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Abstract

This study presents a novel approach to solving fractional-order kinetic equations (FKEs) by employing Hyper-Bessel
functions in conjunction with the Sumudu transform. The proposed method leverages the Sumudu transform to obtain
analytical solutions of FKEs, wherein the function f(t) is expressed in terms of a Hyper-Bessel function. The resulting
solutions are general in nature and can be applied to a wide range of existing as well as newly formulated fractional
kinetic equations, with potential applications in environmental science and related fields.Special functions included
in fractional kinetic equations have been shown to be helpful in the explanation and resolution of numerous important
mathematical and mathematical physics issues. Because arbitrary-order kinetic equations are so important, the goal
of this study is to use the Sumudu Transform technique to solve a new fractional-order kinetic equation involving the
Hyper Bessel function with their fractional derivatives. MATLAB-generated graphical representations used in our
analysis to demonstrate the behavior of these solutions under various parametric values. The outcomes of the study
are highly flexible and may lead to both confirmed and maybe undiscovered research findings in this field.
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1. INTRODUCTION

Fractional kinetic equations (FKEs) are mathematical models used to describe reaction rates and transport
processes. These equations often involve derivatives of non-integer order, enabling a more accurate
representation of complex natural phenomena compared to classical integer-order models. Fractional
calculus provides a mathematical framework for addressing fractional differential equations, which
involve derivatives and integrals of non-integer order. These equations play a crucial role in applied
sciences, particularly in dynamic systems, control theory, mathematical physics, and engineering. In recent
years, they have been extensively employed to develop mathematical models for various physical
phenomena. However, the nonlocal nature of fractional derivatives makes solving these equations
challenging. Consequently, special functions and numerical methods are often utilized to obtain
approximate solutions. Researchers continue to develop innovative methods and tools to enhance the
understanding and solution of such problems. Over the past few decades, fractional-order differential
equations have demonstrated significant applicability across numerous branches of engineering and
physical sciences. Environmental science employs a wide range of applications, including scientific
research, data acquisition, and technological innovations, to address complex environmental challenges.
These applications encompass understanding ecological processes and developing advanced technologies
for pollution mitigation and sustainable resource management

Deliberate the problem of modelling pollutant dispersion in a river system. A fractional-order model
offers a more accurate representation of complex transport and diffusion processes compared to classical
integer-order models. By employing a Hyper-Bessel function to characterize the pollutant diffusion rate
and applying the Sumudu transform, an analytical solution can be derived to describe the temporal and
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spatial variation of pollutant concentration. Such a solution provides valuable insights for predicting the
pollutant’s impact on the river ecosystem and developing effective mitigation strategies.

Fractional kinetic equations (FKEs) have numerous significant applications in modeling complex physical
systems and are widely employed in engineering, management, physical sciences, and social sciences. Over
the years, extensive research has been conducted on FKEs involving various special functions, resulting
in substantial contributions to the literature of fractional calculus. Notably, the works of Haubold and
Mathai [9] and Saxena and Kalla [15] marked important advancements in this domain. Several scholars
have rigorously investigated FKEs to uncover new applications and theoretical developments. Among
them are Haubold and Mathai [1], Baricz and Mehrez [3-4], Ozarslan [6], Gupta and Parihar [7], Gupta
et al. [8], Kumar et al. [11], Saxena et al [12] Nisar et al. [13], Saichev and Zaslavsky [14], Saxena et al.[16],
Chand et al. [22], Samraiz et al. [17] Sharma and Bhargava [18-20], Suthar et al. [21], Srivastava and
Tomovski [10], Meena and Purohit [25], Jarad and Abdeljawad investigated a modified Laplace
transform for certain generalized fractional operators. Their research has focused on the extension of
FKEs associated with special functions, leading to several important and intriguing findings.
Mathematical equations that govern the time evolution of a system while incorporating fractional
derivatives to capture non-local effects and long-range interactions. Fractional calculus and fractional
kinetic equations (FKEs) are increasingly applied in environmental science to model complex phenomena
such as pollutant dispersion in water bodies, groundwater flow through porous media, soil
contamination, and anomalous diffusion in ecosystems. Fundamentally, fractional-order kinetics offers
an advanced framework for analyzing and modeling a broad spectrum of environmental processes,
facilitating more precise predictions and enhanced management of environmental resources.

