2022) compared their performance with
precious metals under extreme conditions using the Baur and McDermott (2010) framework. They

2359


https://theaspd.com/index.php/ijes

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, (2025)
https://theaspd.com/index.php/ijes

concluded that green bonds serve as strong hedges and safe havens, especially during crises like COVID-
19 and geopolitical conflict, outperforming traditional safe assets like gold and silver. Abakah et al. (2023),
using GARCH-family models and frequency-domain causality tests, found green bonds to be effective
hedges against gas price volatility, especially shale gas, and highlighted their potential to support low-
carbon transitions.

Environmental variables such as CO, emissions have also been analysed in relation to green bonds.
Marin-Rodriguez et al. (2022) used DCC-GARCH and Granger causality approaches to identify
unidirectional causality from green bonds to oil and CO,, futures, reinforcing the role of green bonds as
market influencers during crises. Kartal et al. (2024) employed the WLMC method in a sectoral context
and confirmed that green bonds significantly affect environmental degradation metrics, particularly CO,
emissions, albeit with variations across time and frequency domains.

3. RESEARCH METHODOLOGY

3.1 Johansen Cointegration

The Johansen co-integration test, introduced by Johansen in 1988 and 1991, is a multivariate method
designed to assess the presence of long-term equilibrium relationships among non-stationary time series
variables that are integrated to the same degree, typically I (1). In contrast to the Engle-Granger two-step
approach, which is limited to two variables, the Johansen test is capable of handling multiple time series,
making it more robust in multivariate contexts.

The methodology is based on the VAR model of order p.

X = AyXeoy + AgXeg + -+ ApXo_p + &

(1)

where X; is an nx 1 vector of non-stationary I (1) variables, Ai are coefficient matrices, and € is a vector of
white noise processes. The Johansen method reformulates this VAR model into a VECM:

AXy = TIX,_; + X TAX,; + ¢

)

In the Johansen co-integration framework, the VAR model is transformed into a VECM to capture both
the shortrun and longrun dynamics of the system. In this representation, AX; denotes the differenced
series of the original non-stationary variables, capturing short-term changes. The matrix IT = Z?zl A —1

is referred to as the long-run impact matrix, and it contains crucial information about the existence and

p

number of co-integrating relationships among the variables. The matrices I[; = — )} j=i+1Aj represent the

short-run adjustment dynamics.

The central component of the Johansen test is the rank of the matrix I1. If rank (IT) = 0, there is no co-
integration among the variables, implying that they do not share a long-run equilibrium relationship.
When 0 < rank(Il) = r < n, it suggests the presence of r co-integrating vectors, meaning that r linear
combinations of the variables are stationary despite the individual series being non-stationary. If rank
(IT) = n, it indicates that all variables in the system are stationary in levels. To determine the number of
co-integrating relationships, the Johansen procedure employs two likelihood ratio test statistics: the trace
statistic and the maximum eigenvalue statistic. The trace statistic is defined as:

Trace statistic(r) = =T X1, 411 n(l — /Tl) 3)
where T is the sample size, and 4, are the estimated eigenvalues derived from the IT matrix. This statistic
tests the null hypothesis that the number of co-integrating vectors is less than or equal to r, against a
general alternative.

4. RESULTS AND ANALYSIS

The descriptive statistics, in table 1 reveal distinct characteristics across the selected financial variables.
Green bonds (RSPGB) exhibit a near-zero mean return (-0.0018) with moderate volatility, indicating
stability but a slight left skew and high kurtosis, suggesting occasional extreme losses. The Global
Commodity Index (RSPGCI) shows a negative average return with high variability and extremely high
kurtosis (16.12), implying frequent large price swings. The US Dollar Index (RUSDX) is relatively stable
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with a modest positive mean and low volatility, showing minimal skewness and moderate tail risk. In
contrast, the Global Equity Index (RMSCIE) displays a positive average return but is highly volatile, left-
skewed, and leptokurtic, pointing to the possibility of large downside movements. Bitcoin (RBTC) stands
out with extreme volatility and the highest kurtosis (17.83), driven by large outliers and a positive skew.
Crude oil (ROIL) is also volatile, with a slight negative mean and heavy tails. Overall, the data reflect
significant non-normality and high-risk characteristics, especially in RBTC and RSPGCI. Further, all the
series were found to be non-stationary at the level, pre-requisite for the

