

Molecular Identification And Virulence Gene Patterns Of *Pseudomonas Aeruginosa* Isolates

Khanzad Khudhur Jarjees^{1,2}

^{1,2}Department of Food technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.

Abstract

The current research aimed to assess antibiotic resistance profiles and the detection of virulence factor genes, including *lasB*, and *plcH* among the clinical isolates of *P. aeruginosa*, and to identification of isolates by investigation of the *rpoB* gene. As well as determine whether a correlation exists between the prevalence of these virulence factors and antibiotic resistance in *P. aeruginosa* isolates. *Pseudomonas aeruginosa* infections are associated with significant morbidity and mortality due to the organism's ability to adapt easily to changes in the environment, rapidly develop resistance to antibiotics, and produce a variety of virulence factors. *P. aeruginosa* possesses a large number of virulence factors that may contribute to its pathogenicity, including the *P. aeruginosa* hemolytic phospholipase C (*plcH*), which degrades phosphatidylcholine, an abundant lipid in cell membranes and lung surfactant. A zinc metalloprotease called elastase *lasB* has an elastolytic activity on human tissue, and especially lung tissue. Phylogenetic characterization of the strains most often requires the use of certain household markers or phylogenetic markers, including subunit β RNA polymerase and 16S ribosomal RNA. A total of 50 isolates of *P. aeruginosa* were supplied from hospitalized burn patients. Identification and antimicrobial susceptibility tests were performed using the VITEK 2 system. Multiplex PCR was done to detect *lasB*, *plcH*, and *rpoB* genes. Multiplex PCR analyses of *lasB*, *plcH*, and *rpoB* genes showed that all *P. aeruginosa* isolates were positive. The most effective antimicrobial agents against clinical isolates were Meropenem, Amikacin, and Ciprofloxacin. The prevalence of *lasB* and *plcH* genes in clinical isolates plays an important role in the development of the disease. Also, phylogenetic markers *rpoB* used can be exploited for *P. aeruginosa* strains of different origin.

Keywords: *Pseudomonas aeruginosa*, hemolytic phospholipase C, elastase, RNA polymerase subunit β gene, multiplex PCR.

1 INTRODUCTION

Pseudomonas aeruginosa is a non-fermentative, aerobic, Gram-negative rod-shaped bacterium (Fu et al., 2013). *P. aeruginosa* can secrete an elastase B (*lasB*) enzyme in response to environmental conditions (Lanotte et al., 2004; Hvorecny et al., 2018). Elastase B is an important protease of *P. aeruginosa*. This enzyme has a tissue-damaging activity, it can degrade a number of plasma proteins, and it contributes to the survival of *P. aeruginosa* in infected tissues (Lomholt et al., 2001; Nikbin et al., 2012). Phospholipases C (PLCs) are also implicated in virulence. *P. aeruginosa* produces three PLCs: one with hemolytic activity (*PlcH*), one other non-hemolytic (*PlcN*) and the last, a *PLcB* which is important for chemotaxis and plays an important role in "twiching" mobility (Mitov et al., 2010; Khattab et al., 2015; Fadhil et al., 2016; Ghanem et al., 2023). A phosphate deficiency induces the production of *PlcH*. These PLCs are secreted via the type-II secretion system (Khattab et al., 2015; Fadhil et al., 2016; Zakaria et al., 2019). Hemolytic phospholipase C (*PlcH*) is a secreted hydrolase that degrades host-associated phosphatidylcholine (PC) and sphingomyelin (Berka and Vasil, 1982; Vasil, 2006; Bomberger et al., 2009; Bogiel et al., 2023). These choline-containing phospholipids are abundant macromolecules in eukaryotic membranes and host lung surfactant. *PlcH* adversely affects the integrity of the lung and contributes to decreased lung function (Meyers et al., 1992; Wargo et al., 2009). Phospholipase C may also play a significant role in the phonation of skin lesions of *P. aeruginosa* (Lu, 1976). The purified hemolytic form *plcH* causes increased vascular permeability, end organ damage, and death when injected into mice in high doses (Berk et al., 1987; Meyers et al., 1992). The outer membrane proteins of *P. aeruginosa* *OprI* and *OprL* play important roles in the interaction of the bacterium with the environment as well as the inherent resistance of *P. aeruginosa* to antibiotics where the consequence of the presence of these specific outer membrane proteins that have been implicated in efflux transport systems that affect cell permeability (Nikaido, 1994). As these proteins are found only in this organism, they could be a reliable factor for rapid identification of *P. aeruginosa* in clinical samples (De Vos et al., 1997). Porins including *OprM*, *OprN*, *OprJ*, *OpmG*, *OpmB*, or *OpmE* are involved in the efflux of harmful molecules, including antibiotic drugs, thus