Saxena and Kalla [15] defined generalized FKE as

N(t) — Nof(t) = —cV(DyV N(t),Re(v) > 0 (1)

N(t): Number density of species at the time t, Ny = N(t = 0),c # 0 is a constant, f(t) € L(0, ) and
oDtV is the fractional differential operator [12].

Due to the importance of Hyper-Bessel functions which appeared in the various field of applied and pure
mathematical frameworks. Hyper-Bessel has several uses in science and engineering and is frequently used
to solve fractional order differential equations. Here, in this paper, we consider the function f(t) as a
Hyper-Bessel function and acquire the solution of FKE with utilizing the powerful Sumudu Transform
[24] technique. In mathematical modeling, kinetic equations serve as fundamental tools in mathematical
physics and the natural sciences, describing the continuity of motion of materials. In this study, new
solutions of a generalized Hadamard fractional kinetic equation involving the generalized k -Bessel
function are presented using the Mellin transform technique.

The Hyper-Bessel function [5] in generalized form defined as
©) E Z?:lri ~(9)
311,12,...,19(5) = (m) 311,12,...,‘59 (E)

where
£09+1)

&) = N Sl :
\Stl,Tz,...,‘tg(E) - ; Fr+1+1)...TE+ 19+ 12! (19 + 1)

(2)
where §, T; € C,R(t;+ 1) >0, [§] < 0,i = 1,2,...,9 . For more details, we refer [3, 4, 5].

The fractional derivative [12] of order A of the function f(t) = th is given by

r+1) 4
ArB B-A . —
DM =TG- 1)t ;RB) > -10<RA) <L1,t>0

(3)

So, in view of (2) and (3) we have

(o] 9
N (_1){7 1 Zi=1T1+f(\9+1)
f_OF(f +1+1D)..TE+Tg+ DI\ +1
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F(TL t+¢0+1)+1)
X
L t+¢0@+1)—-1+1)

9 1. -
(E)Zi:l Ti+£(9+1)-A

4)

The Sumudu Transform [24] is described as follows over the set ‘€0’ of functions as

S[f(D)] = G(u) = %fmf(t)e‘t/“ dt ;0<t<oo,u€ (—14,1,)
0

(5)
where 2 = {f(t)] Meltl/7 5 if te(-1)k %[0, )}, M is a constant and t,,7, > 0
We need the following to support our major findings:

Lemma 1:

@) e CDTEL @+ D+ 1) 1
S (‘STI'TZ'---W (5)) B LT+t +1) .. T +T19+ DE! (0 + 1)

YO T+ L(9+1)
1 (u)(z?:11i+€(z9+l))

(6)

Lemma 2:
o~ 9
S [ODt/1 (\5-([1,)12,...,‘[19 (f))]

O CDIT(E T+ @+ 1) + 1) ( 1 )2?11“*“‘9“) () (et e+1)-2)
TLTEH T+ D TE T+ DD+ 1 u

(7
Proof: In view of definition (2), (4), (5) and doing simple calculations we can obtain (6) and (7) easily.

In this manuscript, we acquire the findings in terms of ML function [23], defined as
l

VA
Eps(2) = ; FaTs  RORE) >06,5¢C

(8)
2. Main Results
Theorem1: Ifc>0,v>0,|t] < oo, R(t; +1) > 0,R(r) >0,R() >0,t,7;,{,n,E €ECreE
R,n € (0,1) UN, R(&) > 0, then the FKE
N(E) = No {32, ey} = =c”0D7” N(2)
)

and its solution is

N N i (—DT(S, 7 + 200 + 1) + 1)t{O+ VLT
= N
T +7,+1) . T(L+1Ty +1)8 (O + 1)ZEaTiHE+D)

£=0
X Ev,zj‘i’:lri+€(19+1)+1(_cvtv)
(10)
Proof: Using (5) on (9),
(DTt + 0@+ D)+ 1) o u \ELamHE+D o
N(w) = N, (ﬁ+1) (14 c’u?)

[_OF(£’+11 +1).. I +19+ 1)

had ¢ 9 9 *©
_N DrEu+2@+1+1) ( u )Zl=1n+t’(w9+1) Z(—c”u”)“
a=0

0, T2+ 7 +1) .. T(€+79 + DN +1
]:

N, (_1)£F(Z?:1Ti +2@0+ 1)+ 1) ( 1 )ZL:1TL+‘€( +1) Z(_Cv)au(zleTi+£(19+1)+va)
a=0

. 0F(€+Tl+1)... Fr+19+1DI\O+1
]=
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(11)
Now using the definition of inverse Sumudu Transform and with simple evaluation we achieve the result
(10).
3.1 Mathematical Analysis and Explanation
We obtain several values of N(t) for (10), by varying t while keeping v constant. These values are
interpreted in table 1 and the 3D and 2D graphs 1(a), 1(b), which illustrate the behavior of the result for
the kinetic equation (9).

