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Abstract In today’s data-driven world, safeguarding the privacy and security of sensitive medical information particularly
diseaserelated data has become a pressing concern. This research investigates the application of federated learning,
differential privacy, and federated averaging to enable secure and private analysis of healthcare data. A novel framework
is proposed that integrates these advanced privacy-preserving techniques to ensure individual data remains confidential
while allowing collaborative analytics among various healthcare institutions. Through simulations and experimental
evaluations, the framework’s ability to protect patient privacy without compromising data utility is assessed. The results
highlight the potential of this approach to support secure data sharing and analysis in modern healthcare environments,
contributing to the advancement of privacy-centric health data solutions.
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1. INTRODUCTION
Differential privacy is a principle and methodology used in privacy-aware data analysis and statistical
processing. It aims to solve the problem of gaining meaningful knowledge from sensitive datasets without
compromising the privacy of individuals. The core objective of differential privacy is to guarantee that the
results of any analysis remain virtually unchanged whether or not any one person's data is included, thereby
ensuring that no single individual's information can be inferred from the output.
It is a mathematical way to protect people’s personal information while still allowing useful data analysis. It
helps ensure that no one can figure out details about a specific person, even if their data is included in a large
dataset. This is especially important today, as huge amounts of personal data are being collected and used for
things like research, creating policies, and training machine learning models[1].
The main idea behind differential privacy is to introduce carefully measured randomness—known as noise—
to the data or the output of computations. This makes it difficult for anyone analyzing the results to determine
whether a specific person's data was used. The added noise protects individual privacy while still preserving
the overall statistical patterns in the dataset, reducing the risk of exposing sensitive personal information [2].
Core features and foundational principles of differential privacy are:
° Privacy Assurance: Differential privacy offers a measurable way to assess privacy protection, often
represented by the parameter € (epsilon). The smaller the €, the stronger the privacy protection for individuals
in the dataset.
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. Use of Randomization: To implement differential privacy, data is deliberately modified using
methods such as adding statistical noise, randomizing inputs, or altering data collection procedures. These
techniques help obscure individual contributions.

° Aggregate-Level Analysis: Working with summarized or grouped data—like averages or totals—helps
safeguard personal information by reducing the chance of identifying any one person’s data.

° Mathematical Foundation: Differential privacy is supported by a precise mathematical structure,
enabling researchers and data scientists to formally define, assess, and ensure the privacy guarantees offered
by a specific approach.

Differential privacy has become increasingly popular, particularly in fields where protecting personal
information is critical—such as healthcare, financial services, and public sector data analysis. As technology
evolves, the role of differential privacy in maintaining a balance between useful data analysis and individual
privacy is becoming more essential. Experts and developers are actively working on new methods and real-
world applications to improve the efficiency and usability of differential privacy in practical environments [3].
Federated Learning is a method in machine learning that allows model training to occur across multiple
decentralized devices or servers, with each device keeping its data locally. Instead of sharing raw data, devices
work together to train a shared global model by only exchanging updates or learned patterns. This technique
is especially useful in sensitive fields like healthcare, finance, and loT, where maintaining data privacy and
security is essential[4].

A major problem that Federated Learning aims to solve is the difficulty of centralizing data for training due
to privacy issues, legal limitations, or the massive amount of data spread across different devices (3]. Rather
than transferring raw data to a central server, Federated Learning enables each device to process and update
the model locally. Only the learned updates (not the original data) are shared with a central server or peer
devices. This ensures that sensitive data stays on the user’s device, significantly enhancing privacy and data
security [3].

Federated Averaging (FedAvg) is a commonly used algorithm in Federated Learning that combines model
updates from multiple devices to create a shared global model. The general process includes the following
steps [5]:

1. Initialization: The central server begins by creating and distributing an initial version of the global
model to all participating devices.

2. Local Training: Each client or device uses its own local dataset to train the model independently.
This training can involve several internal iterations to enhance performance.

3. Model Update Calculation: Once local training is completed, each device calculates the changes (or
updates) made to the model during training compared to the original global model.

