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Abstract 
This study presents a novel approach to solving fractional-order kinetic equations (FKEs) by employing Hyper-Bessel 
functions in conjunction with the Sumudu transform. The proposed method leverages the Sumudu transform to obtain 
analytical solutions of FKEs, wherein the function f(t) is expressed in terms of a Hyper-Bessel function. The resulting 
solutions are general in nature and can be applied to a wide range of existing as well as newly formulated fractional 
kinetic equations, with potential applications in environmental science and related fields.Special functions included 
in fractional kinetic equations have been shown to be helpful in the explanation and resolution of numerous important 
mathematical and mathematical physics issues. Because arbitrary-order kinetic equations are so important, the goal 
of this study is to use the Sumudu Transform technique to solve a new fractional-order kinetic equation involving the 
Hyper Bessel function with their fractional derivatives. MATLAB-generated graphical representations used in our 
analysis to demonstrate the behavior of these solutions under various parametric values. The outcomes of the study 
are highly flexible and may lead to both confirmed and maybe undiscovered research findings in this field. 
Key words: Hyper-Bessel function, Fractional order derivative, fractional differential equations , Kinetic equation 
MAT Lab software . 
 
1. INTRODUCTION 
Fractional kinetic equations (FKEs) are mathematical models used to describe reaction rates and transport 
processes. These equations often involve derivatives of non-integer order, enabling a more accurate 
representation of complex natural phenomena compared to classical integer-order models. Fractional 
calculus provides a mathematical framework for addressing fractional differential equations, which 
involve derivatives and integrals of non-integer order. These equations play a crucial role in applied 
sciences, particularly in dynamic systems, control theory, mathematical physics, and engineering. In recent 
years, they have been extensively employed to develop mathematical models for various physical 
phenomena. However, the nonlocal nature of fractional derivatives makes solving these equations 
challenging. Consequently, special functions and numerical methods are often utilized to obtain 
approximate solutions. Researchers continue to develop innovative methods and tools to enhance the 
understanding and solution of such problems. Over the past few decades, fractional-order differential 
equations have demonstrated significant applicability across numerous branches of engineering and 
physical sciences. Environmental science employs a wide range of applications, including scientific 
research, data acquisition, and technological innovations, to address complex environmental challenges. 
These applications encompass understanding ecological processes and developing advanced technologies 
for pollution mitigation and sustainable resource management 
Deliberate the problem of modelling pollutant dispersion in a river system. A fractional-order model 
offers a more accurate representation of complex transport and diffusion processes compared to classical 
integer-order models. By employing a Hyper-Bessel function to characterize the pollutant diffusion rate 
and applying the Sumudu transform, an analytical solution can be derived to describe the temporal and 
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spatial variation of pollutant concentration. Such a solution provides valuable insights for predicting the 
pollutant’s impact on the river ecosystem and developing effective mitigation strategies. 
Fractional kinetic equations (FKEs) have numerous significant applications in modeling complex physical 
systems and are widely employed in engineering, management, physical sciences, and social sciences. Over 
the years, extensive research has been conducted on FKEs involving various special functions, resulting 
in substantial contributions to the literature of fractional calculus. Notably, the works of Haubold and 
Mathai [9] and Saxena and Kalla [15] marked important advancements in this domain. Several scholars 
have rigorously investigated FKEs to uncover new applications and theoretical developments. Among 
them are Haubold and Mathai [1],  Baricz and Mehrez [3–4], Ozarslan [6], Gupta and Parihar [7], Gupta 
et al. [8], Kumar et al. [11], Saxena et al [12]  Nisar et al. [13], Saichev and Zaslavsky [14], Saxena et al.[16], 
Chand et al. [22], Samraiz et al. [17] Sharma and Bhargava [18–20], Suthar et al. [21], Srivastava and 
Tomovski [10], Meena and  Purohit [25], Jarad and  Abdeljawad investigated a  modified Laplace 
transform for certain generalized fractional operators. Their research has focused on the extension of 
FKEs associated with special functions, leading to several important and intriguing findings. 
Mathematical equations that govern the time evolution of a system while incorporating fractional 
derivatives to capture non-local effects and long-range interactions. Fractional calculus and fractional 
kinetic equations (FKEs) are increasingly applied in environmental science to model complex phenomena 
such as pollutant dispersion in water bodies, groundwater flow through porous media, soil 
contamination, and anomalous diffusion in ecosystems. Fundamentally, fractional-order kinetics offers 
an advanced framework for analyzing and modeling a broad spectrum of environmental processes, 
facilitating more precise predictions and enhanced management of environmental resources. 
Saxena and Kalla [15] defined generalized FKE as 
N(t) − N0f(t) = −cv Dt

