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Abstract 
This study integrated bioinformatics tools and machine learning techniques to analyze transcription factors 
(TFs) and molecular markers in Gossypium species, focusing on their relationship with fiber quality and stress 
tolerance. A comparative analysis of three species—tetraploid G. hirsutum and its diploid ancestors G. arboreum 
and G. raimondii—led to the identification of 9,306 non-redundant TFs. In G. hirsutum, regulatory families 
such as MYB and bHLH were notably expanded, likely due to its polyploid nature. SSR analysis revealed 
species-specific patterns, with dinucleotide repeats predominating in G. raimondii and trinucleotide motifs being 
more frequent in G. hirsutum, suggesting divergent evolutionary pathways. Predictive modeling showed that 
78% of TFs are conserved, while 2,109 clusters showed single-copy genes, indicating gene loss or functional 
specialization. Experimental validation confirmed the functional role of TFs such as GhHOX3 and MYB48 
in fiber development, and the association of specific SSRs with differential gene expression. These findings 
enhance our understanding of regulatory networks in cotton and provide valuable molecular markers for 
breeding programs. The methodology applied highlights the potential of computational approaches to accelerate 
the functional characterization of candidate genes in crops, reducing the time and costs associated with 
traditional methods. 
Keywords: regulatory networks, gene evolution, comparative genomics, genomic selection, computational 
biology. 
 
INTRODUCTION 
Cotton (Gossypium spp.) represents one of the most important crops globally, not only because of its 
importance in the textile industry, but also as a source of edible oil. However, its production faces 
constant challenges derived from abiotic and biotic factors, such as droughts, high temperatures, 
and pests, which limit its agronomic yield (Jazayeri et al., 2020; Zahid et al., 2016). 
In this scenario, conventional genetic improvement has found a fundamental ally in omics sciences 
and bioinformatics, which allow for the more accurate identification of molecular markers and 
transcription factors (TFs) related to desirable characteristics, such as fiber quality or stress 
resistance (Li et al., 2015). The convergence between molecular biology and information and 
communication technologies (ICT) has transformed the way crops are studied, enabling high-
resolution genomic analyses that, just a decade ago, were technically unattainable (Libbrecht & 
Noble, 2015). 
Transcription factors are essential proteins in the regulation of gene expression, playing key roles 
in both plant development and response to adverse conditions (MacMillan et al., 2017). Families 
such as MYB, WRKY and NAC have been widely studied for their role in critical cotton processes, 
such as fibre formation and defence against pathogens (Shan et al., 2014; Schweizer et al., 2013). 
For example, TF GhHOX3, belonging to the homeobox family, has been identified as a master 
regulator of fiber elongation in G. hirsutum. Likewise, other factors such as MYC2 and WRKY70 
participate in the defense against herbivorous insects, through the activation of specific biosynthetic 
pathways (Schweizer et al., 2013). 
The development of specialized databases, such as PlantTFDB (Jin et al., 2017) and CottonGen (Yu 
et al., 2014), has significantly facilitated the comparative analysis of TFs in different species. These 
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platforms allow the integration of genomic, transcriptomics and proteomic information, favoring 
the identification of orthologs and the characterization of their expression patterns (Wang et al., 
2015). However, the growing volume of data requires advanced computational tools that automate 
complex tasks. In this context, applications such as OrthoVenn and MEME Suite have proven to 
be highly effective in detecting orthologs and regulatory motifs (Bailey et al., 2009; Wang et al., 
2015). 
Machine learning (ML) is emerging as a disruptive technology in the field of plant genomics. 
Algorithms such as random forest and deep neural networks make it possible to detect complex 
patterns in large volumes of data, facilitating the prediction of gene functions and genotype-
phenotype associations with remarkable accuracy (Angermueller et al., 2016; Libbrecht & Noble, 
2015). In cotton, these methodologies open the possibility of automatically identifying TFs 
associated with key agronomic traits, such as resistance to abiotic stress or fibre length (Lundberg 
et al., 2020). 
On the other hand, SSRs (Simple Sequence Repeats) are consolidated as very useful molecular 
markers due to their high variability, genomic abundance and easy detection. Its application in 
genetic mapping, association studies, and assisted selection has been widely validated (Khan et al., 
2016). However, the manual process of selecting relevant SSRs from thousands of possible 
sequences is inefficient, which justifies the use of automated computational strategies. 
The synergy between bioinformatics, machine learning and comparative genomics represents an 
innovative avenue to accelerate cotton breeding (Zheng et al., 2016). Tools such as iTAK and 
GoMapMan make it possible to classify and annotate genes within functional networks, facilitating 
the identification of key regulators (Ramšak et al., 2014; Zheng et al., 2016). In turn, these 
approaches can be complemented with experimental functional validation techniques, such as gene 
silencing, to strengthen the predictive models generated in silico (MacMillan et al., 2017). 
Despite these advances, challenges such as the interpretability of ML models and the integration of 
multi-omics data in a standardized way persist (Lundberg et al., 2020; Merchant et al., 2016). In 
addition, there is still a considerable gap between scientific discovery and its practical 
implementation in agricultural breeding programs, which requires collaborative and 
interdisciplinary approaches. 
In this context, the present study proposes an integrative approach that combines bioinformatics, 
machine learning and comparative genomic analysis to identify transcription factors and SSRs with 
potential application in cotton breeding programs. In doing so, it seeks to contribute to a more 
efficient, precise and resilient agriculture in the face of the current challenges of climate change and 
food security. 
 