4. Aggregation: The central server collects the model updates from all devices and combines them—
typically by averaging the updates—to form a single, unified update.

5. Global Model Refinement: The aggregated update is then used to refine the global model on the
central server.

6. Repetition of Rounds: Steps 2 through 5 are repeated across several training rounds, gradually
improving the global model while keeping the raw data on local devices, thus preserving privacy.

Federated Averaging enables collaborative model training without compromising data privacy. By combining
and averaging updates from many devices, it reduces the influence of noisy or abnormal updates, helping to
produce a more stable and accurate global model [5].

Federated Learning, along with techniques such as Federated Averaging, has attracted growing interest
across multiple fields. It provides a privacy-focused alternative to conventional centralized machine learning
by enabling model training without direct access to raw data.

2. LITERATURE REVIEW
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Federated Learning has shown strong potential for managing heterogeneous medical datasets in practical
settings by leveraging clusters of machines for distributed processing. In this study, experiments were carried
out using CloudLab, a specialized platform designed for research in distributed systems and networking.
Multiple deep learning architectures and federated optimization methods were evaluated. Among the models
tested, Inception-v3 and EfficientNetBO consistently delivered the best results, achieving high accuracy on
test datasets. In terms of optimization strategies, FedAvg outperformed others, with FedAvgM ranking as the
second most effective. These findings highlight both the capability of federated learning in healthcare
applications and the importance of selecting suitable models and optimization strategies to maximize
performance[6].

To protect patient privacy, a novel approach combines homomorphic encryption with federated learning to
create a secure diabetes prediction system. The experimental findings demonstrate that this method effectively
breaks down data silos between hospitals, enabling the collection of patient data from multiple healthcare
providers without compromising privacy. This practical and forward-thinking solution is especially relevant
in today’s data-sensitive environment, offering promising advancements for diabetes diagnosis and care.
Additionally, it paves the way for new approaches to multi-party data integration, with potential applications
across various sectors in the future[7].

With the rise in personal data privacy breaches, there is an increasing demand for methods that prioritize the
protection of user information. To address this challenge, a federated learning algorithm has been proposed
to predict breast cancer using data sourced from multiple hospitals. This technique safeguards patient privacy
by enabling hospitals to collaboratively train machine learning models without sharing sensitive data with a
central server. To evaluate its effectiveness, the federated approach was compared to traditional centralized
methods. The findings revealed that the federated model delivered accuracy comparable to standard
techniques. While the approach offers significant privacy benefits, it also presents certain limitations, which
are thoroughly examined in this paper along with a detailed introduction to the concept of federated
learning(8].

The integration of Federated Learning (FL) with Software-Defined Networking (SDN) presents a powerful
solution for effective malware detection and mitigation, aiming to build a secure, automated, and privacy-
aware network infrastructure within the healthcare sector. As hospitals increasingly rely on Information and
Communication Technologies (ICTs), the continuous emergence of sophisticated malware attacks has
created persistent uncertainty in the industry. Despite rapid advancements in medical technologies and device
interconnectivity, many healthcare providers and patients have yet to fully embrace or understand these
opportunities—leading to fragmented progress.

This research proposes a federated learning framework involving four geographically distributed hospital
networks, enabling collaborative model training while preserving data privacy. The system utilizes logistic
regression with cross-entropy loss for malware detection, ensuring high accuracy in identifying threats. SDN
complements this framework by enabling dynamic network management and enforcing security policies,
especially during the initial development and mitigation stages[11].