Table 1: “The values of N(t) with fix v for (10)”

t "N(t)atv=0.1" | "N(t) atv =0.5" | "N(t) atv=0.9" | "N(t) atv = 1.3"

0 0 0 0 0

0.08 2.40324E+15 -2.4822E+14 2.68905E+13 -2.91384E+12
0.16 3.63689E+15 -4.85009E+14 6.89933E+13 9.85605E+12
0.24 4.74184E+15 -1.30177E+14 1.21619E+14 -2.04129E+13
0.32 5.78971E+15 9.8714E+14 1.83711E+14 -3.45584E+13
0.4 6.91295E+15 -1.25741E+15 2.54859E+14 -5.23604E+13
0.48 7.84798E+15 -1.54188E+15 3.34905E+14 -1.39265E+13
0.56 8.89422E+15 -1.85112E+15 4.23812E+14 9.93848E+13
0.64 9.95756E+15 -2.15559E+15 5.21612E+14 -1.28875E+14
0.72 1.1042E+16 -2.49563E+15 6.28378E+14 -1.62545E+14
0.8 1.21504E+16 -2.83156E+15 7.44211E+14 -2.00556E+14
0.88 1.32849E+16 -3.19364E+15 8.69228E+14 -2.43033E+14
0.96 1.44471E+16 -3.57213E+15 1.00356E+15 -2.90163E+14
1.04 1.56384E+16 -3.96726E+15 1.14736E+15 -3.42094E+14
1.12 1.68597E+16 -4.37925E+15 1.30076E+15 -3.98988E+14
1.2 1.81121E+16 -4.80835E+15 1.46393E+15 -4.61005E+14
1.28 1.93963E+16 -5.25475E+15 1.63702E+15 -5.28307E+14
1.36 2.0713E+16 -5.71868E+15 1.82019E+15 -6.01057E+14
1.44 2.20629E+16 -6.20036E+15 2.01362E+15 -6.79418E+14
1.52 2.34464E+16 -6.7E+15 2.21748E+15 -1.63555E+14
1.6 2.48642E+16 -1.21782E+15 2.43194E+15 -8.53632E+14
1.68 2.63167E+16 -1.715405E+15 2.65716E+15 9.49816E+14
1.76 2.78045E+16 -8.30889E+15 2.89335E+15 -1.05227E+15
1.84 2.93279E+16 -8.88258E+15 3.14066E+15 -1.16117E+15
1.92 3.08875E+16 9.47535E+15 3.39929E+15 -1.27667E+15
2 3.24837E+16 -1.00874E+16 3.66943E+15 -1.39896E+15

: =
05 /‘/" -
Figure 1 (a) 3D graph for (10) (b) 2D graph for (10)

Theorem-2: If ¢ > 0,v > 0, |t|] < o0, R(t; +1) > 0,R(t) > 0,R(¢)>0¢,7;,(,nE€Cd+cd>
0,r € R,n € (0,1) UN,R({) > 0, then the FKE

o~ 9 _
N(t) — Ny {\551?,2,___,119 (d”t”)} = —c?,D N(£)
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(12)

and its solution is
2 (-0 (v (St + 20+ 1)) + 1)
N(t) =N
O 0{,_0 FrE+t+1).. I+t + 12!
dt v(Z‘if’:l ri+{’(19+1))
x (—) E
9+ 1 v,(v(ZL, Tt (9+1))+1)

Proof: Using (5) on (12),

2 (0T (v (St + 2@+ 1) +1) [, uq \P(EL D)
T +t,+1) .. [(£+719 + 1) (19 + 1)

(~c"t")

(13)

N(u) = Ny (1 + c’u? )1

© (_1)t 9 1, Lititeni) &
= Cur (v (Z‘=1T‘ +HE@+ 1)) + 1) ( d )v(z v ) Z(—cvuv)au(”(z?nTz+£’(19+1)))
OZ_O Fr+n+1D).. I+t + D80 \W+1 ~
X (- 1 1‘9 i ?_ i £(9+1 ©
_ DT (v(ELami+ 2@+ D) +1) ( d )v(z o) Z(—cv)au(v(2?=1fz+€<v9+1))+”“)
0“ Fr+n+1D) .. I+t + D80 \W+1 .
= a=
Now using the definition of inverse Sumudu Transform, (8) and then with simple evaluation we achieve

the result (13).