conferring antibiotic resistance (Auda et al., 2020; Irene et al., 2021). *P. aeruginosa* easily acquires additional resistance mechanisms, that leads to serious of therapeutic problems (Micek et al., 2005). Mucoid strains may yield biofilms, representing communities of attached microorganisms on a surface. Biofilms have a crucial part in infectious diseases. Supplementary, they have a favorable antibiotic resistance, with their matrix playing a major role (Jarjees, 2020). Phylogenetic characterization of the strains most often requires using of certain household markers or phylogenetic markers. These include rRNA 16S (ribosomal RNA), rec A (recombinase A), rpo D (670 factor RNA polymerase), gyr B (in β unit of DNA gyrase), rpo B (subunit β RNA polymerase) and ITS1 (spaceur intergenic transcribed) ("Internal transcribed Spacer") region between 16S-23S rDNA allow the differentiation of *Pseudomonas* species (Tampong et al., 2009, Benie et al., 2016; Chan et al., 2016). The present study was carried out in order to investigate the distribution of virulence genes and the pattern of antibiotic resistance of *P. aeruginosa* isolated from hospitalized patients who suffered from burn infections, as well as this research study was aimed to evaluate rpoB as reliable factors for rapid identification of *P. aeruginosa* isolates based on PCR amplification of RNA polymerase subunit β gene as phylogenetic marker for detection of this species.

2 MATERIALS AND METHODS

2.1 Samples Collection

A total of 50 isolates of *P. aeruginosa* were recovered from wound burn samples.

2.2 Isolation and Identification of *P. aeruginosa*

All isolates were identified as *P. aeruginosa* based on colonial morphology, Gram staining, growth at 42 °C, the presence of characteristic pigments, biochemical tests including oxidase test and catalase test, as well as microbial identification was accomplished on the VITEK 2 automated system. *P. aeruginosa* ATCC 27853 was used as a standard strain in this study. All isolates were incubated in Tryptic Soy Broth containing 30% glycerol at -80 °C.

2.3 Antimicrobial Susceptibility Test

Antimicrobial susceptibility testing was performed on the VITEK 2 automated system (bio Merieux) for the following antimicrobials: Ticarcillin, piperacillin, Ticarcillin/Clavulanic Acid, Piperacillin/Tazobactam, Ceftazidime, Meropenem, Cefepime, Amikacin, Imipenem, Gentamicin, Tobramycin, Ciprofloxacin.

2.4 Bacterial Genomic DNA Extraction

The bacterial cells were cultured in Tryptic Soy Broth (Merck, Germany) and further incubated for 48 h at 37°C. The genomic DNA was extracted from *P. aeruginosa* colonies using the DNA extraction kit (Geneaid/Korea) according to the manufacturer's instructions. The extracted DNA was subjected to PCR reactions targeting LasB, plcH, and rpoB genes.

2.5 DNA Purification

The extracted DNA was checked by measuring the optical density (OD) at 260 nm and 280 nm using a spectrophotometer. The DNA extracted samples were stored at -20 °C until being used.

2.6 Molecular Analysis for LasB, plcH and rpoB genes with polymerase chain reaction (PCR)

The primer sequences and amplification protocols followed the indications provided by (Benie et al., 2017), Table 1. The uniplex Polymerase chain Reaction used for amplification genes specific targeted sequence in a thermocycler machine (Techne/UK) for the identification of lasB, plcH, and rpoB. The master mix preparation was done in a total volume of 25 μ l (12.5 μ l Gotaq Green Master Mix (Promega/USA), 3 μ l of genomic DNA, 1 μ l of each lasB and plcH primer separately, and 7.5 μ l μ l of free water). The same program cycle used for lasB and plcH genes, the amplification reaction started by heating at 95°C for 5 min before thermocycling, DNA denature at 94°C for 35 sec, primer anneals at 60°C for 1 min, extensions at 72°C for 1 min and the mixtures were held at 72°C for 7 min after the finishing 35 cycles.

On the other hand, all the strains were subjected to amplification rpoB gene. The PCR premix for rpoB consists of a total volume of 25 μ l, 12.5 μ l Gotaq Green Master Mix (Promega/USA), 3 μ l of genomic DNA, 1.5 μ l of each primer, and the volume is completed with 6.5 μ l μ l of free water. The PCR was done according to the following conditions: initial denaturation at 94°C for 3min. The 35 cycles amplification for denaturation at 94°C for 1 min, annealing at 58°C for 1 min, and extension step at 72°C for 1 min, then the final extension at 72°C for 7 min. Eventually, the PCR product amplicons were analysed by agarose gel electrophoresis (2%) and the DNA stained with Safe dye (Bioland/USA). The presence and

absence of the virulence and phylogenetic marker genes were determined using UV transillumination (Syngene/UK), and the PCR product band for each of the lasB, plcH, and rpoB genes was identified on the gel as compared to the standard DNA ladder/1kb (Norgenbiotek/Canada).

Table 1: The oligonucleotide sequences for the phylogenetic marker and virulence genes.