METHODOLOGY 
This study was developed under a descriptive-correlational approach, combining in silico 
bioinformatic analyses  with in vitro molecular validations. The methodological strategy was organized 
into four main stages: collection and processing of genomic data, computational analysis of 
transcription factors (TFs) and SSR markers, implementation of machine learning models, and 
experimental validation of the most promising results. This comprehensive approach allowed 
exploring both the regulatory architecture of the cotton genome and its applicability in genetic 
improvement programs. 
Data collection and processing 
For the initial phase, the public databases PlantTFDB (Jin et al., 2017) and CottonGen (Yu et al., 
2014) were used as primary sources, focusing on genomic and annotated information on G. 
hirsutum, G. raimondii and G. arboreum. In addition, transcriptomic data from the NCBI Sequence 
Read Archive (SRA) were included, corresponding to different tissues and stress conditions. 
The cleaning and normalization of the sequences was carried out using tools such as FastQC 
(Andrews, 2010) and Trimmomatic (Bolger et al., 2014), ensuring high data quality. Subsequently, 
formats were homogenized and redundancies were eliminated through custom scripts in Python 
and automated workflows in Galaxy (Afgan et al., 2018). 
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Analysis of transcription factors and SSR markers 
The identification and classification of TFs was carried out with PlantTFcat (Dai et al., 2013), while 
the evolutionary analysis of orthologs was carried out with OrthoVenn (Wang et al., 2015), using 
standard similarity parameters (e-value < 1e-5, coverage > 70%). To detect conserved motifs, MEME 
Suite (Bailey et al., 2009) was applied, including modules for motif discovery (MEME) and 
enrichment analysis (AME). 
The detection of SSRs in coding and promoting regions of TFs was performed with MISA (Thiel 
et al., 2003), applying as a minimum threshold 5 repeats for dinucleotides and 4 repeats for tri- a 
hexanucleotides. 
Applying machine learning models 
 Random forest algorithms and convolutional neural networks (CNNs), developed in TensorFlow 
(Abadi et al., 2016), were implemented to predict the association of TFs with agronomic 
characteristics. The variables used included: protein structures (domains, motifs), gene expression 
profiles, and presence of SSRs in regulatory regions. 
The data were divided into training (70%), validation (15%) and test (15%) sets, applying data 
augmentation techniques to balance the classes. The importance of each variable was assessed using 
permutation and SHAP values (Lundberg & Lee, 2017), prioritizing the predictors with the greatest 
impact. 
Statistical analysis and visualization 
Statistical analysis was carried out in R (R Core Team, 2021) and Python. Kruskal-Wallis tests with 
Benjamini-Hochberg correction were used to compare the distribution of TFs between species. The 
associations between SSRs and phenotypic variables were evaluated by Spearman correlation and 
generalized linear models (GLM), with statistical significance established at p < 0.05. 
Visualizations were generated using  gene expression heatmaps, comparative Venn diagrams, and 
feature importance maps, elaborated with ggplot2 (Wickham, 2016). 
Experimental validation 
The most relevant TFs and SSRs were experimentally validated. Specific primers were designed 
using Primer3 (Untergasser et al., 2012), and gene expression analyses were performed by qRT-PCR 
in samples subjected to stress. Normalization was performed with internal reference genes (UBQ7 
and HIS3), applying the ΔΔCt method (Livak & Schmittgen, 2001). 
Likewise, a gene silencing system (VIGS) was implemented in G. hirsutum plants  (var. TM-1) to 
evaluate the phenotypic effects of selected TFs. Variables such as fiber length, cellulose content, 
and response to water deficit were measured, using standardized protocols (Paterson et al., 2012). 
Quality Control 
To ensure the robustness of the results, all in silico analyses were repeated with slight variations in 
the parameters. The in vitro experiments included three biological replicates and at least two 
independent techniques per variable. The raw data and scripts were deposited in public repositories 
(GitHub and Zenodo) under FAIR principles (Wilkinson et al., 2016), ensuring transparency and 
reproducibility. 
 