3.2 Mathematical Analysis and Explanation

We obtain several values of N(t) for (13), by varying t while keeping v constant. These values are
interpreted in table 2 and the 3D and 2D graphs 2(a), 2(b), which illustrate the behavior of the result for
the kinetic equation (12).

Table 2: “The values of N(t) with fix v for equation (13)”

t "N(t)atv=0.1" | "Nt atv =0.5" | "N()atv = 0.9" | "N(t) atv = 1.3"

2 0.001114394 10.001479266 0.001694018 10.002810911
2.04 0.001411325 10.001889534 0.002204592 10.003683596
2.08 0.001779217 10.002402634 0.002854421 10.004803091
2.12 0.002233185 10.003041721 0.003677696 10.006232666
2.16 0.002791193 10.003834604 0.004716125 10.008050212
2.2 0.003474527 10.004814576 0.006020399 10.010351277
2.24 0.004308341 10.006021378 0.007651925 10.013252652
2.28 0.005322272 10.007502306 0.009684839 10.016896616
2.32 0.006551151 10.009313494 0.012208367 10.021455935
2.36 0.008035809 10.011521387 0.015329575 10.027139747
24 0.009823997 0.014204434 0.01917656 10.03420046

2.44 0.011971426 10.017455028 0.023902162 10.042941822
2.48 0.014542956 10.021381732 0.029688251 10.053728359
2.52 0.017613937 0.026111817 0.036750692 10.066996362
2.56 0.021271729 10.031794168 0.045345067 10.083266678
26 0.025617424 10.038602589 0.055773274 10.103159561
2.64 0.030767788 10.046739569 0.068391107 0.127411884
2.68 0.036957457 10.056440575 0.083616974 10.156898063
272 0.044041411 10.067978914 0.101941881 10.192648072
2.76 0.052497766 10.081671262 0.123940883 10.235883997
2.8 0.062430915 10.097883936 0.150286173 10.28804063

2.84 0.074075067 20.117039992 0.181762044 10.350805664
2.88 0.087698228 10.139627267 0.219281966 0.426159128
2.92 0.103606678 0.166207477 0.263908058 10.516419801
2.96 0.122150002 0.1974265 0.316873269 0.624298407
3 0.143726743 10.234025996 0.379606636 10.752958527
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Figure 2 (a) 3D graph for equation (13) (b) 2D graph for equation (13)
Theorem-3: Ifc > 0,v > 0,[t| < oo, R(t; +1) > 0,R(r) >0,R() >0,t,7;,{,n,§i €ECreRnE

(0,1) UN, R(&) > 0,1 # v, then the FKE

N@ = Ny (oDF (3102, 2y (®))) = =€*oD” N(®
(14)
and its solution is
N(®)
o (1B 7 + 209 + 1) + 1)eBatitt@+D=2 g T mHE+D)
— = E _ Utv
; T+t +1)... [(£+19+ 1) (19 + 1) vl rrecorn-ae ()
(15)

Proof: Using (5) on (14),
v GO (S L+ 1) + 1) ( 1 )Zlemmm () BT+ -4)
{’:01—'(‘3 +1+ 1) T +19+1DEINI+1
x (1+cvu?)?t
e (DRl e+ D + 1)( 1 )
- ‘){ZOF({’+T1 +1)..TE+19+ DI\ +1

N(s) = N,

YO T+ (9+1)

(w) (Z?:l T +£(9+1) —1) z (_Cvuv)a
a=0

N (_1)#r(2?=1ri +E@+D+1) /0 1 ZEamt 04D & vy () (Zy Tt 9+ 1) -2+va)
TLTEAT A1) T(E+1 +1)£!(19+1> z(—c )¥(w)\ ==t
£=0 1 9 &

Now taking inverse Sumudu Transform, we have

N(t) B i (_1){)F(Z?=1Ti + {)(19 + 1) + 1)t2}9:11i+£(19+1)—/1< 1 >Z1i9=1‘l'i+€(19+1)
£=0

FC+t,+1) ... [(£+719+ D! 9+1

y Z (_Cvtv)a
rGl i +2@+1)—1+1+va)

a=0

By using (8), we get the result (15).