Target gene	Primer sequences (5' - 3')	PCR product size	Reference
LasB F			
LasB R	5'GGA ATG AAC GAG GCG TTC TC3' 5'GGT CCA GTA GTA GCG GTT GG3'	300bp	
plcH F			
plcH R	5' GAA GCC ATG GGC TAC TTC AA 3' 5' AGA GTG ACG AGG AGC GGTAG 3' 5'CAG TTC ATG GAC CAG AAC AAC CCG 3' 5'ACG CTG GTT GAT GCA GGT GTT C 3'	307 bp	(Benie et al., 2017)
rpoB F			
rpoB R		759bp	

3 RESULTS AND DISCUSSION

3.1 Results

According to the morphology of the colony, the isolated colony was identified, including the presence of characteristic pigments and growth at 42°C. *P. aeruginosa* does not ferment lactose, can easily be differentiated from lactose-fermenting bacteria on MacConkey agar, as well as isolates were identified biochemically, including oxidase and catalase positivity. All *P. aeruginosa* isolates were identified and screened for 12 antimicrobial agents by the VITEK 2 compact system. In the present study, all isolates were found to be resistant to Ticarcillin, Ticarcillin/Clavulanic Acid, Piperacillin/Tazobactam, Piperacillin, Ceftazidime, and Cefepime. On the contrary, resistance to Imipenem, Meropenem, Amikacin, Gentamicin, Tobramycin, and Ciprofloxacin was 5%, 5%, 5%, 7%, 7%, and 5% respectively. In addition, intermediate resistance to Imipenem and Gentamicin was 9% and 7%. The results showed that all bacterial isolates carried the rpoB gene. This technique was performed for rapid and confirmed identification of this species, also the results found that all bacterial isolates harbored lasB and plcH virulence genes Figures 1 and 2.

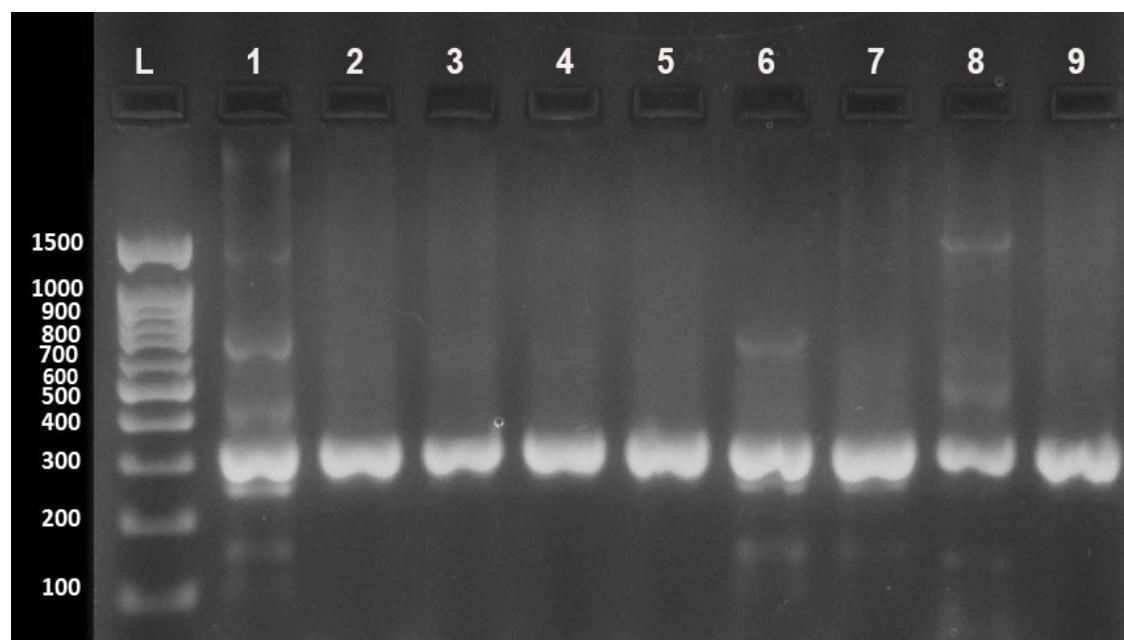


Figure 1. Electrophoresis of the PCR products of lasB gene. Lane 1: Ladder of 100bp, Lane 1 -9: lasB gene identification (300bp).

