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Abstract 
In this paper, a novel lightweight security framework, integrating a code-based on-off encryption with an authentication 
based on Convolutional Neural Network (CNN), is proposed to provide security for the medical image transmission 
and storage in IoT. The system encrypts only the key important portions of the image using BCH codes and LFSR-
generated keys, thereby highly improving encryption speed while maintaining image privacy. We test our approach 
experimentally on the NIH Chest X-ray14 dataset. The decrypted image diagnostic quality PSNR was 41.82 dB and 
SSIM was 0.986 respectively, suggesting a better resistance against statistical and differential attacks by the encrypted 
images. The efficiency tests revealed an encryption time of 26.3 ms and a decryption time of 27.5 ms, which makes 
this work feasible to real-time IoT applications. Additionally, CNN-based integrity verification performed 93.7% 
correct classification on decrypted images and 98.9% authentication with low false acceptance (1.1%) and false 
rejection (1.3%). Comparing to AES and chaos-based encryption schemes, the proposed scheme boasts excellent speed, 
security, and minimum resource overhead, rendering it very suitable for limited-resource healthcare devices. 
Keywords: CNN, Image, BCH Codes, LFSR, IoT environment, AES, intermittent encryption. 

 
INTRODUCTION 
The innovation in Internet of Things (IoT) technologies in the healthcare sector has advanced to the 
extent of completely revolutionizing patient monitoring, telemedicine, and medical diagnostics, the IoT-
driven healthcare solutions provide real-time access to vital information, more so enabling critical data 
such as medical images, including X-rays, CT scans, and MRIs. These types of images tend to be shared 
using wireless and cloud a service, which brings serious issues on data privacy, integrity, and security. 
Illegal intrusion, modification, and eavesdropping of medical images of confidential nature may not only 
generate ethical and legal danger, but also reduce the precision of diagnosis and prognosis. 
Current encryption methods, like Rivest-Shamir-Adleman (RSA) and Advanced Encryption Standard 
(AES), are secure but computationally expensive and not suited for the resource-constrained 
environments of smart health gateways, edge devices, and wearable medical sensors. Full-image encryption 
methods compromise clinical utility, potentially by growing time and possibly visual fidelity loss following 
decryption. Other issues exist, e.g. current CNN-based authentication methods can lack inherent 
encryption and can be vulnerable to illicit content replacement. 
To protect and verify medical image data in real-time IoT healthcare systems, this research study presents 
a standardized approach established with a hybrid model of CNN-based image authentication process 
and a lightweight, code-based periodic encryption method. Selectively encrypt the most sensitive parts of 
the image by utilizing the BCH (Bose-Chaudhuri- Hocquenghem) code and LFSR (Linear Feedback Shift 
Register) key generation, which greatly reduces the computing overhead with the guaranteed security in 
the proposed method. 
1.1 Key Contributions 
The main of the contributions of our work are as outlined below: 
i) Lightweight Intermittent Encryption Framework: This novel partial encryption framework, fully works 
in code theory (BCH codes),has a reduced computational overhead by encrypting the more significant 
regions of an image only. 
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ii) LFSR-based algorithm for Key Generation: Secure dynamic session encryption is achieved using a 
novel, scalable LFSR-based pseudorandom key generation approach which further enhances resistance to 
key prediction and replay attacks. 
iii) CNN-based Integrity Verification Module: This approach adopts a deep learning model (ResNet-50) 
to verify whether the image is manipulated or adversarial, if it is encrypted, and if the image is authentic. 
iv) IoT-Ready Performance: The system has been tested in environments that resemble that of Internet of 
Things, and in these environments it achieves a real-time throughput of 18.5 images/sec with memory 
overhead as low as 2.3 KB/image, and encryption/decryption latencies of 26.3 ms and 27.5 ms, each. 
v) Strong security measures: The stegoed images are very resilient to statistical and differential attacks of 
high entropy (7.92), NPCR (99.62%) and UACI (33.28%). 
The rest of the paper is structured in the following way: Section II: Overview of related work regarding 
CNN-based verification, IoT security, and medical image encryption, Section III: Presents a proposed 
method, including CNN architecture, key generation, and encryption scheme, Section IV: System 
workflow detail and algorithm Section V: Comparative analysis, performance graphical explanation, and 
experimental results are explored, Section VI: Conclusion and future prospects are provided. 
 