−v
0
  N(t), Re(v) > 0                      (1) 

N(t): Number density of species at the time t, N0 = N(t = 0), c ≠ 0 is a constant, f(t) ∈ L(0, ∞) and 
Dt

−v
0
  is the fractional differential operator [12]. 

 
Due to the importance of Hyper-Bessel functions which appeared in the various field of applied and pure 
mathematical frameworks. Hyper-Bessel has several uses in science and engineering and is frequently used 
to solve fractional order differential equations. Here, in this paper, we consider the function f(t) as a 
Hyper-Bessel function and acquire the solution of FKE with utilizing the powerful Sumudu Transform 
[24] technique. In mathematical modeling, kinetic equations serve as fundamental tools in mathematical 
physics and the natural sciences, describing the continuity of motion of materials. In this study, new 
solutions of a generalized Hadamard fractional kinetic equation involving the generalized k -Bessel 
function are presented using the Mellin transform technique. 
 
 
The Hyper-Bessel function [5] in generalized form defined as  

𝔍τ1,τ2,…,τϑ

(ϑ) (ξ) = (
ξ

ϑ + 1
)

∑ τi
ϑ
i=1

 
 𝔍̃τ1,τ2,…,τϑ

(ϑ) (ξ) 

where 

𝔍̃τ1,τ2,…,τϑ

(ϑ) (ξ) = ∑
(−1)ℓ

Γ(ℓ + τ1 + 1) …  Γ(ℓ + τϑ + 1)ℓ!
(

ξ

ϑ + 1
)

ℓ(ϑ+1)∞

ℓ=0

 

                    (2) 
where ξ, τi  ∈  ℂ, ℜ(τi + 1) > 0, |ξ| < ∞, i = 1,2, … , ϑ . For more details, we refer [3, 4, 5]. 
 
The fractional derivative [12] of order λ of the function f(t) = tβ is given by  

Dλtβ =
Γ(β + 1)

Γ(β − λ + 1)
tβ−λ     ; ℜ(β) > −1,0 < ℜ(λ) < 1, t > 0 

                                      (3) 
So, in view of (2) and (3) we have 

Dt
λ (𝔍τ1,τ2,…,τϑ

(ϑ) (ξ))0
 = ∑

(−1)ℓ

Γ(ℓ + τ1 + 1) …  Γ(ℓ + τϑ + 1)ℓ!
(

1

ϑ + 1
)

∑ τi
ϑ
i=1 +ℓ(ϑ+1)∞

ℓ=0
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×
Γ(∑ τi

ϑ
i=1 + ℓ(ϑ + 1) + 1)

Γ(∑ τi
ϑ
i=1 + ℓ(ϑ + 1) − λ + 1)

(ξ)∑ τi
ϑ
i=1 +ℓ(ϑ+1)−λ 

                       (4) 
The Sumudu Transform [24] is described as follows over the set ‘Ω’ of functions as 

S[f(t)] = G(u) =
1

u
∫ f(t)e−t/u

∞

0

dt          ;  0 < t < ∞, u ∈ (−τ1, τ2) 