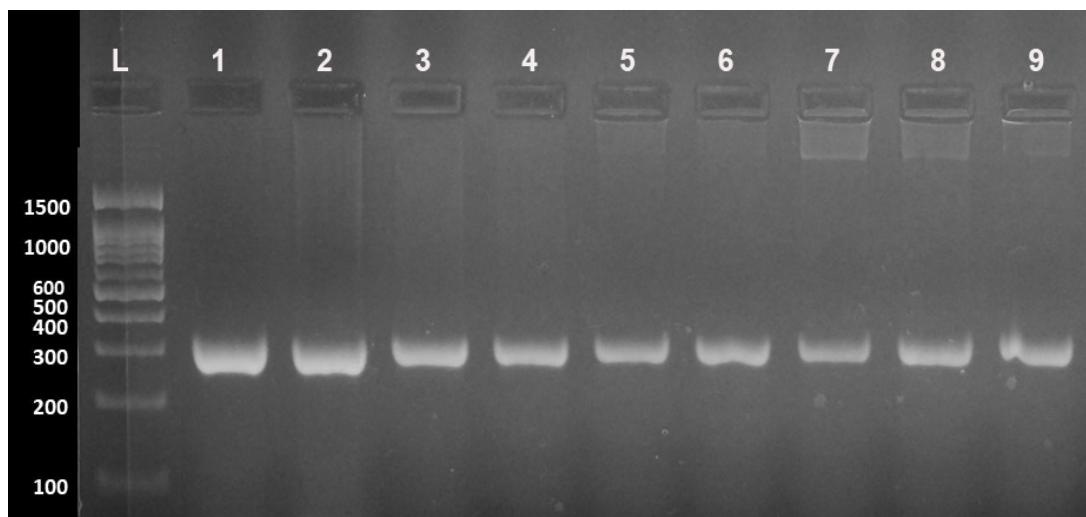


Figure 2. Electrophoresis of the PCR products of *plcH* gene. Lane 1: Ladder of 100bp, Lane 1 -9: *plcH* gene identification (307bp).

3.2 DISCUSSION

Molecular identification by using the *rpoB* gene showed that all of the strains were *P. aeruginosa*. This result also indicated the strong discriminating power of the identification method using the *rpoB* gene and confirmed the heterogeneity of the *P. aeruginosa* observed by some authors. (Ait-Tayeb et al., 2005; Benie et al., 2016; Benie et al., 2017). Molecular methods have been reported to be superior to the phenotypic methods for identification of *P. aeruginosa* (Khattab et al., 2015; Gholami et al., 2016). This high molecular identification rate showed that genomic studies are needed to confirm the exact taxonomic position of *P. aeruginosa*. Further, the quality and purity of nucleic acids are among the most critical factors for PCR analysis. (Urakawa et al., 2010). In this research study, all tested isolates harbored the *lasB* gene, which is in agreement with previous studies (Mitove et al., 2010; Nikbin et al., 2012; Khatab et al., 2015; Aljaafreha et al., 2019). The *lasB* is one of the most important proteases of *P. aeruginosa* (Lomholtet et al., 2001). Mutation of the *lasB* gene markedly reduces *P. aeruginosa* invasion. Prevalence of the *lasB* gene in all the environmental and clinical isolates implies the importance of the *LasB* factor to the survival of *P. aeruginosa* in various settings (Cowell et al., 2003). The present study found that all *P. aeruginosa* carried the *plcH* gene, and similar results have been recorded by Lanotte et al, in French, reported that PCR detected *algD*, *lasB*, *toxA*, *plcH*, *plsN*, and *nan2* in all of the 162 isolates studied, which were obtained from sputa of CF patients, clinical samples from patients without inherited disease, and plants. The *plcH* gene is responsible for proinflammatory activities, virulence in animal models, pulmonary inflammation, and inhibition of oxidative burst of neutrophils (Terada et al., 1999; Wieland et al., 2002; Idris et al., 2012). Ciragil et al. studied the elastase, protease, and alginate properties of *P. aeruginosa* strains isolated from different parts of the body. The differences in the distributions of virulence factor genes in the populations strengthen the probability that some *P. aeruginosa* strains are better adapted to the specific conditions found in specific infectious sites, and thus, virulence gene expression differs according to site and severity of infection (Nikbin et al., 2012). Determination of different virulence genes of *P. aeruginosa* isolates suggests that they are associated with different levels of intrinsic virulence and pathogenicity. This may have different consequences on the outcome of infections. Significant correlations between some virulence genes and source of infection obtained in this research indicate implementation of infection control measures will help in controlling the dissemination of virulence genes among *P. aeruginosa* isolates. The expression of exotoxin A, proteases, and hemolysins is controlled by quorum sensing systems (Pearson et al., 1994; Pearson et al., 1997; Whiteley et al., 1999). Beveridge's group has characterized bacterial-derived outer membrane vesicles (OMV) to be a novel secretion mechanism employed by bacteria to deliver various bacterial proteins and lipids into host cells, eliminating the need for bacterial contact with the host cell (Nguyen et al., 2003). Beveridge's group and others have reported that some secreted virulence factors from *P. aeruginosa*, including β -lactamase, hemolytic phospholipase C, alkaline phosphatase, pro-elastase, hemolysin, and quorum sensing molecules, like N-(3-oxo-dodecanoyl) homoserine lactone and 2-heptyl-3-hydroxy-4-quinolone (PQS), are