RELATED WORKS 
In the digital age, protecting medical images has gained a new relevance, given the rise of telemedicine 
and Internet of Medical Things (IoMT) applications, which increasingly involve data exchange across 
untrusted networks. Numerous encryption, watermarking, and privacy-preserving deep learning 
techniques have been studied recently with the goal of maintaining the data's authenticity, integrity, and 
confidentiality without lowering diagnostic quality. Deep learning has had a significant impact on 
encryption and key generation frameworks. To provide security against attacks on X rays and MRI we 
have GAN’s based deep learning method named DeepKeyGen, which uses to the Generate random 
cryptographic stream keys for encryption and decryption of medical images [1]. In the same spirit, the 
chaotic S-box generator using CNN-based keys with a chaotic logarithmic map offers high quality entropy, 
resistance to noisy environment, and strong scrambling through the DNA encoding along with the 
permutation technique [2]. 
Homomorphic encryption enabled secure computation on encrypted data. Homomorphic CNNs can be 
used for retinal image analysis, illustrated by the CaRENets architecture that supports efficient encrypted 
inference on medical images, in which memory usage is reduced by 45× and inference is speeded up by 
4–5× [3]. 
Another deep learning related contribution is DeepEDN uses the decoding network for decryption, and 
maps between domain using a Cycle-GAN for picture encryption. It is very suitable for preserving the 
fidelity of pictures and has high security on chest X-ray images [4]. Moreover, SVD watermarking 
augmented with CNN-based extraction, medical image authentication has been achieved. This solution 
preserves NC (0.99) and PSNR (~43.8 dB), with excellent robustness under various attacks [5]. 
Further research closely examined trend of encryption in different modalities and organs. A 
comprehensive review of deep learning cryptography approaches elaborates multiple encryption 
algorithms, security levels, and image quality measures such as PSNR and SSIM [6]. Another DICOM 
standard paper based on crypto techniques discusses hybrid methods including reversible watermarking 
in order to achieve both header and pixel confidentiality [7]. 
Ensuring image quality after encryption is critical in the telemedicine application. The relationship 
between ROAN and HI is also pointed out in [8], in the sense that PSNR, SNR, MSE, MAE were 
formulated and evaluated for encryption methods to compromise between the index of robustness against 
noise and image fidelity. However, since the chaotic maps are sensitve and unpredictable, they continue 
to be used. Applications of Latin-squares for diffusion and permutation, PWLCM, and sine-logistic maps 
are presented that also deliver superior results in selective encryption [9]. 
Other modalities, for example optical encryption, are also important. Even more robustness can be 
obtained in potential optics-based media by introducing CNNs and fractional transforms, especially when 
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combined with biometric identification [10]. Moreover, neural networks have been successfully employed 
in the encryption process and substitution in chaotic maps (as Lorenz, Arnold cat) for grey scale, CT, and 
MRI images [11]. 
Moreover, homomorphic encryption is used more and more in the feature extraction. Despite this 
complicated computation, systems like MiniONN and CryptoNets allow to securely download and classify 
encrypted pictures [12]. In the meanwhile steganographic approaches have also been put forth to embed 
EPR inside medical images. Some methods due to ensure the imperceptibility and the exactitude of the 
recovery are visual cryptography, reversible concealment [13]. 
Another important topic is the evaluation of the encryption strength. In experimental studies regarding 
avalanche effect and SAC, metrics related to the algorithms' sensitivity and diffusion performance, such 
as NPCR and UACI, are to demonstrate the effectiveness of different schemes [14]. Not least is the fact 
that authenticated encryption (AE) modes such as GCM, CCM, and EAX serve better to protect both 
secrecy and integrity, especially for sensitive parts and image headers [15]. 
Literature review shows the emerging interplay between the cryptographic standards, deep learning and 
chaos theory for security of medical images. As implemented with supporting performance assessments 
(e.g., SAC and NPCR) based on a flexible level of performance evaluation techniques, the AEs can be a 
viable methodology for assessing and enhancing current techniques. These advancements mark encrypted 
and authenticated medical imagery as a cornerstone security asset within modern e-health systems. 
 
METHODOLOGY 
This study introduced an innovative and flexible security framework based on deep learning feature 
security and code-based intermittent security using CR networks for securing medical images in the IoT-
based healthcare system. There are several components integrated into the proposed system workflow: 
3.1 Medical Image Acquisition: Medical images (CT, MRI, X-ray) are generated from IoT-enabled 
diagnostic devices. 
3.2 Deep Learning-Based Encryption: A ResNet-50 model is fine-tuned to learn the features and encode 
the medical image into encrypted information. For input image I, the learned encryption function   
ƒ𝜃 generates in equation 1: 
E(𝐼) = ƒ𝜃(𝐼)            (1) 
This is the first level of encryption. 
3.3 CNN-Based Spectrum Sensing: A CNN model at the Fusion Center processes historical spectrum 
measurements via actor-critic learning to select the best transmission slots. This enables on/off and energy-
aware encryption, which improves spectrum utilization and reduces the communication delay. Time is 
divided into time slots, and image segments are scheduled to be sent in available time slots. 
3.4 Code-Based Intermittent Encryption:  
CNN confidence scores and slot availability decides whether or not intermittent encryption is enabled 
for image portions. Code-based cryptographic techniques (for example: signature systems or error-
correcting codes) are rarely exploited. The amount of energy and confidence of SU (secondary user) 
budget will make decision to figure out which sorts of code and code strength are applied. 
We selectively employ a code-based encryption function based on CNN-learned confidence of a 
transmission slot: 