                                   
(5) 
where 𝛺 = {𝑓(𝑡)| 𝑀𝑒|𝑡| 𝜏𝑗⁄  ; 𝑖𝑓 𝑡(−1)𝑘 [0,)}, 𝑀 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑛𝑑 𝜏1, 𝜏2 > 0 
We need the following to support our major findings: 
 
Lemma 1:  

𝑆 (𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗)
(𝜉)) = ∑

(−1)ℓ𝛤(∑ 𝜏𝑖
𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

(𝑢)(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

∞

ℓ=0

 

                        (6) 
Lemma 2: 

𝑆 [ 𝐷𝑡
𝜆 (𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗)
(𝜉))0

 ]

= ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

(𝑢)(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆)

∞

ℓ=0

 

                        (7) 
 
Proof: In view of definition (2), (4), (5) and doing simple calculations we can obtain (6) and (7) easily. 
 
In this manuscript, we acquire the findings in terms of ML function [23], defined as 

𝐸𝜃,𝛿
 (𝑧) = ∑

𝑧𝑙

𝛤(𝑙𝜃 + 𝛿)

∞

𝑙=0

  ;  ℜ(𝜃), ℜ(𝛿) > 0, 𝜃, 𝛿 𝜖 ℂ 

              (8) 
2. Main Results 
Theorem1: If 𝑐 > 0, 𝑣 > 0, |𝑡| < ∞, ℜ(𝜏𝑖 + 1) > 0, ℜ(𝜏) > 0, ℜ(𝜁) > 0, 𝑡, 𝜏𝑖, 𝜁, 𝜂, 𝜉 ∈ ℂ, 𝑟 ∈
ℝ, 𝜂 ∈ (0,1) ∪ ℕ, ℜ(𝜉) > 0 , then the FKE 

𝑁(𝑡) − 𝑁0 {𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗) (𝑡)} = −𝑐𝑣 𝐷𝑡
−𝑣

0
  𝑁(𝑡) 

   (9) 
and its solution is  
         

𝑁(𝑡) = 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)𝑡ℓ(𝜗+1)+∑ 𝜏𝑖

𝜗
𝑖=1

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ! (𝜗 + 1)∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

∞

ℓ=0

 

× 𝐸
𝑣,∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)+1

 (−𝑐𝑣𝑡𝑣) 

     (10)   
Proof: Using (5) on (9),  

𝑁(𝑢) = 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

𝑢

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

∞

ℓ=0

 (1 + 𝑐𝑣𝑢𝑣  )−1 

 

= 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

𝑢

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

∞

𝑗=0

∑(−𝑐𝑣𝑢𝑣)𝛼

∞

𝛼=0

 

 

= 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)∞

𝑗=0

∑(−𝑐𝑣)𝛼𝑢
(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)+𝑣𝛼)

∞

𝛼=0
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                    (11) 
Now using the definition of inverse Sumudu Transform and with simple evaluation we achieve the result 
(10). 
3.1 Mathematical Analysis and Explanation   
We obtain several values of N(t) for (10), by varying 𝑡 while keeping 𝑣 constant. These values are 
interpreted in table 1 and the 3D and 2D graphs 1(a), 1(b), which illustrate the behavior of the result for 
the kinetic equation (9). 
Table 1: “The values of 𝑵(𝒕) with fix 𝒗 for (10)” 