also associated with *P. aeruginosa* OMV(Kuehn and Kesty, 2005; Montes et al., 2007; Bomberger et al., 2009; Abbas et al., 2018). The expression of the las system relies on environmental stimuli such as iron (Bollinger et al, 2001), osmolarity (Chopp et al., 2003), nitrogen and oxygen availability (Wagner et al., 2003). The lasI and lasR genes are essential quorum sensing (QS) genes of the bacterium, according to studies, QS is necessary for the development of infection by *P. aeruginosa*, and the QS genes are exclusive and conserved for each bacterial species (Girard and Bloemberg, 2008; Rutherford and Bassler, 2012; Qin et al., 2022; Muggeo et al., 2023). These genes are expressed only when a high cell density is achieved (Pesci et al., 1997; Seed et al., 1995). This controlled transcription of genes, in the course of a rapid adaptation to environmental challenge, is essential for bacterial survival and for the promotion of chronic infection. All these factors have been described to contribute to the virulence of *P. aeruginosa* in vitro (McMorran et al., 2003), in animal models (Johansen, 1996), and in clinical studies (Berthelot et al., 2003). Hence, judicious use of antibiotics is required by clinicians. It is compulsory to evaluate the prevalence of virulence factors and the pattern of antibiotic resistance among clinical isolates of *P. aeruginosa* strains. *P. aeruginosa* can develop resistance to antibiotics because of the low permeability of its outer membrane, the constitutive expression of various efflux pumps (Livermore, 2001), and the naturally occurring chromosomal AmpC β -lactamase, turning it resistant toward penicillin G, aminopenicillins, and first- and second-generation cephalosporin (Nordmann and Guibert, 1998; Hasanpour et al., 2023). The rpoB gene was used to characterize spontaneous mutations in the chromosome of *P. aeruginosa* and *P. putida* (Jatsenko et al., 2015). The highly conserved rpoB gene, which encodes the B subunit of RNA polymerase, is the target of mutations leading to rifampicin resistance (Rifr) in both *Pseudomonas* spp. The rpoB/Rif^r system senses base substitutions that cause amino acid changes in the central rifampicin binding pocket (cluster I-III) or the N-terminal cluster in RNA polymerase (Juurik et al., 2012; Mariela et al., 2013). Treatment of bacterial infections is complicated by the ability of bacteria to develop resistance to antibiotics. Acquired resistance arises either by mutation or via horizontal transfer of resistance genes from other organisms.

CONCLUSIONS

In conclusion, the use of rpo β genes provides more confident detection of *P. aeruginosa* by PCR. Findings of the present study show the importance of virulence genes related to type II secretion systems, including lasB, and plcH, on clinical isolates and Further studies with a large sample size and expression rate analysis are required to determine the actual role of these virulence genes in different clinical infections caused by *P. aeruginosa*. However, a regular surveillance of virulence determinants, monitoring of antibiotic susceptibility patterns, and designing a practical guide for antibiotic stewardship for *P. aeruginosa* are suggested.

Acknowledgments

The the authors are thankful to the Department of Food technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Iraq for their kind assistance.

REFERENCES

1. Abbas H. A. Soliman W. E. Shaldam M. A. (2018) Perturbation of Quorum Sensing in *Pseudomonas aeruginosa* by Febuxostat. *Advances in Microbiology*, 8: 650-664.
2. Ait-Tayeb LA, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus *Pseudomonas* based on rpoB sequences and application for the identification of isolates. *Res Microbiol* 156: 763-773.
3. ALJaafreha L. Y, Tawalbeh M, and Asem A. Shehabi A. A, (2019). Otitis External Infections Among Jordanian Patients with Emphasis on Pathogenic Characteristics of *Pseudomonas aeruginosa* Isolates. *The Open Microbiology Journal*. 13, 292-296, DOI: 10.2174/1874285801913010292.
4. Auda, I.G.; Ali Salman, I.M.;Auda, J.G. (2020) Efflux pumps of Gram-negative bacteria in brief. *Gene Rep*. 20.
5. Benie C. K. D, Dadié A, Coulibaly D, Guessennd N. , Solange AKA, Koffi Marcellin DJE and Mireille Dosso (2016) Comparative Evaluation of Molecular Detection Performance of *Pseudomonas aeruginosa* based on Phylogenetic Markers 16S rRNA, recA, rpoB and ITS1. *Clin Microbiol*, an open access journal. 5: 6.
6. Benie, C.K.D. Guessennd, A. D. N. Kouame, N. D. N'gbesso-Kouadio, N. A. Aka, S. et al (2017). Molecular identification and virulence factors of *pseudomonas aeruginosa* strains isolated from animal products. *J Bacteriol Mycol Open Access*. 2017; 4(3):91–96.
7. Berk, R. S., D. Brown, I. Coutinho, and D. Meyers. 1987. In vivo studies with two phospholipase C fractions from *Pseudomonas aeruginosa*. *Infect. Immun.* 55:1728-1730.
8. Berka RM, Vasil ML. 1982. Phospholipase C (heat-labile hemolysin) of *Pseudomonas aeruginosa*: purification and preliminary characterization. *J. Bacteriol.* 152:239 -245.

