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Abstract 
This study analyses the benefits of NVIDIA Jetson Nano in deploying machine learning algorithms to 
forecast water potability. Jetson Nano will be a compact and cost-effective edge water potability analysis 
solution due to its powerful Graphics Processing Unit (GPU) and energy-saving architecture. Jetson Nano 
can handle sophisticated prediction models and improve water assessment in remote and urban settings, 
according to this study. Jetson Nano performs well in real-time data processing and machine learning 
conclusions with reduced latency by integrating sensors with data gathering systems. This study shows how 
Jetson Nano improves water potability prediction accuracy and reliability by reviewing case studies and 
testing findings. This report highlights edge AI systems' reduced cloud infrastructure dependence, cheaper 
operational costs, and fast response. Overall, this research shows that Jetson Nano can improve water 
potability monitoring and help introduce intelligent edge computing in environmental and public health. 
Keywords: Jetson Nano, Water Potability Prediction, Machine Learning, Real-time Data Processing 
 
1. INTRODUCTION 
1.1.  Background on water potability and the role of Jetson Nano  
If we want to protect public health and manage natural resources well, we need to keep an eye 
on how potable the water is. A global goal is making sure everyone has access to clean, safe, and 
drinkable water, especially in places where water pollution or contamination poses serious health 
risks. The term "potability" describes the state or attribute of being fit for ingestion or drinking. 
Potability, as it relates to water, is the degree to which it is safe and sanitary enough for people to 
drink without risk of injury or disease [1]. Long-standing methods or processes for testing the 
potability of water usually involve combining lab tests, which can take a lot of time, work, and 
resources. Machine Learning (ML) and edge computing technologies, on the other hand, have 
opened new possibilities that will make the process of judging whether water is safe to drink 
much more efficient and accurate. These new technologies make it possible to analyse and make 
decisions quickly at the point where the data is collected. This greatly lowers latency and the need 
to rely too much on old data processing centres. NVIDIA Jetson Nano is famous for having a 
powerful GPU and using very little power. It is also an ideal choice for putting machine learning 
methods to use in edge computing settings. Additionally, Jetson Nano's small size and low cost 
make it perfect for remote areas and places with limited funds where modern cloud-based systems 
might not be easily available. So, this study looks at how Jetson Nano can be used to predict how 
potable water will be by processing data right away and drawing conclusions from that data using 
machine learning. This makes it a good replacement for older systems that check the potability 
of water. For example, while past research has shown that machine learning can help with water 
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potability analysis, many of the solutions that were suggested still relied on cloud-based 
infrastructures, which can cause delays and come with high costs and other operational 
challenges. However, this study shows how the amazing features of Jetson Nano can help make 
water safer to drink, especially in places with limited funds, by using the power of edge computing 
and machine learning techniques. 
1.2.   History of Jetson Nano 
 The NVIDIA Jetson Nano is part of the NVIDIA Jetson family of products, which are designed 
for edge Artificial Intelligence (AI) and embedded applications. Below is table 1 presenting 
timeline of key events in the history of the Jetson Nano and its development: 
 
Table 1: NVIDIA Jetson nano Timelines (https://developer.nvidia.com/ ) 

Year Event 
2014 NVIDIA Introduces Jetson TK1: The first embedded AI platform with ARM 

and GPU capabilities. 
2015 NVIDIA Jetson TX1: Major performance improvements for AI at the edge, 

targeting robotics and IoT. 
2017 NVIDIA Jetson TX2: Improved power efficiency and performance for 

industrial AI and edge computing. 
March 2019 Launch of NVIDIA Jetson Nano: Affordable AI computing platform with a 

128-core Maxwell GPU. 
November 
2019 

Jetson Nano Module Release: Production-ready module for integration into 
commercial products. 

May 2020 NVIDIA Jetson Xavier NX: More powerful edge AI platform, offering up to 
21 TOPS of AI performance. 