𝒕 "𝑵(𝒕) at 𝒗 = 𝟎. 𝟏" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟓" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟗" "𝑵(𝒕) at 𝒗 = 𝟏. 𝟑" 
0 0 0 0 0 
0.08 2.40324E+15 -2.4822E+14 2.68905E+13 -2.91384E+12 
0.16 3.63689E+15 -4.85009E+14 6.89933E+13 -9.85605E+12 
0.24 4.74184E+15 -7.30177E+14 1.21619E+14 -2.04129E+13 
0.32 5.78971E+15 -9.8714E+14 1.83711E+14 -3.45584E+13 
0.4 6.91295E+15 -1.25741E+15 2.54859E+14 -5.23604E+13 
0.48 7.84798E+15 -1.54188E+15 3.34905E+14 -7.39265E+13 
0.56 8.89422E+15 -1.85112E+15 4.23812E+14 -9.93848E+13 
0.64 9.95756E+15 -2.15559E+15 5.21612E+14 -1.28875E+14 
0.72 1.1042E+16 -2.49563E+15 6.28378E+14 -1.62545E+14 
0.8 1.21504E+16 -2.83156E+15 7.44211E+14 -2.00556E+14 
0.88 1.32849E+16 -3.19364E+15 8.69228E+14 -2.43033E+14 
0.96 1.44471E+16 -3.57213E+15 1.00356E+15 -2.90163E+14 
1.04 1.56384E+16 -3.96726E+15 1.14736E+15 -3.42094E+14 
1.12 1.68597E+16 -4.37925E+15 1.30076E+15 -3.98988E+14 
1.2 1.81121E+16 -4.80835E+15 1.46393E+15 -4.61005E+14 
1.28 1.93963E+16 -5.25475E+15 1.63702E+15 -5.28307E+14 
1.36 2.0713E+16 -5.71868E+15 1.82019E+15 -6.01057E+14 
1.44 2.20629E+16 -6.20036E+15 2.01362E+15 -6.79418E+14 
1.52 2.34464E+16 -6.7E+15 2.21748E+15 -7.63555E+14 
1.6 2.48642E+16 -7.21782E+15 2.43194E+15 -8.53632E+14 
1.68 2.63167E+16 -7.75405E+15 2.65716E+15 -9.49816E+14 
1.76 2.78045E+16 -8.30889E+15 2.89335E+15 -1.05227E+15 
1.84 2.93279E+16 -8.88258E+15 3.14066E+15 -1.16117E+15 
1.92 3.08875E+16 -9.47535E+15 3.39929E+15 -1.27667E+15 
2 3.24837E+16 -1.00874E+16 3.66943E+15 -1.39896E+15 

 

  
     Figure 1     (a) 3D graph for (10)    (b) 2D graph for (10) 
Theorem-2: If 𝑐 > 0, 𝑣 > 0, |𝑡| < ∞, ℜ(𝜏𝑖 + 1) > 0, ℜ(𝜏) > 0, ℜ(𝜉) > 0 𝑡, 𝜏𝑖 , 𝜁, 𝜂, 𝜉 ∈ ℂ, 𝑑 ≠ 𝑐, 𝑑 >
0, 𝑟 ∈ ℝ, 𝜂 ∈ (0,1) ∪ ℕ, ℜ(𝜁) > 0, then the FKE 

𝑁(𝑡) − 𝑁0 {𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗) (𝑑𝑣𝑡𝑣)} = −𝑐𝑣 𝐷𝑡
−𝑣

0
  𝑁(𝑡) 
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                            (12) 
and its solution is         

𝑁(𝑡) = 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

     

 × (
𝑑𝑡

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

 𝐸
𝑣,(𝑣(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1))+1)

 (−𝑐𝑣𝑡𝑣) 

                                                  (13) 
Proof: Using (5) on (12),  

𝑁(𝑢) = 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

  (
𝑢𝑑

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

 (1 + 𝑐𝑣𝑢𝑣  )−1 

= 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

  (
𝑑

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝑛+1))

∑(−𝑐𝑣𝑢𝑣)𝛼𝑢
(𝑣(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)))

∞

𝛼=0

 

= 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

  (
𝑑

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

∑(−𝑐𝑣)𝛼𝑢
(𝑣(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1))+𝑣𝛼)

∞

𝛼=0

 

Now using the definition of inverse Sumudu Transform, (8) and then with simple evaluation we achieve 
the result (13). 
 