9. Berthelot, P., Attree, I., Plesiat, P., Chabert, J., de Bentzmann, S., Pozzetto, B. and Grattard, F. (2003) Genotypic and phenotypic analysis of type III secretion system in a cohort of *Pseudomonas aeruginosa* bacteremia isolates: evidence for a possible association between O serotypes and exo genes. *J. Infect. Dis.* 188, 512–518.
10. Bogiel, T. Depka, D. Kruszewski S. et al, (2023) Comparison of Virulence-Factor-Encoding Genes and Genotype Distribution amongst Clinical *Pseudomonas aeruginosa* Strains. *Int. J. Mol. Sci.* 24: 1269.
11. Bollinger, N., Hassett, D.J., Iglesias, B.H., Costerton, J.W. and McDermott, T.R. (2001) Gene expression in *Pseudomonas aeruginosa*: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. *J. Bacteriol.* 183, 1990–1996.
12. Bomberger J, MacEachran DP, Coutermash BA, Ye S, O'Toole GA, Stanton B. 2009. Long-distance delivery of bacterial virulence factors by *Pseudomonas aeruginosa* outer membrane vesicles. *PLoS Pathog.* 5:e1000382. doi:10.1371/journal.ppat.1000382.
13. Bomberger J. M., MacEachran D. P., Bonita A. Coutermash B. A., Siying Ye, George A. O'Toole, Stanton B. A. (2009). Long-Distance Delivery of Bacterial Virulence Factors by *Pseudomonas aeruginosa* Outer Membrane Vesicles. *PLoS Pathogens.* 5:4
14. Chan KG, Priya K, Chang CY, Rahman AY, Tee KK, et al. (2016) Transcriptome analysis of *Pseudomonas aeruginosa* PAO1 grown at both body and elevated temperatures. *Peer J* 4: e2223.
15. Gholami A, Majidpour A, Talebi-taher M, et al. PCR-based assay for the rapid and precise distinction of *Pseudomonas aeruginosa* from other *Pseudomonas* species recovered from burns patients. *J prev med hyg.* 2016; 57(2):81–85.
16. Chopp, D.L., Kirisits, M.J., Moran, B. and Parsek, M.R. (2003) The dependence of quorum sensing on the depth of a growing biofilm. *Bull. Math. Biol.* 65, 1053–1079.
17. Çiragil P, Söyletir G. (2004) Alginate, elastase and alkaline protease production of *Pseudomonas aeruginosa* strains isolated from various body sites. *Mikrobiyol Bul.* 38(4):341-7.
18. Cowell BA, Twining SS, Hobden JA, Kwong MS, Fleiszig SM (2003) Mutation of lasA and lasB reduces *Pseudomonas aeruginosa* invasion of epithelial cells. *Microbiology* 149: 2291-2299.
19. De Vos D, Lim A, Pirnay JP, Struelens M, Vandenhvel C, et al. (1997) Direct detection and identification of *Pseudomonas aeruginosa* in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane genes, oprI and oprL. *J ClinMicrobiol* 35: 1295-1299.
20. Fadhil L, Al-Marzoqi AH, Zahraa MA, et al. (2016). Molecular and phenotypic study of virulence genes in a pathogenic strain of *Pseudomonas aeruginosa* isolated from various clinical origins by PCR: profiles of genes and toxins. *Research journal of pharmaceutical, biological and chemical sciences.* 7(1):590–598.
21. Fu XH, Zhou W, Zhang XM, et al. (2013) Clinical analysis of 22 cases community-acquired *Pseudomonas aeruginosa* urinary tract infection. *Zhonghua Er Ke Za Zhi.* 51(4):298-301.
22. Ghanem, M. G. Abd El-Baky, R. M. Abourehab, M. A. FM Fadl, G. Gamil, N. G. (2023).Isolated from Patients Suffering from Different Infections and Their Association with Antimicrobial Resistance. *Infection and Drug Resistance* 16: 2371–2385.
23. Girard G, Bloomberg GV. (2008). Central role of quorum sensing in regulating the production of pathogenicity factors in *Pseudomonas aeruginosa*. *Future Microbiol.* 3:97–106.
24. Hasanpour, F. Ataei, N. Sahebkar, A. Khademi, F. (2023) Distribution of Class A Extended-Spectrum β -Lactamases Among *Pseudomonas aeruginosa* Clinical Strains Isolated from Ardabil Hospitals. *J Microbiol.* 16(4):e135726.
25. Hvorecny K. L, Dolben E. Moreau-Marquis S. et al, (2018) An epoxide hydrolase secreted by *Pseudomonas aeruginosa* decreases mucociliary transport and hinders bacterial clearance from the lung. *Am J Physiol Lung Cell Mol Physiol.* 314: L150–L156.
26. Idris SN, Desa MN, Aziz MN, Taib NM. (2012). Antimicrobial susceptibility pattern and distribution of exoU and exoS in clinical isolates of *Pseudomonas aeruginosa* at a Malaysian hospital. *Southeast Asian J Trop Med Public Health.* 43(1):116–23.
27. Irene Jurado-Martín, Maite Sainz-Mejías and Siobhán McClean. (2021) *Pseudomonas aeruginosa*: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. *International Journal of Molecular Sciences.* 22:3128.
28. Jarjees, K.K. (2020). Molecular detection of type III secretory toxins in *Pseudomonas aeruginosa* isolates. *Cell Molecular and Biology.* 66(5): 9-14.
29. Jatsenko T, Tover A, Tegova R, Kivisaar M (2010) Molecular characterization of Rif(r) mutations in *Pseudomonas aeruginosa* and *Pseudomonas putida*. *Mutat Res* 683: 106–114.
30. Johansen, H.K. (1996) Potential of preventing *Pseudomonas aeruginosa* lung infections in cystic fibrosis patients: experimental studies in animals. *APMIS Suppl.* 63, 5–42.
31. Juurik T, Ilves H, Teras R, Ilmjarv T, Tavita K, et al. (2012) Mutation frequency and spectrum of mutations vary at different chromosomal positions of *Pseudomonas putida*. *PLoS One* 7: e48511.
32. Khattab M. A, Nour, M. S, El Sheshtawy N. M. (2015). Genetic Identification of *Pseudomonas aeruginosa* Virulence Genes among Different Isolates. *J Microb Biochem Technol.* 7:5 DOI: 10.4172/1948-5948.1000224.
33. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the hostpathogen interaction. *Genes Dev* 19: 2645–2655.
34. Lanotte, P.; Watt, S.; Mereghetti, L.; Dartiguelongue, N.; Rastegar-Lari, A.; Goudeau, A.; Quentin, R. (2004). Genetic features of *Pseudomonas aeruginosa* isolates from cystic fibrosis patients compared with those of isolates from other origins. *J. Med. Microbiol.* 53 (1), 73-81.
35. Livermore, D. M. (2001)“Of *Pseudomonas*, porins, pumps and carbapenems,” *Journal of Antimicrobial Chemotherapy*, vol. 47, no. 3, pp. 247–250.
36. Lomholt JA, Poulsen K, Kilian M (2001) Epidemic population structure of *Pseudomonas aeruginosa*: Evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. *Infect Immun* 69: 6284–6295.
37. Lomholt JA, Poulsen K, Kilian M. (2001) Epidemic population structure of *Pseudomonas aeruginosa*: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. *Infect Immun.* 69(10):6284–95.
38. Lu, P. V. (1976). Biology of *Pseudomonas aeruginosa*. *Hosp. Pract.* 11:138-147.