The experimental results highlight the model’s effectiveness in maintaining accuracy without compromising
patient privacy. This approach challenges the reliance on traditional centralized systems, which, while
functional, often fail to provide adequate privacy safeguards in sensitive healthcare environments[11].
Federated Learning (FL) is a decentralized machine learning paradigm that enables devices to collaboratively
train a global model without sharing raw data. This study builds upon the foundational Federated Averaging
(FedAvg) algorithm by integrating principles from consensus theory. Unlike traditional FL methods that rely
on a central coordinating server, the proposed method—called FedLCon—operates without one, thereby
eliminating the risk of a single point of failure and reducing the need for mutual trust among clients.
Furthermore, the consensus mechanism is also applied to the Adaptive Federated Learning (AdaFed)
algorithm, an enhanced version of FedAvg that includes adaptive model averaging. The effectiveness of these
approaches is evaluated through performance comparisons in a real-world use case: COVID-19 detection[12].
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Federated Learning (FL) enables multiple participants to collaboratively train a global predictive model
without exposing their private data. However, even with privacy-preserving mechanisms in place to protect
local updates, a major challenge arises when users contribute low-quality or inconsistent updates. These
irregular users can hinder model convergence and degrade overall performance. While some recent studies
attempt to address both privacy concerns and the impact of irregular users, existing solutions often struggle
with limited accuracy and efficiency. This is largely due to the overhead of complex cryptographic techniques
and ineffective strategies for filtering out unreliable participants. To overcome these limitations, we propose
SAP-IU—-a novel and efficient federated learning framework that simultaneously ensures privacy protection
and irregular user mitigation. At the core of our method is TrustIU, an innovative algorithm that assigns
weights to users based on cosine similarity, allowing the global model to prioritize contributions from users
with high-quality data. To further enhance privacy, we introduce a secure weighted aggregation protocol that
protects sensitive information, including local model updates and data quality indicators. Additionally, our
approach is designed to remain effective even when users drop out during training. Extensive experimental
results demonstrate that SAP-IU surpasses existing methods in both training accuracy and computational
efficiency [13].

Modern computer-aided diagnosis systems that leverage deep learning have become essential tools in medical
imaging. As collaborative disease diagnosis across multiple healthcare institutions gains momentum, it also
presents significant challenges—particularly the high annotation workload required from medical experts and
the privacy and generalization limitations of centralized learning systems. To address these issues, we propose
two novel federated active learning strategies: Labeling Efficient Federated Active Learning (LEFAL) and
Training Efficient Federated Active Learning (TEFAL), designed to support multi-institutional disease
diagnosis.

LEFAL utilizes a task-independent hybrid sampling strategy that balances data uncertainty and diversity to
enhance labeling efficiency. In contrast, TEFAL focuses on improving training efficiency by evaluating client
informativeness through a discriminator-based mechanism. Experimental results demonstrate the
effectiveness of both methods: on the Hyper-Kvasir dataset for gastrointestinal disease diagnosis, LEFAL
achieves 95% segmentation performance using only 65% of labeled data. On the CC-CCII dataset for
COVID-19 classification, TEFAL reaches an accuracy of 0.90 and an Fl-score of 0.95 within just 50 training
iterations.

Overall, these federated active learning approaches outperform existing state-of-the-art techniques in both
segmentation and classification tasks, offering a scalable and privacy-preserving solution for collaborative
medical diagnosis across distributed healthcare centers [14].

Historical medical records are vital for improving healthcare by enabling intelligent diagnosis and disease
prediction. Traditional smart health systems often rely on collecting data from multiple hospitals and labs,
using machine learning algorithms for disease forecasting. However, these systems face limitations—
particularly due to fragmented patient data, as individuals often consult different specialists across various
healthcare facilities during treatment [8].

To overcome this challenge, we propose a secure and intelligent federated learning framework for health
diagnosis that incorporates a blockchain-based incentive mechanism and a non-fungible token (NFT)-
powered data marketplace. NFTs are used to define clear ownership and access rights for patient medical
data, while the marketplace manages controlled access to historical records. The incentive mechanism rewards
or penalizes patients based on key factors such as data quality, relevance, and upload frequency, encouraging
meaningful contributions to the federated learning process. For model aggregation, we utilize the Polyak-
averaging technique to merge local models into a unified global model. Extensive evaluations show that this
decentralized framework delivers predictive performance comparable to centralized models, while also
offering enhanced data security and access to high-quality data. The results emphasize the effectiveness of the
blockchain-driven incentive system in encouraging patient participation and elevating the overall quality of