November 
2020 

Jetson Nano 2GB Developer Kit: Budget-friendly version with 2GB Random 
Access Memory (RAM) for hobbyists and students. 

2021 Software and Ecosystem Expansion: Continuous updates to JetPack SDK and 
growing community support for Jetson Nano applications. 

 
As of 2024, the Jetson Nano as presented in Figure 1, remains a popular choice for edge AI and 
embedded systems, particularly in education, prototyping, robotics, and industrial AI solutions. 
Its affordability, low power consumption, and ability to handle AI inference make it a favoured 
platform for developers working on small-scale AI applications. 

 
Figure 1:Figure 1: NVIDIA Jetson Nano developer kit 
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1.3. Research objectives  
a. How can the NVIDIA Jetson Nano platform enhance the deployment of machine 
learning algorithms for real-time water potability prediction, and 
b.  What are the key benefits of using this platform in terms of energy efficiency, cost-
effectiveness, and scalability in diverse environments? 
 
2. METHODOLOGY  
This systematic evaluation examines the Jetson Nano's use and benefits for water potability 
prediction using machine learning methods. The review used the PRISMA 2020 principles, 
which improve literature review transparency and completeness, to promote rigour and 
reproducibility [2]. PRISMA enhances reporting, reduces selection bias, and allows cross-
disciplinary replicability [3]. For review process documentation, the PRISMA website 
(http://prisma-statement.org/) provided the checklist and flow diagrams. To synthesise relevant 
and high-quality materials on environmental technology, embedded AI hardware, and 
quantitative algorithmic performance, a systematic methodology was needed [4]. This section 
explains the eligibility criteria, search technique, databases, and data extraction procedures used 
to build a coherent and evidence-based synthesis [5]. 
2.1.  Eligibility Criteria 
The factors for eligibility were made to make sure that the studies that were chosen met the 
standards for quality and relevance that were needed for a systematic review. The studies were 
considered if they (1) came out between 2020 and 2024; (2) were written in English; (3) talked 
about how Jetson Nano could be used to predict the potability of water or do similar tasks using 
machine learning; and (4) gave clear technical evaluations or empirical results. For objective 
quality assessment, it looked for clear goals, good procedures, valid data, and a match between 
targets and results [6]. After importing BibTeX records from Harzing's Publish or Perish, 
Mendeley Reference Manager was used to find duplicates. These were then combined using 
unique identifiers. Abstract screening was done to see if the studies were relevant, and full-text 
screening was then done for studies that met the initial criteria. We used a special rubric to rate 
the depth of the research, the coherence of the ideas, and how relevant each study was to the 
Jetson Nano deployment scene. This was done in line with the quantitative standards pushed by 
[7], [8], and [9]. 
2.2. Information Sources 
This review used authoritative environmental science, computational intelligence, and embedded 
systems academic databases to include transdisciplinary works. PubMed, Scopus, Web of Science, 
Google Scholar, Semantic Scholar, Crossref, ScienceDirect, IEEE Xplore, and ISI Web of 
Science. Searched sustainability, hydrology, water quality, machine learning, and sensor network 
journals. Engineering-focused repositories like IEEE Xplore and multidisciplinary databases like 
Scopus boosted study diversity and allowed citation tracking to discover influential work [10]. To 
standardise and compare results, all databases used the same keywords and filters [6]. Multiple 
sources improve methodological triangulation, synthesis dependability, and depth [3] and [11]. 
2.3. Search Strategy 
A structured search approach was used to find all the literature that might have been relevant. 
Using Boolean operators, the main search string put together three important ideas: "Jetson 
Nano" AND "Water Potability" AND "Machine Learning." This made sure that exact papers were 
found that talked about embedded hardware, AI algorithms, and predicting water portability 
[12]. Extra filters were used to make sure that the search results only showed studies that were 
written in English and released between 2020 and 2024 [13]. First, titles and abstracts were 
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looked over to get rid of anything that was obviously not relevant. Then, the full texts of studies 
that met the selection criteria were analysed [14]. The entire search process was documented with 
timestamps, search phrases, and filters to ensure consistency and repeatability [15]. It is standard 
practice in quantitative systematic reviews to use Boolean reasoning and controlled vocabularies. 
This makes the reviews more sensitive and specific. Systematic documentation also makes it 
possible for future researchers to use the same structure to repeat or improve the study. 
2.4.  Selection process  
Our search tactics yielded 28 papers from specified information sources. After abstract screening, 
15 papers were eliminated, leaving 13 for full-text evaluation. Based on our eligibility criteria, 7 
research were included in the final dataset as presented in figure 2. 
 