3.3 Mathematical Analysis and Explanation

Several values of N(t) corresponding to equation (15) are computed by varying t while keeping ¥ constant.
These results are presented in Table 3, and their behavior for the kinetic equation (14) is illustrated
through the 2D and 3D plots shown in Figures 3(a) and 3(b).

Table 3: “The values of N(t) with fix v for (15)”

t |"'N®atv=0.1"]"N(@®)atv=0.5"| "N()atv =0.9" | "N(t) atv = 1.3"
0 0 0 0 0
0.2 5.88804E+91 -7.86187E+90 1.12174E+90 -1.61069E+89
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Figure 3

Theorem-4: Ifc > 0,d > 0,v > 0,|t| < o, R(t; +1) > 0,R(r) > 0,R() >0,t,7;,{,n,E €ECn €

(a) 3D graph for equation (15)

0.4 9.38709E+91 -1.60481E+91 2.99548E+90 -5.66357E+89
0.6 1.27784E+92 -2.51300E+91 5.47438E+90 -1.21451E+90
0.8 1.62491E+92 -3.52106E+91 8.54498E+90 -2.12180E+90
1 1.98662E+92 4.63432E+91 1.22152E+91 -3.30807E+90
1.2 2.36626E+92 -5.85667E+91 1.65018E+91 4.78446E+90
1.4 2.76576E+92 “7.19136E+91 2.14209E+91 -6.60273E+90
1.6 3.18643E+92 8.66145E+91 2.69966E+91 -8.75493E+90
1.8 3.62926E+92 -1.02099E+92 3.32506E+91 -1.12734E+91
2 4.09504E+92 -1.18996E+92 4.02061E+91 -1.41806E+91
2.2 4.58449E+92 -1.37136E+92 4.78874E+91 -1.74992E+91
24 5.09825E+92 -1.5655E+92 5.63191E+91 -2.12523E+91
2.6 5.63695E+92 -1.77269E+92 6.55269E+91 -2.54630E+91
2.8 6.20120E+92 -1.99325E+92 7.55367E+91 -3.01548E+91
3 6.79162E+92 -2.22752E+92 8.63755E+91 -3.53517E+91
3.2 7.40882E+92 -2.47584E+92 9.80706E+91 4.10778E+91
3.4 8.05343E+92 -2.73857E+92 1.10650E+92 4.73578E+91
3.6 8.72610E+92 -3.01609E+92 1.24143E+92 -5.42169E+91
3.8 9.42750E+92 -3.30878E+92 1.38580E+92 -6.16806E+91
4 1.01583E+93 -3.61704E+92 1.53991E+92 6.97751E+91
4.2 1.09193E+93 -3.94129E+92 1.70407E+92 -1.85273E+91
4.4 1.17111E+93 4.28194E+92 1.87861E+92 -8.19644E+91
4.6 1.25345E+93 4.63946E+92 2.06386E+92 9.81547E+91
4.8 1.33904E+93 -5.01430E+92 2.26018E+92 -1.09007E+92
5 1.42795E+93 -5.40694E+92 2.46792E+92 -1.20671E+92
| ==
/"/V/

(b) 2D graph for equation (15)

(0, 1) UN,R(&) > 0,1 # v, d # c, then the FKE

is given as

~(
N(t) - NO (ODLaL («55'1,)7:2 ..... T9
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N(t) = N, - (—1)4’F (U (Z?:1 T, + (9 + 1)) + 1) ( d )V(Z?=1Ti+€(19+1))

L TE+u+D .. T+t + Dol \9+1

v ?: Ti+f(9+1) )-1

x (t) (B, mite+1) Eu,v(z}llrz+£’(v9+1))—/1+1(_cvtv)
(17)

Proof: Doing the same process as we have done for Theorem 1 and using Lemma 2, we can achieve the
result equation (17).
3.4 Mathematical Analysis and Explanation
We obtain several values of N(t) for (17), by varying t while keeping v constant. These values are
interpreted in table 4 and the 3D and 2D graphs 4(a), 4(b), which illustrate the behavior of the result for

the kinetic equation (16).