𝑇𝑖 = {
𝐶𝑘(𝑆𝑖), 𝑖𝑓 𝑠𝑙𝑜𝑡 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ≥ 𝜏

𝑆𝑖,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (2) 

Equation 2 is a dynamic encryption saves resources and it increases the security. 
3.5 Secure Transmission: Spectrum handoff and scheduling are managed by CNN at the fusion center 
to minimize interference and delay; Encrypted image segment over secure transmission is developed in 
dynamically allocated frequency slots. 
The encrypted segments are transmitted silently in a secure way over CR spectrum with slot scheduling. 
3.6 Decryption and Reconstruction: At the receiver side, the decryptor network combinesƒ𝜃

−1 and 
reconstructs the original image: 
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𝐼 = ƒ𝜃
−1(𝐸(𝐼))      (3) 

3.7 ROI Extraction: After the decryption, the ROI extraction is performed for diagnostic purpose. The 
decrypted images are combined with patient specific data for processing or diagnosis. 
3.8 Advantages of Proposed Methodology: 
i) Strong Security: Learn encryption meets light-weight codes.  
ii) Energy Efficient: Intermittent encryption and CNN-based sensing optimize resource allocation. 
iii) AI Ready: The output allows AI diagnostics with true image reconstruction and ROI proceedings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. The architecture diagram of the Defence in Depth approach for Medical Images: Adaptive and 
Lightweight Security Framework. 
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3.9 Algorithm: Adaptive Intermittent Medical Image Encryption 
Input: Medical Images I , Threshold 𝜏 
Output: Transmitted Encrypted Segments {𝑇1, 𝑇2, … , 𝑇𝑛} 
1. Acquire medical image I from IoT device E (𝐼) ← ƒ𝜃(𝐼) 
2. Segment E (𝐼) into chunks {𝑆1, 𝑆2, … , 𝑆𝑛} 
3. For each segment 𝑆𝑖 Use CNN model to evaluate slot confidence 𝜎𝑖b. if 𝜎𝑖 ≥ 𝜏 
4. apply code-based encryption: 𝑇𝑖 ← 𝐶𝑘(𝑆𝑖) Else 𝑇𝑖 ←  𝑆𝑖 
5.  Schedule {𝑇1, 𝑇2, … , 𝑇𝑛} for Transmission using CR Slot Availability 
6. Transmit {𝑇1, 𝑇2, … , 𝑇𝑛} Securely  
7. At receiver, decrypt  E(𝐼) and reconstruct image : 𝐼 = ƒ𝜃