 
Figure 2:: PRISMA 2020 inclusion and exclusion flow diagram (edited) [ Retrieved from http://prisma-
statement.org/.] 
2.5. Synthesis Method  
The following is a histogram that shows the different approaches that were used to study how the 
Jetson Nano can be used to track water portability using machine learning algorithms. AI Edge 
Computing, Machine Learning or Deep Learning, Embedded Systems for Monitoring the 
Environment, Hardware Performance and Energy Efficiency, as well as general algorithm 
development are some of the methods that are shown in figure 3. 
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Figure 3: Synthesized Method Categories 
 
3. FINDINGS 
3.1. Benefits of Jetson Nano in Water Potability 
NVIDIA Jetson Nano has shown that it is an invaluable tool that can be used across diverse 
domains due to its vast applicability and efficacy in concurrent edge AI applications. Below is an 
elaborate presentation of its applicability in diverse fields: - 
i) Concurrent Algae Monitoring 
Jetson Nano has been used to detect algae in real time in water studies. Jetson Nano's 0.01 
seconds per image computation time and 2kbps bandwidth utilisation were praised. This makes 
Jetson Nano perfect for low-income areas. Jetson Nano runs AI models without compromising 
performance and only 5 to 10 watts. It is ideal for resource-constrained areas [16]. 
ii) The use of Jetson Nano in Aquaculture Monitoring 
Jetson Nano has been used successfully in aquaculture systems to check the quality of the water 
and see how the fish behave. Furthermore, Jetson Nano can run deep learning models and has 
been utilised in Long Short-term Memory (LSTM) for its ability to effectively carry out complex 
AI tasks while consuming very little power. So, it gives useful answers to fishing issues that need 
making choices at the same time [17]. 
iii) Under Water Video Classification 
under fish categorisation systems, Jetson Nano processed underwater video feeds under low-
visibility circumstances. Jetson Nano maintained real-time video processing, proving its suitability 
for AI-based environmental monitoring [18]. 
iv) Deep Learning-Based Sensors in Wastewater Treatment 
Jetson Nano has been used in industry. For example, it has been used to steer the flocculation 
process in wastewater treatment plants. Jetson Nano's built-in GPU lets it handle data at a speed 
of 12.8 frames per second (FPS), showing that it can be used in industrial AI tasks where multiple 
tasks need to be done at the same time [19]. 
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v) AI applicability in Drowning Prevention 
Jetson Nano has been used in safety-critical applications like drowning prevention; Jetson Nano 
has been used in processing real-time video feeds to uncover possible drowning incidents. The 
low-energy and concurrent AI capabilities of Jetson Nano, makes it a perfect fit for life saving 
detection systems like swimming pools [20]. 
vi) Indoor Temperature Prediction 
In the aspect of building management, Jetson Nano has been utilized in predicting indoor 
temperatures; its compatibility with deep learning models such as GRU and CNN architectures, 
enables Jetson Nano to precisely predict and regulate temperature in multi-zone buildings at a 
time. Hence, Jetson Nano contributes significantly towards energy efficiency as well as thermal 
comfort in building management [21]. 
vii) Monitoring of Water Quality in Aquaculture 
 Jetson Nano also plays a significant role in monitoring water quality in aquaculture systems. 
Jetson Nano is very compatible with FPGA-based sensors, hence, can be used in handling very 
complex prediction models that are being used for real-time monitoring. Additionally, Jetson 
Nano provides low energy usage and accurate water quality analysis [17]. 
viii) Autonomous Underwater Vehicle Navigation 
Jetson Nano have been used to power autonomous underwater vehicle for gas underwater 
seepage detection. Its outstanding concurrent processing capabilities and its ability to function 
in complex underwater environments, makes Jetson Nano an important tool for autonomous 
navigation and environmental monitoring [22]. 
 