3.2 Mathematical Analysis and Explanation 
We obtain several values of N(t) for (13), by varying 𝑡 while keeping 𝑣 constant. These values are 
interpreted in table 2 and the 3D and 2D graphs 2(a), 2(b), which illustrate the behavior of the result for 
the kinetic equation (12). 
 
Table 2: “The values of 𝑵(𝒕) with fix 𝒗 for equation  (13)” 

𝒕 "𝑵(𝒕) at 𝒗 = 𝟎. 𝟏" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟓" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟗" "𝑵(𝒕) at 𝒗 = 𝟏. 𝟑" 
2 0.001114394 -0.001479266 0.001694018 -0.002810911 
2.04 0.001411325 -0.001889534 0.002204592 -0.003683596 
2.08 0.001779217 -0.002402634 0.002854421 -0.004803091 
2.12 0.002233185 -0.003041721 0.003677696 -0.006232666 
2.16 0.002791193 -0.003834604 0.004716125 -0.008050212 
2.2 0.003474527 -0.004814576 0.006020399 -0.010351277 
2.24 0.004308341 -0.006021378 0.007651925 -0.013252652 
2.28 0.005322272 -0.007502306 0.009684839 -0.016896616 
2.32 0.006551151 -0.009313494 0.012208367 -0.021455935 
2.36 0.008035809 -0.011521387 0.015329575 -0.027139747 
2.4 0.009823997 -0.014204434 0.01917656 -0.03420046 
2.44 0.011971426 -0.017455028 0.023902162 -0.042941822 
2.48 0.014542956 -0.021381732 0.029688251 -0.053728359 
2.52 0.017613937 -0.026111817 0.036750692 -0.066996362 
2.56 0.021271729 -0.031794168 0.045345067 -0.083266678 
2.6 0.025617424 -0.038602589 0.055773274 -0.103159561 
2.64 0.030767788 -0.046739569 0.068391107 -0.127411884 
2.68 0.036957457 -0.056440575 0.083616974 -0.156898063 
2.72 0.044041411 -0.067978914 0.101941881 -0.192648072 
2.76 0.052497766 -0.081671262 0.123940883 -0.235883997 
2.8 0.062430915 -0.097883936 0.150286173 -0.28804063 
2.84 0.074075067 -0.117039992 0.181762044 -0.350805664 
2.88 0.087698228 -0.139627267 0.219281966 -0.426159128 
2.92 0.103606678 -0.166207477 0.263908058 -0.516419801 
2.96 0.122150002 -0.1974265 0.316873269 -0.624298407 
3 0.143726743 -0.234025996 0.379606636 -0.752958527 
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Figure 2 (a) 3D graph for equation (13)   (b) 2D graph for equation (13) 
 
Theorem-3: If 𝑐 > 0, 𝑣 > 0, |𝑡| < ∞, ℜ(𝜏𝑖 + 1) > 0, ℜ(𝜏) > 0, ℜ(𝜁) > 0, 𝑡, 𝜏𝑖 , 𝜁, 𝜂, 𝜉 ∈ ℂ, 𝑟 ∈ ℝ, 𝜂 ∈
(0,1) ∪ ℕ, ℜ(𝜉) > 0, 𝜆 ≠ 𝑣, then the FKE  

𝑁(𝑡) − 𝑁0 ( 𝐷𝑡
𝜆 (𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗) (𝑡))0
 ) = −𝑐𝑣 𝐷𝑡

−𝑣
0
  𝑁(𝑡) 

                                       (14) 
and its solution is  
𝑁(𝑡)

= ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)𝑡∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

𝐸
𝑣,∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆+1

 (−𝑐𝑣𝑡𝑣)

∞

ℓ=0

 

                            (15)  
 
 
Proof: Using (5) on (14),  

𝑁(𝑠) = 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

(𝑢)(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆)

∞

ℓ=0

× (1 + 𝑐𝑣𝑢𝑣  )−1 

= 𝑁0 ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)

(𝑢)(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆)