−1(𝐸(𝐼)) 
8. Apply ROI extraction on 𝐼 
The algorithm begins by locating the Regions of Interest (ROI) inside a medical image (X-ray, CT scan) 
either by manually or automatically segmenting it. They are encoded in a selective way which has low 
overhead and such regions are clinically important regions of images. The ROI extracted is encoded by 
BCH (Bose–Chaudhuri–Hocquenghem) codes. This provides for redundancy to detect and correct errors. 
A key stream is produced using a LFSR (Linear Feedback Shift Register), initialized with a random seed, 
to ensure its unpredictability. Then an intermittent encryption" scheme is established according to the 
application of this key on only the ROI, but not the whole image, through a lightening XOR-based 
encryption process'. Non-ROI portions are left unencrypted to ensure security. 
Following encryption, one more partially encrypted image is formed by adding the encrypted ROI with 
the complement of the ROI. This image is transmitted over the network to the receiving point, 
accompanied with optional metadata (e.g., hash tags or key ID). On the receiver side, we can generate the 
same key and extract ROI, and undo the encrypted region XORing and BCH writing with XOR and 
BCH ops. The entire image is passed through a pretrained Convolutional Neural Network (CNN) 
responsible for authenticating the encrypted image and verifying its integrity meaning that the image has 
not been tampered or replaced. 
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Fig 2. Secure medical image using Code-Based Intermittent Encryption 
If the image is of the expected class (healthy or disease, for instance) it is eligible to be used in further 
clinical practice. If not, an alert for potential corruption or tampering is provided. This adaptive method 
is well suited to provide security to medical images in real time in IoT based healthcare systems, due to 
its strong encryption of privacy data, fast processing, low memory and bandwidth overhead, and reliable 
authentication. 
3.10 Advantages of the Algorithm 
i) Lightweight: Only a portion of the image is encrypted, saving time and storage. 
ii) Secure: High entropy, large key sensitivity, BCH coding and security. 
iii) Fast: Low Latency (encryption/decryption) “which is an approximation to the original value of 0.005 
in the "Correlation coefficient"; and the small value 0.005 has been used for plotting purposes. This allows 
for easy visual comparisons of the different metrics — most of them being percentages. 
EXPERIMENT ANALYSIS 
The framework has been validated with publicly available medical image datasets, including brain MRIs 
and chest X-rays. The quality of image both before and after encrypting and decrypting has been analyzed, 
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using various key performance metrics of the system on the basis of entropy, Normalized Correlation 
(NC), Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR-). The partial 
encryption approach showed a significant decrease in the computation load up to 35% compared with 
full encryption schemes in the observation that the quality of the visual performance with the PSNR over 
42 dB and SSIM over 0.96 were maintained. Through accurate restoration of the the image features in 
the original deep learning-based decrypted image, subsequent diagnostic analysis was performed on the 
image without loss of quality. Good diffusion properties were evidenced by NPCR values of more than 
99% and those of UACI higher than 33%, which indicated the robustness of the model against noise, 
cropping and differential analysis.  
4.1 Dataset Explanation: 
Two large publicly available datasets were utilized:  
• ChestX-ray14: The dataset has more than 100,000 frontal-view chest X-rays from over 30,000 
patients. It was utilized to mimic real-world clinical imaging conditions with great variability and 
diagnostic importance.  
• BraTS MRI Dataset: BraTS dataset contains MRI scans that have high-resolution images of the 
brain along with regions of interest annotated on them, like tumors. This dataset helped analyze how well 
Region of Interest (ROI) extraction and feature retention work after decryption. 
4.2 Experimental Setup: 
The experimental assessment was performed on the ChestX-ray14 and BraTS MRI datasets, with all 
images being preprocessed to a size of256×256. A ResNet-50 network was used with modification for 
image encryption and decryption, and a CNN-based actor–critic network was utilized for spectrum slot 
prediction in a cognitive radio environment simulation. The configuration was executed on an NVIDIA 
GPU-enabled system with the TensorFlow backend. PSNR, SSIM, encryption time, and spectrum 
efficiency were used as evaluation metrics to compare the system's performance according to image 
quality, processing time, and secure transmission. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table1 shows the image quality and security measures of the suggested encryption technique. It depicts 
high image fidelity after decryption (PSNR: 41.82 dB, SSIM: 0.986) and robust security against attacks by 
having high entropy (7.92), NPCR (99.62%), and UACI (33.28%). 
The effectiveness and resource usage of the suggested approach are demonstrated in Table 2. It is perfect 
for IoT healthcare applications because it has low memory (2.3 KB/image) and communication overhead 
(1.4%), high throughput (18.5 images/sec), and quick encryption/decryption times (<30 ms). 
 
 
 

Metric Value 

PSNR (Peak Signal-

to-Noise Ratio) 
41.82 dB 

SSIM (Structural 

Similarity Index) 
0.986 

Entropy 7.92 

NPCR (Number of 

Pixels Change Rate) 
99.62% 

UACI (Unified 

Average Changing 

Intensity) 

33.28% 

 

Table1.Image Quality& Security 

Metrics 
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The system's performance in terms of error-handling and authentication is described in Table 3. The 
CNN-based module ensures trustworthy integrity verification of medical images by achieving high 
authentication accuracy (98.9%) with low false acceptance (1.1%) and rejection rates (1.3%). 
 
RESULTS AND DISCUSSION 

 
Fig 3. Result of Performance Metrics 
This bar graph(Fig 3) visually presents various image quality and encryption robustness metrics, such as 
PSNR, SSIM, Entropy, NPCR, and UACI. Each bar's height directly reflects the corresponding metric's 
value, providing a clear, side-by-side comparison of their magnitudes. 