4. Summary Review on Usage and Benefits of Jetson Nano 
Low-power Jetson Nano performs real-time machine learning in environmental applications like 
water potability prediction.  The tiny size, affordability, and integration make it ideal for field-
based edge computing in water monitoring [23].  [24] showed that Jetson Nano and deep learning 
models like LSTM and Convolutional Neural Network (CNN) can quickly and effectively predict 
water quality parameters like temperature, turbidity, and pollution.  Jetson Nano-based 
aquaculture water quality monitoring models performed well in resource-constrained areas 
despite processing limitations [25].  Jetson Nano edge devices offer operational continuity and 
minimal latency, unlike cloud-based AI systems that require constant connectivity and higher 
energy usage [26]. 
Compare Jetson Nano's pros and cons to more powerful AI systems like Jetson Xavier NX or 
cloud-based alternatives.  Jetson Nano's 128-core Maxwell GPU struggles with deep learning and 
huge datasets [27]. Its simple sensor integration and energy economy make it suited for edge 
inference, although model simplification may reduce predicted accuracy in complicated 
deployments [28].  Cloud-based options are scalable but not suited for rural places with 
insufficient network infrastructure [29].  Therefore, Jetson Nano is best for low-cost, energy-
sensitive water potability prediction applications in rural areas that require real-time processing 
with minimal hardware complexity [30]. Table 2 summarises the usage and benefits of Jetson 
Nano. 
 
Table 2: Usage and Benefits of Jetson Nano 

Research 
Area 

Usage Benefits Machine 
Learning 
Algorithms 
Used 

Accuracy 
(Best 
Model) 

Reference 
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Real-time 
Algae 
Monitoring 

Monitoring 
algae species in 
real-time with 
minimal 
computing 
and 
bandwidth 
needs 

Low power 
consumption 
(5-10W), real-
time 
processing, 
efficient 
resource usage 

 Convolutional 
Neural 
Networks 
(CNN), Data 
Augmentation 

99.87% 
test 
accuracy 

[16] 

Aquaculture 
Monitoring 

Analysing fish 
behaviour and 
water quality 
using deep 
learning 
models 

Handles 
complex AI 
tasks with 
limited power, 
real-time 
processing 

Long Short-
Term Memory 
(LSTM), 
Autoencoders 

f1-score of 
0.68 

[17] 

Underwater 
Video 
Classification 

Processing 
underwater 
video feeds for 
fish 
classification 

Real-time 
processing 
under 
challenging 
environmental 
conditions 

Convolutional 
Neural 
Networks 
(CNN) 

Not 
specified 

[18] 

Deep 
Learning-
Based 
Sensors 

Controlling 
flocculation 
processes in 
wastewater 
treatment 
plants 

Fast 
processing 
speed (12.8 
FPS) for 
industrial AI 
solutions 

Convolutional 
Neural 
Network 
(CNN), 
Regression 

R² > 0.9 [19] 

AI in 
Drowning 
Prevention 

Detecting 
potential 
drowning 
incidents using 
real-time AI 
video analysis 

Low-power, 
real-time, and 
effective for 
life-saving 
monitoring 

Convolutional 
Neural 
Network 
(CNN), Video 
Analysis 

92% [20] 