the global health model [15].
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The Industrial Internet of Things (IloT) is a key component of Industry 4.0, where smart technologies and
automation are transforming industrial operations. When combined with machine learning, IloT enables
the creation of intelligent and efficient industrial systems. However, a major concern arises from the use of
sensitive data to train machine learning models. Sharing this data can lead to potential privacy breaches,
posing serious risks to data security within IloT environments. To address this challenge, we propose a
privacy-preserving data aggregation scheme called FLPDA, built upon the federated learning paradigm.
FLPDA allows data aggregation while safeguarding individual model updates, thereby preventing reverse-
engineering attacks from centralized industrial administration centers. In each aggregation cycle, the PBFT
(Practical Byzantine Fault Tolerance) consensus algorithm is employed to select an IIoT device within the
region as the aggregator node. To enhance fault tolerance and secure data sharing, we integrate the Paillier
cryptosystem with secret sharing techniques. Their comprehensive security and performance evaluations
demonstrate that FLPDA effectively protects data privacy and resists various attack scenarios. Moreover, it
achieves lower communication, computation, and storage overhead compared to current approaches.
Simply put, FLPDA keeps sensitive industrial data private and secure—while being more efficient and scalable
than existing solutions[18].

When the Internet of Things (IoT) is deeply integrated with healthcare, it forms the Internet of Medical
Things(IoMT). In this ecosystem, doctors can diagnose and treat diseases using patient data collected from
mobile and wearable devices, analyzed through Al-powered systems. However, conventional Al models may
unintentionally expose sensitive patient information, raising serious privacy concerns. To address this issue,
authors propose a privacy-enhanced approach using Federated Learning (FL) for IoMT-based disease
diagnosis. FL enables multiple healthcare providers to collaboratively train a shared model without
exchanging raw data. While FL improves privacy, it remains vulnerable to inference attacks, where malicious
actors attempt to extract sensitive information from shared model updates.[19]

Our solution introduces a two-fold defense mechanism: First, we reconstruct medical data using a variational
autoencoder (VAE) to transform it into a more privacy-resilient format. Next, we apply differential privacy by
adding calibrated noise to protect against potential inference attacks. These privacy-preserved representations
are then used to train local diagnostic models, ensuring that patient data remains confidential throughout
the process. To further motivate participation in the FL process, we propose a reward-based incentive
mechanism.

We evaluated our method using the MIT-BIH arrhythmia database, and the results confirmed that our
approach effectively reduces the risk of patient data reconstruction while maintaining high accuracy in heart
disease diagnosis. In summary, our framework strengthens privacy in medical Al systems without sacrificing
diagnostic performance. [19]

3, Motivation For Proposal

As data breaches and privacy concerns continue to rise, especially regarding the handling of sensitive
information, there is an urgent need for secure and privacy-preserving methods of data analysis and sharing.
Focusing on privacy-enhancing techniques—particularly in the context of disease data—offers a timely and
highly relevant area of exploration.

Investigating the integration of differential privacy, federated learning, and federated averaging provides a
promising avenue for advancing data privacy in healthcare. This intersection could yield novel insights,
methodologies, and solutions that not only protect individual privacy but also enhance the effectiveness of
collaborative data analysis across institutions.

By combining these techniques, researchers can enable secure collaboration and data-driven discovery without
compromising personal health information. This strategy not only tackles today’s pressing privacy challenges
but also lays the groundwork for broader innovation in privacy-preserving technologies, extending far beyond
healthcare into various data-sensitive domains.

4. Dataset
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The dataset comprises 4,920 records with 134 features. The data types of these features include one float64,
132 int64, and one object type. A few of these features are listed below [5]:
Table-1 Few Features

Itching high_fever Phlegm
skin_rash sunken_eyes throat_irritation
nodal_skin_eruptions Breathlessness redness_of_eyes
continuous_sneezing Sweating sinus_pressure
Shivering Dehydration runny_nose
Chills Indigestion Congestion
joint_pain Headache chest_pain
stomach_pain yellowish_skin weakness_in_limbs
Acidity dark_urine fast_heart_rate
ulcers_on_tongue Nausea pain_during_bowel_move
ments
muscle_wasting loss_of_appetite pain_in_anal_region
Vomiting pain_behind_the_eyes bloody_stool
burning_micturition back_pain irritation_in_anus