39. **Mariela R. Monti, Natalia R. Morero, Virginia Miguel, Carlos E. Argarana** (2013) nfxB as a Novel Target for Analysis of Mutation Spectra in *Pseudomonas aeruginosa*. *PLoS ONE* 8(6): e66236. doi:10.1371/journal.

40. **McMorran, B., Town, L., Costelloe, E., Palmer, J., Engel, J., Hume, D. and Wainwright, B.** (2003) Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to *Pseudomonas aeruginosa* infection. *Infect. Immun.* 71, 6035-6044.

41. **Meyers, D. J., K. C. Palmer, L. A. Bale, K. Kernacki, M. Preston, T. Brown, and R. S. Berk.** (1992). In vivo and in vitro toxicity of phospholipase C from *Pseudomonas aeruginosa*. *Toxicon* 30:161-169.

42. **Meyers, D. J., K. C. Palmer, L. A. Bale, K. Kernacki, M. Preston, T. Brown, and R. S. Berk.** (1992). In vivo and in vitro toxicity of phospholipase C from *Pseudomonas aeruginosa*. *Toxicon* 30:161-169.

43. **Micek, S. T. Lloyd, A. E. Ritchie, D. J. Reichley, R.M. Fraser, V.J. and Kollef, M. H.** (2005) "Pseudomonas aeruginosa blood stream infection: importance of appropriate initial antimicrobial treatment," *Antimicrobial Agents and Chemotherapy*, vol. 49,no. 4, pp. 1306-1311.

44. **Mitov I, Strateva T, and Markova B.** (2010). Prevalence of Virulence Genes Among Bulgarian Nosocomial and Cystic Fibrosis. *Brazilian Journal of Microbiology*. 41: 588-595.

45. **Mitov I, Strateva T, Markova B.** (2010) Prevalence of virulence genes among bulgarian nosocomial and cystic fibrosis isolates of *Pseudomonas aeruginosa*. *Braz J Microbiol.* 41(3):588-595.