∞

ℓ=0

∑(−𝑐𝑣𝑢𝑣)𝛼

∞

𝛼=0

 

= ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)∞

ℓ=0

 ∑(−𝑐𝑣)𝛼(𝑢)(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆+𝑣𝛼)

∞

𝑘=0

 

Now taking inverse Sumudu Transform, we have 

𝑁(𝑡) = ∑
(−1)ℓ𝛤(∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1) + 1)𝑡∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1)−𝜆

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!
(

1

𝜗 + 1
)

∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1)∞

ℓ=0

× ∑
(−𝑐𝑣𝑡𝑣)𝛼

𝛤(∑ 𝜏𝑖
𝜗
𝑖=1 + ℓ(𝜗 + 1) − 𝜆 + 1 + 𝑣𝛼)

∞

𝛼=0

 

 
By using (8), we get the result (15). 
3.3 Mathematical Analysis and Explanation 
Several values of N(t) corresponding to equation (15) are computed by varying t while keeping 𝒗 constant. 
These results are presented in Table 3, and their behavior for the kinetic equation (14) is illustrated 
through the 2D and 3D plots shown in Figures 3(a) and 3(b). 
 
Table 3: “The values of 𝑵(𝒕) with fix 𝒗 for (15)” 

𝒕 "𝑵(𝒕) at 𝒗 = 𝟎. 𝟏" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟓" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟗" "𝑵(𝒕) at 𝒗 = 𝟏. 𝟑" 
0 0 0 0 0 
0.2 5.88804E+91 -7.86187E+90 1.12174E+90 -1.61069E+89 
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0.4 9.38709E+91 -1.60481E+91 2.99548E+90 -5.66357E+89 
0.6 1.27784E+92 -2.51300E+91 5.47438E+90 -1.21451E+90 
0.8 1.62491E+92 -3.52106E+91 8.54498E+90 -2.12180E+90 
1 1.98662E+92 -4.63432E+91 1.22152E+91 -3.30807E+90 
1.2 2.36626E+92 -5.85667E+91 1.65018E+91 -4.78446E+90 
1.4 2.76576E+92 -7.19136E+91 2.14209E+91 -6.60273E+90 
1.6 3.18643E+92 -8.66145E+91 2.69966E+91 -8.75493E+90 
1.8 3.62926E+92 -1.02099E+92 3.32506E+91 -1.12734E+91 
2 4.09504E+92 -1.18996E+92 4.02061E+91 -1.41806E+91 
2.2 4.58449E+92 -1.37136E+92 4.78874E+91 -1.74992E+91 
2.4 5.09825E+92 -1.5655E+92 5.63191E+91 -2.12523E+91 
2.6 5.63695E+92 -1.77269E+92 6.55269E+91 -2.54630E+91 
2.8 6.20120E+92 -1.99325E+92 7.55367E+91 -3.01548E+91 
3 6.79162E+92 -2.22752E+92 8.63755E+91 -3.53517E+91 
3.2 7.40882E+92 -2.47584E+92 9.80706E+91 -4.10778E+91 
3.4 8.05343E+92 -2.73857E+92 1.10650E+92 -4.73578E+91 
3.6 8.72610E+92 -3.01609E+92 1.24143E+92 -5.42169E+91 
3.8 9.42750E+92 -3.30878E+92 1.38580E+92 -6.16806E+91 
4 1.01583E+93 -3.61704E+92 1.53991E+92 -6.97751E+91 
4.2 1.09193E+93 -3.94129E+92 1.70407E+92 -7.85273E+91 
4.4 1.17111E+93 -4.28194E+92 1.87861E+92 -8.79644E+91 
4.6 1.25345E+93 -4.63946E+92 2.06386E+92 -9.81547E+91 
4.8 1.33904E+93 -5.01430E+92 2.26018E+92 -1.09007E+92 
5 1.42795E+93 -5.40694E+92 2.46792E+92 -1.20671E+92 

 