Table 4: “The values of N(t) with fix v for equation (17)”

t "N(t)atv=0.1"| "Nt atv =0.5" | "N()atv = 0.9" | "N(t) atv = 1.3"

1.5 989.2757986 -1373.487548 1953.719148 4275.797537
1.52 1361.174549 -1900.522248 2732.823474 -6004.230874
1.54 1865.720527 -2619.686998 3807.102295 -8397.381892
1.56 2547.886046 -3597.621875 5282.937249 -11698.71367
1.58 3467.196015 14923.032803 7303.288022 -16236.82745
1.6 4702.257497 6713.712035 10059.75851 12245402663
1.62 6356.663494 9125729139 13808.51895 -30944.1534

1.64 8566.685676 -12365.45611 18841.29636 142502.65047
1.66 11511.29846 -16705.29561 25763.02816 -58152.73967
1.68 15425.24578 122504.26281 35028.28162 79432.85474
1.7 20616.08617 -30234.85096 47489.21556 -108112.1204
1.72 27486.45034 140518.36982 64208.75967 -146742.875

1.74 36563.14558 -54171.02501 86593.8889 -198662.1817
1.76 48565.27807 72264.56394 116505.4846 -268298.2248
1.78 64304.28938 196205.90739 156403.448 -361522.809

1.8 85049.78541 -127842.0256 209538.6739 486118.3581
1.82 112316.3733 -169598.3546 280207.486 1652397.5468
1.84 148128.5501 1224661.9443 374089.5801 -874026.9443
1.86 195143.199 12972244811 498697.9799 1169124.134
1.88 256852.7113 -392805.7617 663979.7551 -1561722.584
1.9 337856.561 -518685.7008 883120.4064 -2083732.689
1.92 444225.8423 1684483.3711 1173624.437 2777574.627
1.94 583994.647 1902936.0961 1558771.96 -3699724.181
1.96 767825.3192 -1190951.947 2069589.389 14925504.086
1.98 1009913.218 -1571037.608 2747525.97 16555581.284
2 1329224.026 2073444023 3648103.645 -8724810.316

= Al \\\\\\
.l N
-af \,

155 18 185 17 175 18
t

185 19 195 2

(b) 2D graph for equation (17)
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4. Specific Cases

(i) Substituting d = ¢ in (12), then the FKE reduces as
N(E) = No{SW%,.2p (PE")} = —c¥ oD N(2)
(18)

and its solution is

2 (-0 (v (Tt + 20+ 1) + 1) ( ot >v(2?=1ri+e(0+1))
X

®) 0{,—0 Fr+t;+1) ... I +19+1)¢! )
AUV
X Ev,(v(zigzlfi+f(19+1))+1)( c’t )

(19)

(i) Substituting d = ¢ in (16), then the FKE reduces in
N = No (602 (30,2 (€7€1))) = =c¥oDF ¥ N
(20)

and its solution is

N(t) = N,

2 (-0 (v (Bt + 2@+ D) +1) , ¢ \w(5Limre@en)
r+t+1)..THE+ 19 + 1) (19+1)

(T, Tite(9+1))-2 s
x (£) X Ev,v(2?211i+t’(19+1))—)l+1( )

(VAY)
Additional special cases of our results can be obtained by substituting suitable parameter values into the
corresponding special function; however, these cases are not presented here explicitly. Fig 5 show that
insight into temporal dynamics of system by depicting how the reaction rates change over the time.

3 . . —

151

0 1 I 1 1 I 1 I 1
0 0z 0.4 06 08 1 12 14 L6 18 2

Figure 5. Plot diagram N (t) and t

5. CONCLUSION

In this work, we propose using the Sumudu transform technique to solve a class of new generalized
fractional kinetic equations that procedure the Hyper-Bessel function and its fractional derivatives. The
mittag-Leffler function is used to direct the final solutions. This method is very important since fractional
kinetic equations are widely applicable in many different scientific and engineering fields. After being
expressed in terms of Hyper-Bessel functions, the solution can be examined and applied to particular
environmental issues. This new method to fractional-order kinetic equations may be useful in the
environmental field since it uses Hyper-Bessel functions as solutions. This method makes use of
techniques like the Sumudu transform, of which the Hyper-Bessel function is an essential component, to
solve these equations. These solutions can be used to mimic environmental phenomena, such as diffusion
and transport processes, which are often described by kinetic equations. Along with finding these
solutions, we use MATLAB to provide a thorough inspection of their behavior through numerical and
graphical representations under various parametric conditions. By generalizing the idea of integer-order
calculus, fractional calculus offers a more profound framework for comprehending a range of real-world
occurrences and basic scientific concepts. Due to its comprehensive application in a variety of fields, such
as control systems, elasticity, electric drives, circuit theory, continuum mechanics, heat transfer, quantum
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mechanics, fluid dynamics, signal processing, biomathematics, biomedical engineering, social systems,
and bioengineering, fractional calculus research has attracted a lot of consideration recently.
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