Table 1 - Descriptive Statistics

Statistic RSPGB RSPGCI RUSDX RMSCIE RBTC ROIL
(Green (Global (US Dollar | (Global (Bitcoin) (Crude Oil)
Bonds) Commodity | Index) Equity
Index) Index)
Mean -0.001805 | -0.020016 0.006571 0.152714 26.86373 -0.010274

Median 0.010000 0.360000 0.000000 0.300000 1.100000 0.050000
Maximum | 2.730000 134.6500 2.280000 32.23000 12146.80 8.890000
Minimum | -3.410000 | -107.8900 | -2.370000 | -45.05000 |-7955.300 | -16.60000
Std. Dev. 0.484632 14.28747 0.417709 4.744757 1124.397 1.570452
Skewness A0.255962 | 0.169250 | -0.129282 | -0.863528 | 0.312550 0.773404
Kurtosis 7.175942 16.11910 5.534274 11.95440 17.83531 12.12225
Source — Author’s Work

4.1 Johansen Cointegration Test

The Johansen cointegration test was conducted to examine the presence of any long-run equilibrium
relationship among six variables: Green Bonds RSPGB, RSPGCI, RUSDX, RMSCIE, RBTC, and ROIL.
The results indicate that the trace statistic for the null hypothesis of no cointegrating equation is 93.47,
which is slightly below the 5% critical value of 95.75, with a p-value of 0.0711. Since this p-value is greater
than the 0.05 threshold, we fail to reject the null hypothesis. Similarly, for all subsequent hypotheses
(from "at most 1" to "at most 5" cointegrating equations), the trace statistics are significantly lower than
their respective critical values, and the associated p-values remain high, further supporting the absence of
cointegration. Therefore, the analysis concludes that there is no statistically significant long-run
equilibrium relationship among the selected variables, although short-run interdependencies may still
exist.

Table 2 - Johansen Cointegration Test

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Eigenvalue Trace Statistic 0.05 Critical | Prob.**

No. of CE(s) Value

None 0.014233 93.46898 95.75366 0.0711

At most 1 0.007325 49.93355 69.81889 0.6407

At most 2 0.004651 27.60524 47.85613 0.8304

At most 3 0.003201 13.44826 29.79707 0.8701

At most 4 0.001220 3.711082 15.49471 0.9254

At most 5 8.74E-07 0.002653 3.841466 0.9564
Trace test indicates no cointegration at the 0.05 level
* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values

The Johansen cointegration test using the Max-Eigenvalue statistic provides further insights into potential
long-run relationships among the six variables: Green Bonds, Global Commodity Index, US Dollar Index,
Global Equity Index, Bitcoin, and Crude Oil. The test reveals that the Max-Eigenvalue statistic for the
null hypothesis of no cointegrating equation is 43.54, which exceeds the 5% critical value of 40.08, with
a p-value of 0.0196. This indicates a statistically significant result at the 5% level, suggesting the presence
of at least one cointegrating relationship. However, for all subsequent hypotheses (from "at most 1" to "at
most 5"), the Max-Eigen statistics fall well below their respective critical values, and the associated p-values
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are considerably higher than 0.05, implying no additional cointegrating vectors. In summary, the Max-
Eigenvalue test suggests the existence of a single long-run equilibrium relationship among the variables.
Table 3 - Table Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Eigenvalue Max-Eigen 0.05 Critical | Prob.**