46. **Montes LR, Ibarguren M, Goni FM, Stonehouse M, Vasil ML, et al.** (2007) Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR (2), a novel phospholipase C/sphingomyelinase from *Pseudomonas aeruginosa*. *Biochim Biophys Acta* 1768: 2365-2372.

47. **Muggeo A. Coraux C. Guillard T.** (2023) Current concepts on *Pseudomonas aeruginosa* interaction with human airway epithelium. *PLoS Pathog* 19(3): e1011221.

48. **Nguyen TT, Saxena A, Beveridge TJ** (2003) Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium *Pseudomonas aeruginosa*. *J Electron Microsc (Tokyo)* 52: 465-469.

49. **Nikaido H** (1994) Prevention of drug access to bacterial targets: Permeability barriers and active efflux. *Science* 264: 382-388.

50. **Nikbin VS, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, et al.** (2012) Molecular identification and detection of virulence genes among *Pseudomonas aeruginosa* isolated from different infectious origins. *Iran. J Microbiol* 4: 118-123.

51. **Nikbin VS, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, et al.** (2012) Molecular identification and detection of virulence genes among *Pseudomonas aeruginosa* isolated from different infectious origins. *Iran. J Microbiol* 4: 118-123.

52. **Nordmann P. and Guibert, M.** (1998) "Extended-spectrum betalactamases in *Pseudomonas aeruginosa*," *Journal of Antimicrobial Chemotherapy*, vol. 42, pp. 128-131..

53. **Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H. and Greenberg, E.P.** (1994) Structure of the autoinducer required for expression of *Pseudomonas aeruginosa* virulence genes. *Proc. Natl. Acad. Sci. USA* 91, 197-201.

54. **Pearson, J.P., Pesci, E.C. and Iglewski, B.H.** (1997) Roles of *Pseudomonas aeruginosa* las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. *J Bacteriol* 179 (18):5756-67.

55. **Pesci, E.C., Pearson, J.P., Seed, P.C. and Iglewski, B.H.** (1997) Regulation of las and rhl quorum sensing in *Pseudomonas aeruginosa*. *J. Bacteriol.* 179, 3127-3132.

56. **Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, and Wu M.** (2022) *Pseudomonas aeruginosa*: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. *Signal Transduction and Targeted Therapy*, 7:199.

57. **Rutherford S.T, Bassler B.L.**(2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. *Cold Spring Harb Perspect Med.* 2(11):a012427.

58. **Tambong JT, Tambong R, Bromfield ES** (2009) Intercistronic heterogeneity of the 16S-23S rRNA spacer region among *Pseudomonas* strains isolated from subterranean seeds of hog peanut (*Amphicarpa bracteata*). *Microbiology* 155: 2630-2640.

59. **Terada LS, Johansen KA, Nowbar S, Vasil AI, Vasil ML.** (1999) *Pseudomonas aeruginosa* hemolytic phospholipase C suppresses neutrophil respiratory burst activity. *Infect Immun.* 67(5):2371-6.

60. **Seed, P.C., Passador, L. and Iglewski, B.H.** (1995) Activation of the *Pseudomonas aeruginosa* lasI gene by LasR and the *Pseudomonas* autoinducer PAI: an autoinduction regulatory hierarchy. *J. Bacteriol.* 177, 654-659.

61. **Urakawa H, Martens HW, Stahl DA** (2010) High abundance of ammonia-oxidizing archaea in coastal waters, determined using a modified DNA extraction method. *Appl Environ Microbiol* 76: 2129-2135.

62. **Vasil M.** 2006. *Pseudomonas aeruginosa* phospholipases and phospholipids, p 69-97. In Ramos J, Levesque R (ed), *Pseudomonas*, vol 4. Springer, Houten, The Netherlands.

63. **Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I. and Iglewski, B.H.** (2003) Microarray analysis of *Pseudomonas aeruginosa* quorum-sensing regulons: effects of growth phase and environment. *J. Bacteriol.* 185, 2080-2095.

64. **Wargo MJ, Ho TC, Gross MJ, Whittaker LA, Hogan DA.** 2009. GbdR regulates *Pseudomonas aeruginosa* plcH and pchP transcription in response to choline catabolites. *Infect. Immun.* 77:1103-1111.

65. **Whiteley, M., Lee, K.M. and Greenberg, E.P.** (1999) Identification of genes controlled by quorum sensing in *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci. USA* 96, 13904-13909.

66. **Wieland CW, Siegmund B, Senaldi G, Vasil ML, Dinarello CA, Fantuzzi G.** Pulmonary inflammation induced by *Pseudomonas aeruginosa* lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1. *Infect Immun.* 2002 ;70(3):1352-8.

67. **Zakaria, A. S. Edward, E. a. and Mohamed, N. M** (2019) Evaluation of Ciclopirox as a Virulence-modifying Agent Against Multidrug Resistant *Pseudomonas*. *Microbiology and Biotechnology Letters* 47:4, 651-661.