  
 
 
Figure 3 (a) 3D graph for equation (15)   (b) 2D graph for equation (15) 
 
 
 
 
Theorem-4: If 𝑐 > 0, 𝑑 > 0, 𝑣 > 0, |𝑡| < ∞, ℜ(𝜏𝑖 + 1) > 0, ℜ(𝜏) > 0, ℜ(𝜁) > 0, 𝑡, 𝜏𝑖, 𝜁, 𝜂, 𝜉 ∈ ℂ, 𝜂 ∈
(0,1) ∪ ℕ, ℜ(𝜉) > 0, 𝜆 ≠ 𝑣, 𝑑 ≠ 𝑐, then the FKE  

𝑁(𝑡) − 𝑁0 ( 𝐷𝑡
𝜆 (𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗) (𝑑𝑣𝑡𝑣))0
 ) = −𝑐𝑣 𝐷𝑡

−𝑣
0
  𝑁(𝑡) 

                            (16) 
is given as         
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𝑁(𝑡) = 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

 (
𝑑

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

 

× (𝑡)𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))−𝜆

𝐸
𝑣,𝑣(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1))−𝜆+1

 (−𝑐𝑣𝑡𝑣) 

                                                 (17) 
Proof: Doing the same process as we have done for Theorem 1 and using Lemma 2, we can achieve the 
result equation (17).  
3.4 Mathematical Analysis and Explanation 
We obtain several values of N(t) for (17), by varying 𝑡 while keeping 𝑣 constant. These values are 
interpreted in table 4 and the 3D and 2D graphs 4(a), 4(b), which illustrate the behavior of the result for 
the kinetic equation (16). 
 
Table 4: “The values of 𝑵(𝒕) with fix 𝒗 for equation (17)” 

𝒕 "𝑵(𝒕) at 𝒗 = 𝟎. 𝟏" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟓" "𝑵(𝒕) at 𝒗 = 𝟎. 𝟗" "𝑵(𝒕) at 𝒗 = 𝟏. 𝟑" 
1.5 989.2757986 -1373.487548 1953.719148 -4275.797537 
1.52 1361.174549 -1900.522248 2732.823474 -6004.230874 
1.54 1865.720527 -2619.686998 3807.102295 -8397.381892 
1.56 2547.886046 -3597.621875 5282.937249 -11698.71367 
1.58 3467.196015 -4923.032803 7303.288022 -16236.82745 
1.6 4702.257497 -6713.712035 10059.75851 -22454.02663 
1.62 6356.663494 -9125.729139 13808.51895 -30944.1534 
1.64 8566.685676 -12365.45611 18841.29636 -42502.65047 
1.66 11511.29846 -16705.29561 25763.02816 -58152.73967 
1.68 15425.24578 -22504.26281 35028.28162 -79432.85474 
1.7 20616.08617 -30234.85096 47489.21556 -108112.1204 
1.72 27486.45034 -40518.36982 64208.75967 -146742.875 
1.74 36563.14558 -54171.02501 86593.8889 -198662.1817 
1.76 48565.27807 -72264.56394 116505.4846 -268298.2248 
1.78 64304.28938 -96205.90739 156403.448 -361522.809 
1.8 85049.78541 -127842.0256 209538.6739 -486118.3581 
1.82 112316.3733 -169598.3546 280207.486 -652397.5468 
1.84 148128.5501 -224661.9443 374089.5801 -874026.9443 
1.86 195143.199 -297224.4811 498697.9799 -1169124.134 
1.88 256852.7113 -392805.7617 663979.7551 -1561722.584 
1.9 337856.561 -518685.7008 883120.4064 -2083732.689 
1.92 444225.8423 -684483.3711 1173624.437 -2777574.627 
1.94 583994.647 -902936.0961 1558771.96 -3699724.181 
1.96 767825.3192 -1190951.947 2069589.389 -4925504.086 
1.98 1009913.218 -1571037.608 2747525.97 -6555581.284 
2 1329224.026 -2073444.023 3648103.645 -8724810.316 