The target variable ‘Prognosis’ includes the following class labels:

[Fungal infection', 'Allergy', 'GERD', 'Chronic cholestasis', 'Drug Reaction', Peptic ulcer disease', 'AIDS/,
'Diabetes', 'Gastroenteritis', 'Bronchial Asthma', 'Hypertension', 'Migraine', 'Cervical spondylitis', 'Paralysis
(brain hemorrhage)', 'Jaundice', '"Malaria', 'Chicken pox', 'Dengue', "Typhoid', 'Hepatitis A', 'Hepatitis B,
'Hepatitis C', 'Hepatitis D', 'Hepatitis E', 'Alcoholic hepatitis', "Tuberculosis', 'Common Cold', 'Pneumonia’,
'Dimorphic hemorrhoids (piles)', 'Heart attack', 'Varicose veins', 'Hypothyroidism', 'Hyperthyroidism',
'Hypoglycemia', 'Osteoarthritis', 'Arthritis', '(vertigo) Paroxysmal Positional Vertigo', 'Acne', 'Urinary tract
infection', 'Psoriasis', 'Impetigo'].

Figure 1 illustrates the Feature wise Mean and Standard Deviation, while Figure 2 displays the skewness of
each feature and Figure 3 show Correlation Heatmap.

ature-wme Mean and Standard Deviation

[

Fig-1 Feature wise Mean and Standard Deviation
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Skewness ol Each Feature
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Fig -2 Skewness of Each Feature
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5. Proposed Architecture

Federated Learning is a method in machine learning that allows models to be trained on data distributed
across multiple devices or servers, without the need to share the actual raw data. Since privacy is a major
concern in this approach, the data exchange mechanism is carefully structured to safeguard sensitive
information. Below is a summary of how data is transferred in federated learning with an emphasis on

maintaining privacy.

2336

Lo

as

- a4

oo


https://theaspd.com/index.php/ijes

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, (2025)
https://theaspd.com/index.php/ijes

X Differantially Private
FL Model

Objective
Perturbation

Local FL
Model

d .l;! E E j E
Hospital 1 Dataset E n Hospital 4 Dataset

Hospital 2 Dataset Hospital 3 Dataset

Fig-4 Proposed architecture: Send perturbed model to central aggregator and receive updated central
model
In the described model, the process begins with Hospital 1 using its local data to train a model that
incorporates differential privacy by adding noise. This privacy-preserving model is then sent to a central
aggregator. At the aggregator, the Federated Averaging (FedAvg) technique is applied to combine models,
resulting in a unified central model. This aggregated model is then sent back to Hospital 1. The same steps
are repeated for Hospital 2 and Hospital 3, and the outcomes are evaluated. In each case, the models
transmitted from the hospitals include added Gaussian noise to ensure that individual patient records cannot
be reverse-engineered or identified.
Algorithm -1 (Federated Averaging) [20]
Algorithm 1: Fedorated Avoraging
Result: Roturns final modcel to clionts

The £ clicnts are indoexcd by A,

I2 is thhe local minibatch sizc.

£ is the local numbeoer of ecpoch.

77: is the loarming ratoe.

Server Executes:-
initializzation wa:

foreach rowund —7.2.3..... do
72 < rmar(C K, 1)
S < randomsactofrnaclicrats

foreach clicnr K € S, in parallel do
vu,‘. y —— cedzevalacpredaate (K, vire)

O Tig s
Wiy gy

1eig 4y €

e
end
end
Client Update(k,w): //Run on client k
i3 < (=plitpgintobatcheso fsi=cl3)

forvreach local epockh @ frome T oo E do
foremch DLarch I ¢ /7 do

ur t—— r — NNFL(22 - b)) + 8,

end
Fetrryy v fey Serrver
nd

In the federated learning setup, the central aggregator updates the global model by computing a weighted
average of the client models after each communication round. To enhance privacy in our proposed approach,
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we transmit the clients’ model parameters to the central aggregator with differential privacy applied. This
ensures that the contribution of any individual client remains hidden during the aggregation process [23].
The technique we used to generate differentially private model parameters is illustrated in Figure 2, which is
based on a variation of Stochastic Gradient Descent (SGD) called DP-SGD. This enhanced algorithm
modifies the standard mini-batch optimization process by incorporating noise and clipping mechanisms to
provide formal differential privacy guarantees [23].