Indoor 
Temperature 
Prediction 

Predicting 
indoor 
temperatures 
using GRU 
and CNN 
models 

Real-time 
predictions for 
building 
management 
and energy-
saving 

Gated 
Recurrent 
Unit (GRU), 
Convolutional 
Neural 
Networks 
(CNN) 

92.42% [21] 

Water 
Quality 
Monitoring 

Monitoring 
water quality 
using FPGA-
based systems 

Efficient 
prediction and 
monitoring 
with low 
energy 
requirements 

LSTM, FPGA-
based systems 

RMSE 
score of 
1.01 

[17] 

Autonomous 
Underwater 

Powering an 
autonomous 

Robust real-
time 

Single Shot 
MultiBox 

89% [22] 
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Vehicle 
Navigation 

underwater 
vehicle for gas 
seep detection 

processing for 
autonomous 
navigation 

Detector 
(SSD), Forward 
Looking Sonar 
(FLS) 

4.1. Comparison of Jetson Nano with Other Platforms 
The below Table 3 presents the comparison of Jetson Nano with other platforms: - 
 
Table 3: Comparing Jetson nano with other platforms 

Parameter NVIDIA Jetson 
Nano 

Cloud-Based 
Platforms (e.g., 
AWS, Google 
Cloud) 

High-
Performance 
Edge Devices 
(e.g., Jetson 
Xavier NX) 

References 

Real-time ML 
Deployment 

Performs machine 
learning inference 
locally on the edge, 
eliminating latency 
from cloud 
dependencies. 

Cloud platforms 
provide high 
computational 
power but 
introduce latency 
due to network 
dependency. 

Suitable for real-
time use but can 
be overpowered 
for simpler 
applications. 

[16];[18] 

Energy 
Efficiency 

Low power 
consumption (5–
10W), ideal for 
resource-
constrained 
environments like 
rural or remote 
areas. 

High power 
consumption due 
to large data 
centres, not energy-
efficient for edge 
deployments. 

Consumes more 
power (10–21W) 
due to higher 
processing 
capability. 

[16];[20] 

Cost-
Effectiveness 

Highly affordable 
($99 developer kit), 
making it accessible 
for small-scale 
projects and 
research. 

Requires ongoing 
costs for cloud 
storage, 
computation, and 
bandwidth. 

More expensive 
upfront than 
Jetson Nano, 
typically used for 
industrial 
applications. 

[22];[16] 

Scalability Compact and 
portable; easy to 
deploy in diverse 
environments, 
from urban to rural 
settings. 

Scalable in terms of 
computational 
resources, but 
dependent on 
internet 
availability. 

Scalable for high-
performance 
needs but less 
suited for 
widespread, cost-
sensitive 
applications. 

[19];[22] 

GPU 
Capability 

128-core Maxwell 
GPU handles 
complex ML tasks 
efficiently on edge. 

Cloud platforms 
offer powerful 
GPUs (e.g., 
NVIDIA Tesla), 
but usage incurs 
high costs. 

Superior GPUs 
(e.g., Volta or 
Ampere) for 
highly intensive 
applications. 

[19] 
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Latency 
Minimal latency as 
all processing 
occurs locally. 

High latency due to 
the round trip to 
cloud servers, 
especially in 
remote areas. 

Similar low-
latency 
performance but 
with increased 
power and cost 
requirements. 

[18] 

Integration 
with Sensors 

Easily integrates 
with sensors for 
real-time water 
potability 
monitoring, 
suitable for edge AI 
applications. 

Limited sensor 
integration due to 
cloud dependency 
and potential 
network issues. 

Supports 
advanced sensor 
integration but 
may require 
additional 
configuration 
effort. 