No. of CE(s) Statistic Value

None* 0.014233 43.53543 40.07757 0.0196

At most 1 0.007325 22.32831 33.87687 0.5822

At most 2 0.004651 14.15697 27.58434 0.8116

At most 3 0.003201 9.737181 21.13162 0.7689

At most 4 0.001220 3.708429 14.26460 0.8888

At most 5 8.74E-07 0.002653 3.841466 0.9564
Max-eigenvalue  test  indicates 1  cointegrating  equation(s) at the  0.05 level
* denotes rejection of the hypothesis at the 0.05 level

**MacKinnon-Haug-Michelis (1999) p-values
4.2 VAR Results

The Vector Autoregression (VAR) results provide insights into the dynamic interrelationships among the
six studied variables. The coefficients, standard errors, and t-statistics (in brackets) suggest both significant
and insignificant influences across lagged variables.

Focusing on the equation for RSPGB, its own first lag has a significantly negative impact (coefficient = -
0.1227, t = -4.76), indicating a strong mean-reverting behaviour. RSPGB also responds negatively to its
second lag and the first lag of RUSDX (t = -3.27), suggesting that a stronger dollar index reduces green
bond returns. RMSCIE(-2) has a positive and significant effect, highlighting some delayed influence from
global equities. In the RSPGCI equation, its own lags are highly significant (t = 6.70 and 4.18), implying
strong autoregressive behavior. Other variables, however, exert limited influence. The US Dollar Index is
significantly affected by its own lags and by RMSCIE(-1), which has a strong negative impact (t = -5.08),
indicating that rising equity markets may dampen the dollar.

RMSCIE shows strong self-dependence (t > 3.8) and is also positively influenced by RSPGB(-2) and
RUSDX(-1), suggesting feedback from green bonds and the dollar. Bitcoin (RBTC) displays minimal
significant influence across the system except for its own lag (RBTC(-1), t =-2.75), reflecting volatility with
limited spillover effects. Crude oil (ROIL) reacts significantly to its own second lag (t =-2.22) and RSPGB(-
1), implying some backward-looking response and weak connections with green bonds. Overall, the
system is marked by significant own-lag effects, weak cross-variable spillovers, and meaningful
interdependence particularly between green bonds, dollar index, and global equities.

Table 4 - VAR Results

Variable RSPGB RSPGCI RUSDX RMSCIE RBTC ROIL
RSPGB(-1) |-0.122660 | 0.165310 |-0.074678 | -0.476827 |-17.47612 | 0.092238
(0.02575) | (0.77754) | (0.02287) | (0.25986) | (61.4932) | (0.08640)
[-4.76271] | [0.21261] [-3.26602] | [-1.83495] | [-0.28420] | [1.06760]
RSPGB(-2) |-0.015495 | 1.277313 -0.010109 | 0.499491 86.80599 | -0.079571
(0.02465) | (0.74410) | (0.02188) | (0.24868) | (58.8483) | (0.08268)
[-0.62868] | [1.71659] [-0.46199] | [2.00855] [1.47508] [-0.96238]
RSPGCI(- | 0.000818 0.121317 -0.000515 | 0.001170 0.829881 0.001652
1) (0.00060) | (0.01812) | (0.00053) | (0.00606) | (1.43306) | (0.00201)
[1.36276] [6.69513] [0.96617] | [0.19319] [0.57910] [0.82051]
RSPGCI(- | -0.000937 | 0.075554 0.000968 0.003105 0.968475 0.002577
2) (0.00060) | (0.01810) | (0.00053) | (0.00605) | (1.43109) | (0.00201)
[1.56362] | [4.17534] [1.81868] [0.51345] [0.67674] [1.28143]
RUSDX(-1) | -0.292816 | 0.143369 | -0.075008 | -0.768339 | 16.24605 0.193086
(0.02881) | (0.86975) | (0.02558) | (0.29067) | (68.7851) | (0.09664)
[-10.1643] | [0.16484] [-2.93269] | [-2.64331] |[0.23619] [1.99796]
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RUSDX(-2) | -0.059770 | 0.906678 | -0.029605 | 0.056728 57.73459 0.078638
(0.02921) | (0.88194) | (0.02594) | (0.29475) | (69.7492) | (0.09800)
[-2.04606] | [1.02805] [-1.14149] | [0.19246] [0.82775] [0.80246]
RMSCIE(- | 0.016523 -0.081539 | 0.008898 | 0.075743 2.447166 0.016218
1) (0.00197) | (0.05958) | (0.00175) | (0.01991) | (4.71166) | (0.00662)
[8.37335] [[1.36865] | [-5.07894] | [3.80416] [0.51939] (2.44988]
RMSCIE(- | 0.004418 -0.016959 | 0.002905 0.041172 2.161160 0.015757
2) (0.00200) | (0.06044) | (0.00178) | (0.02020) | (4.77966) | (0.00672)
[2.20686] [-0.28061] | [1.63459] (2.03840] [0.45216] (2.34647]
RBTC(-1) 1.90E-07 0.000411 4.72E-06 0.000127 -0.051786 | 2.49E-05