To protect the privacy of each data point within a batch, the algorithm adds Gaussian noise, which helps
mask the most dominant gradients. Let’s represent C as the predefined threshold for the maximum allowable
gradient norm. For every data point in the batch, the algorithm first computes its individual gradient. If the
gradient’s norm is greater than C, it is reduced—or “clipped”—so that its norm equals C, thereby limiting its
influence on the final model update [7].

Algorithm -2 (Differentially Private SGD Algorithm) [20]

Algorithm 2: Differentially Private SGD
(()ullinc_)_

Result: #, and compute the overall privacy
cost (¢, d) using a privacy accounting
method.

Input:-Examples £o,.citin,

loss function

”
£(9) . S T L£(8), =,

Parameters: learning rate 1), ,noise scale o,

group size L, gradient norm bound C'.

initialization &, randomly:

foreach r ¢|Z°] do

lake a randorn sconple .. with scammpling

probabilicy (—,

Cormpiuete gradierni

For each ze l.;

cormputeg, (r;) < DO L(8,, x;)
Clip gradient
Ge(25)

raa( 1, o 3 1ES

e
Add noise

Fe — %(2 Ge(ry) + N(O.a?C21)

Descerit

’h,-l — O, — ’Irf;-:

end

Objective perturbation techniques are applied to the locally trained model before it is sent to the central
aggregator. The main goal of each client’s model is to learn parameters that accurately map input data to
outputs by minimizing an associated loss function. To achieve this, Stochastic Gradient Descent (SGD) is
used to iteratively update the model parameters toward optimal values. To safeguard data privacy, we employ
a modified version of Differentially Private Stochastic Gradient Descent (DP-SGD). This method uses a
specific update rule, where C is the clipping parameter, which sets the maximum allowable L2 norm for each
gradient. A function is used to adjust (or “clip”) any gradient vector whose norm exceeds C, ensuring it
remains within the limit. Additionally, a noise multiplier is applied, which determines how much Gaussian
noise is added to each clipped gradient. This multiplier is based on the ratio between the clipping parameter
and the standard deviation of the added noise, providing a formal guarantee of differential privacy [24].
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[xle=x/(1,] |x] |2/¢c)
We have adopted a simple strategy where all clients are independent and identically distributed (IID), each
operating with its own local model. Before sending their gradient updates to the central aggregator, Gaussian
noise is added to each client's gradients to ensure privacy. The central aggregator then applies the FedAvg

algorithm to aggregate these noisy gradients and build the global model. This final model is subsequently
shared with all the 1ID clients[24].

Algorithm-3 (Differentially Private Federated Learning Algo) [20]

Algorithm 3: Differentially private Feder-
ated Learning
Result: Returns final model to clients
The k clients arc indexed by k,
B is the local minibatch size.
E' is the local number of epoch.
1) is the learning rate.
Server Executes:-
initialization wy;
foreach mound 1=1,2.3..... do
m «— max(C.K, 1)
S« randomsecto fmdlients
foreach client k €5, in parallel do

M“'

tay e clientupdate(k.w,)

n
Ny x
Uryy € — Wi

n
=1

end

end

Client Update(k,w): //Run on client k
i# 4~ (splitpy into batches of size B)