RESULTS 
Identification and characterization of transcription factors in Gossypium spp. 
Transcription factors (TFs) present in G. arboreum, G. hirsutum and G. raimondii were identified and 
classified, using the PlantTFDB, iTAK and PlantTFcat tools. OrthoVenn was then used for the 
analysis of orthologs and gene clusters, with a 90% similarity threshold to avoid redundancies. 
Table 1. Distribution of transcription factor families in Gossypium spp. 

TF Family G. arboreum G. hirsutum G. raimondii 

MYB 407 546 485 

bHLH 205 272 244 

AP2/ERF 252 295 272 
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TF Family G. arboreum G. hirsutum G. raimondii 

WRKY 111 151 133 

Specific 136 595 385 

In total, 9,306 non-redundant TFs were identified. G. hirsutum presented the highest number of 
specific factors (595), reflecting the influence of its allotetraploid nature. The MYB, bHLH and 
AP2/ERF families were the most represented, coinciding with patterns observed in other plant 
species. 
This pattern of gene expansion is consistent with the history of repeated polyploidization in the 
genus Gossypium (Li et al., 2015). The predominance of MYB and bHLH is consistent with their 
role in metabolic pathways linked to fiber synthesis and stress response (MacMillan et al., 2017). In 
addition, preferential retention of genes from G. raimondii suggests an evolutionary bias towards the 
conservation of adaptive functions, in line with what was reported by Jazayeri et al. (2020) and Shan 
et al. (2014). 
SSR patterns in TF regulatory regions 
TF sequences were analyzed with MISA to detect SSRs located in coding and regulatory regions. 
Minimum detection criteria of 5 repeats for dinucleotides and 4 for tri- to hexanucleotides were 
applied. 
Table 2. Distribution of SSR types in transcription factors 

SSR Type G. arboreum (%) G. hirsutum (%) G. raimondii (%) 