(7.9E-06) (0.00024) | (7.0E-06) (7.9E-05) (0.01881) | (2.6E-05)

[0.02417] [1.72668] [0.67504] [1.59272] [-2.75309] | [0.94295]
RBTC(-2) |-1.55E-05 -0.000130 | 1.24E-05 -3.88E-05 0.019337 -1.06E-05
(7.9E-06) (0.00024) | (7.0E-06) (8.0E-05) (0.01885) | (2.6E-05)

[[(1.96438] | [0.54395] | [1.77213] [-0.48675] | [1.02563] [-0.40205]
ROIL(-1) 0.014161 | 0.010685 -0.003979 | 0.050045 | 9.309275 0.008946
(0.00557) | (0.16822) | (0.00495) | (0.05622) |(13.3039) | (0.01869)
[-2.54148] | [0.06352] [-0.80444] | [0.89017] | [0.69974] [0.47860]
ROIL(-2) 0.002545 | -0.021508 | -0.004210 | 0.080817 3.590330 | -0.041624
(0.00558) | (0.16857) | (0.00496) | (0.05634) |(13.3313) | (0.01873)
[0.45590] | [0.12759] | [-:0.84927] | [1.43457] [0.26932] [-2.22231]
C -0.002405 | -0.019904 | 0.007863 0.139253 27.30044 | -0.017795
(0.00849) | (0.25638) | (0.00754) | (0.08568) | (20.2760) | (0.02849)
[0.28318] | [0.07763] | [1.04298] [1.62522] [1.34644] [-0.62465]

4.3 Granger Causality Results

The Granger causality test examines whether past values of one variable help predict another. The results
indicate that most relationships among the variables are statistically insignificant at the 5% level.
Specifically, there is no evidence of bidirectional Granger causality between Green Bonds and Global
Commodity Index, Crude Oil, or Bitcoin, as all p-values exceed 0.05. However, Global Equity Index
significantly Granger-causes Green Bonds (F = 18.11, p < 0.01), suggesting that movements in global
equities help predict green bond returns, but the reverse is not true. There is also no significant causality
between USD Index and SPGCI, nor between USDX and Qil, or Bitcoin. Interestingly, MSCIE Granger-
causes USDX (F = 8.31, p < 0.01), and USDX Granger-causes MSCIE (F = 3.19, p = 0.0071), indicating
a bidirectional relationship between equity markets and the dollar index. Similarly, SPGCI Granger-
causes BTC (p = 0.0492), suggesting that commodity prices may influence Bitcoin in the short run. Lastly,
MSCIE Granger-causes Qil (p = 0.0214), but not the other way around.