foreach local epoch i from | ro E do

foreach barch b ¢ /3 do

w4 w l/Vf(u' :b) + 8,
0, «— assignrandomly

By — Uy — g

g ¢— Gaussiannose
end
return w to server
end

To build a privacy-preserving model, we applied an objective perturbation method, which adds noise directly
to the objective (loss) function before performing optimization over the classifier space. At each client node,
Differentially Private Stochastic Gradient Descent (DP-SGD) is used to compute gradient updates across
mini-batches. During this process, the gradients are first clipped based on a predefined threshold and then
noise is added. Specifically, the algorithm takes two inputs: C, the clipping threshold, and o, the noise
multiplier. It ensures that the L2 norm of each gradient does not exceed C, and then adds Gaussian noise
with a standard deviation of 6C to the gradient, providing differential privacy. For model aggregation, the
system uses the Federated Averaging (FedAvg) algorithm, which computes a weighted average of the
differentially private model parameters received from the clients. This aggregated model is then redistributed
to all participating nodes to continue the training process [25].
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6. Results And Discussion

Figure 5 illustrates the accuracy progression of a machine learning model trained using data from three
hospitals—Hospital-1, Hospital-2, and Hospital-3—across 10 training epochs. The y-axis represents the
accuracy score (ranging from O to 0.9), while the x-axis represents the number of epochs.

o Accuracy vs, Epochs
O

Hospital-1 s 2
- MHospitsl-I - o
—— Moupital-3 5
0.8
-
— -
0.7 - 3 -
-
=
[ 3 -
> P
3 oo g v
—
-
0.5 7,
f"
/
7
0.4 -
2 a 6 3 10

Epochs

Fig-5 Accuracy of model on individual hospital data

Hospital-1 starts with the lowest accuracy (approximately 0.4) but shows consistent improvement, reaching
about 0.8 accuracy by epoch 10.

Hospital-2 begins with a slightly higher starting accuracy than Hospital-1 and demonstrates steady growth,
achieving close to 0.85 accuracy at the 10th epoch.

Hospital-3 starts with the highest initial accuracy (around 0.35) and shows the quickest improvement in the
early epochs. By the end of the 10th epoch, its accuracy matches that of Hospital-2, at roughly 0.85.

.t Performance comparison on Central aggregated Model
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Fig-6 Performance comparison on Central aggregated Model

Figure 5 presents a comparison of the performance of three hospitals—Hospital-1, Hospital-2, and Hospital-3
using two types of models: Individual and Global, evaluated across three key metrics: Precision, Recall, and
F1-Score.

Metric Descriptions:

Precision: Indicates how many of the model's positive predictions are actually correct. A higher precision
means fewer false positives.

Recall: Reflects the model’s ability to detect all actual positive cases. A higher recall means fewer false
negatives.
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F1-Score: Combines precision and recall into a single value, offering a balanced view of the model’s accuracy
in identifying relevant instances.

Comparison of Models:

The Individual model refers to the performance results of each hospital’s locally trained model.

The Global model represents a centralized model that aggregates data or insights from all hospitals, aiming
to generalize across institutions.

Hospital-1

. Precision: The individual model slightly outperforms the global model in terms of precision.
. Recall: Both models exhibit nearly identical recall values.

. F1-Score: Performance is similar for both models, though the global model has a slight edge.
Hospital-2

o Precision: The global model achieves higher precision than the individual model.

o Recall: The global model shows a modest improvement in recall over the individual model.
o F1-Score: Overall, the global model delivers better performance.

Hospital-3

o Precision: The global model demonstrates a clear advantage in precision over the individual model.
. Recall: The recall of the individual model is lower than that of the global model.

o F1-Score: The global model outperforms the individual model across the board.

Overall Observation

Overall, the global model demonstrates either enhanced or similar performance across all evaluation metrics
and hospitals.
However, the degree of improvement varies by hospital, with Hospital-3 experiencing the most significant
performance boost from the global model.

While each hospital’s individual model performs well, none consistently surpasses the performance of the
global model.

7. CONCLUSION

In this study, we investigated the application of differential privacy, federated learning, and the federated
averaging algorithm as methods to safeguard the privacy of disease-related data. Our experimental findings
highlight the practicality and effectiveness of this combined approach in securing sensitive healthcare
information. For future research, these methods can be tested on realworld medical datasets to assess their
performance in more realistic environments. By implementing these privacy-preserving techniques, it is
possible to conduct meaningful analysis on disease data without compromising individual privacy.
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