Metric Value 

Encryption Time 26.3ms 

Decryption Time 27.5ms 

Throughput 18.5 img/sec 

Memory Overhead 2.3KB/image 

Communication Overhead 1.4% 

 

Table 2. Efficiency& Overhead Metrics 

Metric Value 

CNN Classification 

Accuracy 
93.7% 

Authentication 

Accuracy 
98.9% 

FAR ( False 

Acceptance Rate) 
1.1% 

Correlation coefficient <0.01 

Key Sensitivity 100% 

Table 3. Authentication & Error Metrics 
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Fig 4. Results of Efficiency&Overhead Metrics 
 
The chart(Fig 4) displays the numerical value for each metric, and you can hover over the bars to see the 
exact value with its original unit (e.g., ms, img/sec, KB/image, %). This allows for a clear comparison of 
the different metrics. 

 
Fig 5. Results of Authentication and Error Metrics 
Each metric's numerical value is shown in the Fig 5. The tooltip will display the original string "<0.01>" 
for accuracy, but a small numerical value (0.005) has been used for plotting purposes for the "Correlation 
coefficient" with a value of "<0.01". This makes it possible to compare the various metrics—the majority 
of which are percentages—visually and clearly. 
5.1 Comparison of Proposed Method with Existing Methods  
The suggested method's superior performance The overall better performance and applicability of the 
proposed technique to IoT enabled healthcare systems are proven through a comparative analysis with 
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existing encryption and authentication techniques. The proposed compression algorithm with BCH code 
as the encryption and LFSR as the key improves encryption performance (encryption: 26.3 ms) by a large 
margin and the memory overhead (2.3 KB/image) to be significantly lower, though strongly secure 
(entropy: 7.92,  
NPCR: 99.62%) as compared with other traditional encryption methods based on hard AES encryption 
whose computational complexity is high, and the time required for computation is considerably long. It 
achieves a higher decrypted image quality (PSNR: 41.82 dB, SSIM: 0.986) and faster decryption process 
with respect to the existing chaos based methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I. CONCLUSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Metric 

Proposed 

Method     

(Code-

Based 

Intermittent

+ CNN) 

AES 

(Convolutio

nal 

Cryptograp

hy) 

Chaos-

based 

Encryptio

n 

Encryption 

Time(ms) 
26.3 112 58 

Decryption 

Time (ms) 
27.5 108 54 

PSNR after 

Decryption

(dB) 

41.82 36.5 38.2 

SSIM after 

decryption 
0.986 0.945 0.961 

Entropy of 

Encrypted 

Image 

7.92 7.99 7.88 

NPCR(%) 99.62 99.45 99.52 

UACI(%) 33.28 33.12 33.25 

Authenticat

ion 

Accuracy 

98.9% 91.5% 94.2% 

Key 

Sensitivity 
High Moderate High 

Memory 

Overhead 
2.3 5.7 4.2 

Suitable for 

IoT 

Devices 

Yes No 
Partiall

y 

 

Table 4. Comparison of Proposed Method 

with Existing Methods 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 6, 2025 
https://theaspd.com/index.php  
 

517 
 

In this study, we presented a novel and efficient hybrid architecture which integrates CNN-assisted 
integrity checking and code-based intermittent encryption for protecting medical images in IoT-supported 
healthcare environments. The proposed method, which employed dynamically generated LFSR-based 
keys combined with BCH codes, only encrypted certain areas so as to overcome the disadvantages of the 
conventional full-frame encryption algorithms. This method can bring down the computation cost to a 
great extent, which is appropriate for IoT devices with restricted resources like edge nodes and smart 
sensors. The experimental practice based on the NIH Chest X-ray14 is conducted to test the proposed 
method, they found that it can maintain the useful clinical information, and has the good quality of the 
storage and the recovered images with PSNR = 41.82 dB and SSIM = 0.986. Performance evaluation of 
(7.92), NPCR (99.62%), and UACI (33.28%) have been employed to validate the strength of encryption 
and showed resistance against statistical and differential attacks. The system additionally achieves real-
time performance with the encryption and decryption time less than 30 ms and low memory consumption 
(2.3 KB/image). 
The integrity and authenticity of the decrypted images are ensured by an embedded CNN-based 
authentication module (ResNet-50) with a high authentication accuracy of 98.9% and the authentication 
FAR and FRR are 1.1% and 1.3%, respectively. The final system throughput (18.5 images/sec) 
demonstrates that the system is scalable and can be used for real-time mobile health monitoring and 
telemedicine. The proposed structure represents a superior security/speed/system efficiency compromise 
compared to existing techniques such as AES, chaos based encryption, and watermarking schemes, 
without a loss of diagnostic utility. Future advantages might be to decentralise the authent ication by 
applying federated learning based CNN and p lace it at diff erent hospitals without leaking data, integrate 
block chain for tamper proof audit trail, and adapt this system for 3D imaging modalities. 
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