Overall, the results highlight the predictive power of global equity markets across multiple variables,
including green bonds, oil, and the dollar index. However, green bonds themselves appear to have limited
predictive influence, emphasizing their role more as a dependent variable within the system.

Table 5 Granger Causality

Null Hypothesis F-Statistic Prob.
SPGCI does not Granger | 1.08740 0.3651
Cause SPGB

SPGB does not Granger Cause | 1.07558 0.3718
SPGCI

OIL does not Granger Cause | 1.85845 0.0983
SPGB

SPGB does not Granger Cause | 1.48262 0.1920
OIL
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Cause BTC

MSCIE does not Granger | 18.1131 9.E-18
Cause SPGB

SPGB does not Granger Cause | 1.75059 0.1197
MSCIE

BTC does not Granger Cause | 2.19444 0.0522
SPGB

SPGB does not Granger Cause | 0.85212 0.5127
BTC

USDX does not Granger | 0.93430 0.4574
Cause SPGCI

SPGCI does not Granger | 0.90814 0.4746
Cause USDX

OIL does not Granger Cause | 0.07574 0.9959
SPGCI

SPGCI does not Granger | 0.88165 0.4924
Cause OIL

MSCIE does not Granger | 1.23151 0.2915
Cause SPGCI

SPGCI does not Granger | 1.13572 0.3390
Cause MSCIE

BTC does not Granger Cause | 1.45590 0.2010
SPGCI

SPGCI does not Granger | 2.22582 0.0492
Cause BTC

OIL does not Granger Cause | 1.56108 0.1677
USDX

USDX does not Granger | 0.88375 0.4910
Cause OIL

MSCIE does not Granger | 8.31443 8.E-08
Cause USDX

USDX does not Granger | 3.18812 0.0071
Cause MSCIE

BTC does not Granger Cause | 1.46813 0.1969
USDX

USDX does not Granger | 1.10287 0.3566
Cause BTC

MSCIE does not Granger | 2.64922 0.0214
Cause OIL

OIL does not Granger Cause | 1.31359 0.2551
MSCIE

BTC does not Granger Cause | 1.14454 0.3344
OIL

OIL does not Granger Cause | 0.82430 0.5322
BTC

BTC does not Granger Cause | 1.50693 0.1842
MSCIE

MSCIE does not Granger | 2.04382 0.0696
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5. CONCLUSION

The results from the Granger causality tests and VAR analysis provide important insights into the
interconnectedness of green bonds with major global financial and commodity markets. A key finding is
the strong predictive influence of the Global Equity Index (MSCIE) on Green Bonds (SPGB), while green
bonds themselves do not significantly influence other variables. This suggests that green bond
performance is highly responsive to global equity market trends, which may reflect broader investor
sentiment, macroeconomic conditions, and the availability of green investment capital that often
correlates with bullish equity markets. Similarly, the bidirectional causality between MSCIE and the US
Dollar Index (USDX) reflects the close interaction between global stock markets and currency
movements, possibly driven by capital flows and interest rate expectations.

The lack of causality between green bonds and traditional assets like crude oil and Bitcoin could be due
to their differing investor bases, time horizons, and risk-return characteristics. Green bonds are typically
held by long-term, risk-averse institutional investors seeking stable returns and sustainability alignment,
whereas oil and Bitcoin are more volatile, speculative assets. The non-significant causal influence of SPGB
on commodities or Bitcoin reinforces the idea that green bonds may act more as followers rather than
drivers in global asset dynamics.

The VAR results further support this interpretation by showing that green bonds are significantly
influenced by their own lags and by global equity and currency movements, rather than exerting influence
outward. Moreover, Bitcoin and crude oil exhibit minimal spillover effects into the green bond market,
which aligns with their largely uncorrelated fundamentals and market structures. Overall, the findings
highlight that green bonds are more reactive than influential in the global financial system, possibly due
to their relatively newer status, lower liquidity, and the niche nature of ESG investing compared to
conventional asset classes.
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