[16];[19] 

4.2. Advantages of NVIDIA Jetson Nano Over Other Platforms 
The Table 4 below presents the advantages of Jetson Nano over other platforms: - 
 
Table 4: The Advantages of Jetson Nano over other platforms 

Category Advantage of NVIDIA 
Jetson Nano 

Explanation 

Real-Time Processing Local inference 
capabilities 

Jetson Nano performs machine learning 
inference locally without relying on 
cloud infrastructure, reducing latency 

Energy Efficiency Low power consumption 
(5–10W) 

Highly energy-efficient compared to 
cloud servers or powerful edge devices 
like Jetson Xavier NX, which consume 
more power 

Cost-Effectiveness Affordable price ($99) Makes it accessible for small-scale 
projects, unlike cloud services with 
recurring costs or expensive high-
performance devices 

Scalability Compact and portable 
Easily deployable in diverse 
environments, including remote and 
urban areas. 

GPU Capabilities 128-core Maxwell GPU 
Efficiently runs machine learning and 
deep learning models on the edge 
without cloud dependency. 

Sensor Integration 
Supports real-time sensor 
integration 

Allows seamless integration with sensors 
for real-time applications like water 
quality monitoring. 

Latency Minimal latency 
Processes data locally, making it suitable 
for time-sensitive applications. 

Deployment 
Versatility 

Diverse use cases 

Suitable for applications in resource-
constrained environments, 
environmental monitoring, robotics, 
and more. 
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5. FUTURE RESEARCH  
Future study should enhance Jetson Nano's usability in predicting water potability by hardware 
integration and software enhancement. Federated learning frameworks seem promising. Instead 
of raw data, these frameworks share trained model parameters between Jetson Nano devices. 
Decentralised water quality surveillance in sensitive locations requires private data, which this 
technology achieves [30]. It also makes models more adaptable to different situations. Studying 
further sensor fusion approaches on Jetson Nano, such as merging pH, turbidity, temperature, 
and conductivity sensors, could enable it to handle several data sets at once and discover 
abnormalities and make more accurate predictions. Low-power optimisation strategies and model 
compression methods like trimming and quantisation should help researchers achieve fast 
inference on Jetson Nano hardware with constrained resources [27]. Studies that compare Jetson 
Nano's performance in rural and urban water systems would help us determine its wider 
applications and restrictions. Finally, future research could create open-source frameworks and 
pre-trained models for water quality analysis on embedded AI devices to make it easier to use and 
faster in low-resource areas [23]. 
 
6.  CONCLUSION  
This review studied how the NVIDIA Jetson Nano platform increases real-time water potability 
prediction machine learning algorithms' energy efficiency, cost-effectiveness, and scalability. This 
proves Jetson Nano is a feasible edge computing solution for decentralised and resource-limited 
water quality monitoring. The combination of CNNs, LSTMs, GRUs, and environmental 
sensors allows accurate and fast water potability projections. Jetson Nano minimises latency and 
speeds anomaly detection by providing local inference on-device, eliminating cloud connectivity. 
Increasing real-time, on-site water quality analysis is the goal. Multiple studies cited the platform's 
low power consumption (5–10W), cost (about $99), and compact, deployable design as major 
benefits. These attributes make it suited for urban and off-grid rural deployment. Its energy 
efficiency and low infrastructure requirements reduce operational expenses compared to high-
performance edge devices and cloud services. These advantages make Jetson Nano a cost-effective, 
scalable solution for continuous, sustainable water monitoring.  
Limitations occur despite its benefits. Unlike Jetson Xavier NX or cloud-based AI servers, the 
device cannot manage high-volume data or train complicated models due to its limited 
computing capability. Model deployment on Jetson Nano sometimes involves pruning and 
quantisation, which may reduce accuracy. Field calibration may be needed for sensor integration, 
and long-term deployment studies are scarce. Federated learning architectures, multi-sensor data 
fusion, and adaptive optimisation algorithms should be studied to improve Jetson Nano's 
environmental AI applications. Open-source model libraries for water quality prediction would 
boost acceptance and innovation. Jetson Nano is a viable platform for real-time, scalable, and 
cost-effective water potability monitoring, enhancing technology and environmental health. 
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