 

  
Figure 4. (a) 3D graph for equation (17)   (b) 2D graph for equation (17) 
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4. Specific Cases 
 
(i)  Substituting 𝑑 = 𝑐 in (12), then the FKE reduces as  

𝑁(𝑡) − 𝑁0 {𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗)
(𝑐𝑣𝑡𝑣)} = −𝑐𝑣 𝐷𝑡

−𝑣
0
  𝑁(𝑡) 

                            (18) 
and its solution is         

𝑁(𝑡) = 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

× (
𝑐𝑡

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

×  𝐸
𝑣,(𝑣(∑ 𝜏𝑖

𝜃
𝑖=1 +ℓ(𝜗+1))+1)

 (−𝑐𝑣𝑡𝑣) 

                                                                       (19) 
 
 
(ii) Substituting 𝑑 = 𝑐 in (16), then the FKE reduces in  

𝑁(𝑡) − 𝑁0 ( 𝐷𝑡
𝜆 (𝔍𝜏1,𝜏2,…,𝜏𝜗

(𝜗)
(𝑐𝑣𝑡𝑣))0

 ) = −𝑐𝑣 𝐷𝑡
−𝑣

0
  𝑁(𝑡) 

                          (20) 
and its solution is         

𝑁(𝑡) = 𝑁0 ∑
(−1)ℓ𝛤 (𝑣 (∑ 𝜏𝑖

𝜗
𝑖=1 + ℓ(𝜗 + 1)) + 1)

𝛤(ℓ + 𝜏1 + 1) …  𝛤(ℓ + 𝜏𝜗 + 1)ℓ!

∞

ℓ=0

 (
𝑐

𝜗 + 1
)

𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))

× (𝑡)𝑣(∑ 𝜏𝑖
𝜗
𝑖=1 +ℓ(𝜗+1))−𝜆

 × 𝐸
𝑣,𝑣(∑ 𝜏𝑖

𝜗
𝑖=1 +ℓ(𝜗+1))−𝜆+1

 (−𝑐𝑣𝑡𝑣) 

                  (21) 
Additional special cases of our results can be obtained by substituting suitable parameter values into the 
corresponding special function; however, these cases are not presented here explicitly. Fig 5 show that 
insight into temporal dynamics of system by depicting how the reaction rates change over the time. 
 

 
        Figure 5. Plot diagram N (t) and t 
 
5. CONCLUSION 
In this work, we propose using the Sumudu transform technique to solve a class of new generalized 
fractional kinetic equations that procedure the Hyper-Bessel function and its fractional derivatives. The 
mittag-Leffler function is used to direct the final solutions. This method is very important since fractional 
kinetic equations are widely applicable in many different scientific and engineering fields. After being 
expressed in terms of Hyper-Bessel functions, the solution can be examined and applied to particular 
environmental issues. This new method to fractional-order kinetic equations may be useful in the 
environmental field since it uses Hyper-Bessel functions as solutions. This method makes use of 
techniques like the Sumudu transform, of which the Hyper-Bessel function is an essential component, to 
solve these equations. These solutions can be used to mimic environmental phenomena, such as diffusion 
and transport processes, which are often described by kinetic equations.  Along with finding these 
solutions, we use MATLAB to provide a thorough inspection of their behavior through numerical and 
graphical representations under various parametric conditions. By generalizing the idea of integer-order 
calculus, fractional calculus offers a more profound framework for comprehending a range of real-world 
occurrences and basic scientific concepts. Due to its comprehensive application in a variety of fields, such 
as control systems, elasticity, electric drives, circuit theory, continuum mechanics, heat transfer, quantum 
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mechanics, fluid dynamics, signal processing, biomathematics, biomedical engineering, social systems, 
and bioengineering, fractional calculus research has attracted a lot of consideration recently. 
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