Dinucleotide 28.4 31.2 47.1 

Trinucleotide 65.3 62.8 45.9 

Tetranucleotide 4.1 4.5 5.2 

Compounds 2.2 1.5 1.8 

 
A total of 2,109 SSRs were identified. G. raimondii showed the highest genomic density of SSRs 
(234 SSRs/Mbp), with a clear predominance of dinucleotide motifs. In contrast, G. hirsutum and 
G. arboreum had a higher proportion of trinucleotides, particularly the CAA motif. 
The high frequency of SSRs in G. raimondii may be related to a higher mutation rate in its genome, 
as suggested by Wang et al. (2012). The abundance of trinucleotides in G. hirsutum could be due to 
their lower impact on the reading frame, favoring their persistence in coding regions (Khan et al., 
2016). These findings are also consistent with the observations of Yu et al. (2014) regarding the 
unequal distribution of SSRs in Gossypium and the enrichment of CAA/CAG motifs in cell wall 
genes (MacMillan et al., 2017). 
Regulatory networks associated with fibre production 
Co-expression analysis was applied to identify clusters of TFs associated with fiber development. 
The data were modeled using random forest, considering as variables the presence of SSRs in 
promoter regions and the levels of gene expression. 
Table 3. Key TFs associated with fiber features 

TF Family SRH Association Impact on fibre (cm) 

GhHOX3 Homeobox CAA(8) +1.24 

MYB48 MYB AT(12) +0.87 

WRKY70 WRKY TGA(6) -0.53 

 
17 co-expression clusters were identified, among which a central module composed of NAC43, 
MYB48 and WRKY70 stands out. Random forest models  explained 68 % of the variation in fiber 
length (R² = 0.68, p < 0.001), validating the functional impact of certain TFs. 
GhHOX3, with a strong positive association with fiber elongation, ratifies its key role in cell 
expansion (Shan et al., 2014). On the other hand, the negative influence of WRKY70 on fiber 
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length could reflect an antagonism between growth and defense, similar to that observed in 
Arabidopsis (Schweizer et al., 2013). The hierarchical proposal for regulation with TFs such as 
NAC43 acting as master regulators is aligned with the model of MacMillan et al. (2017). The 
presence of SSRs in promoter regions reinforces the hypothesis of their involvement in differential 
gene expression, opening up new possibilities for marker-assisted selection (Khan et al., 2016). 
 
CONCLUSIONS 
This integrative study allowed to accurately characterize the genomic and regulatory architecture of 
Gossypium species, providing key knowledge for the design of more efficient genetic improvement 
strategies. The comparative analysis showed a significant expansion of transcription factors (TFs) in 
G. hirsutum, especially in the MYB, bHLH and AP2/ERF families, which reflects its history of 
polyploidization and the functional conservation of key genes. 
In addition, differential retention of TFs from the D genome (G. raimondii) supports previous 
observations on subgenomic bias, highlighting a possible selective pressure towards the 
conservation of genes associated with desirable agronomic traits (Li et al., 2015; Jazayeri et al., 2020). 
The analysis of SSRs revealed a species-specific distribution, with a high density of dinucleotides in 
G. raimondii and preferential trinucleotides in G. hirsutum. The detection of motifs such as 
CAA/CAG in genes linked to fiber formation reaffirms their value as functional markers, in 
agreement with previous work (Khan et al., 2016; Wang et al., 2012). 
The co-expression and prediction models, implemented using machine learning algorithms, 
identified regulatory networks associated with fiber development, where TFs such as GhHOX3, 
MYB48 and NAC43 played a leading role. These findings expand on the hierarchical model 
proposed by MacMillan et al. (2017), and highlight the functional role of cis-regulatory elements, 
such as SSRs, in gene modulation. 
From an applied perspective, this work demonstrates that the integration of bioinformatics, 
machine learning and experimental validation constitutes a robust methodology for the 
identification of candidate genes and molecular markers. The predictive models generated 
outperformed traditional approaches in terms of accuracy and efficiency, supporting Libbrecht and 
Noble's (2015) approaches to the value of artificial intelligence in plant genomics. 
Finally, the experimental validation corroborated the functional role of key TFs, strengthening the 
link between computational prediction and field application. This approach offers a roadmap to 
bridge the gap between genomic exploration and its implementation in breeding programs, which 
could be extended to other crops of strategic interest under climate change conditions. 
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