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Abstract—Mineral prospectivity mapping (MPM) is an essential part of mineral discovery, which has conventionally 
gone through a process dependent on geoscience experience and manual data interpretation. Due to the swift 
development of remote sensing-based technologies and artificial intelligence (AI), in particular, machine learning (ML) 
and deep learning (DL), the study of the mineral-rich zones has undergone a paradigm shift. The proposed method of 
incorporating AI in remotely provided sensory data can be used to automate and improve the precision of MPM, so 
this paper tries to discuss that. The approach relies on spectral, geological, and topographical data, which are satellite-
derived and processed via the application of supervised machine learning algorithms, to provide the indication of the 
priority of potential mineral areas. The suggested system was applied on a well documented area of mineralization 
where the results have shown that the effectiveness of AI models to the conventional method is far superior to the 
traditional in terms of accuracy of the prediction and spatial generalization. The paper demonstrates the usefulness of 
such an integration that could be used as an aid by geologists during decision-making exercises reducing field survey 
expenditures and maximising the exploration expenses. 
Keywords— Mineral Prospectivity Mapping, Artificial Intelligence, Remote Sensing, Machine Learning, Geological 
Exploration, Supervised Classification, Data Integration. 
 
I. INTRODUCTION 
The world of industrial development is anchored in mineral resources, and this is all that supports 
infrastructure, electronics, and renewable energy systems. Due to the ever-increasing demand of metals, 
rare earth elements in the world market, especially as the world moves to green technology, efficient and 
precise mineral exploration is more important than ever before [7]. Conventionally, mineral exploration 
is an expensive (and risky) endeavor, which relies on the inferential analysis of geological, geochemical 
and geophysical data by the experts. Most initial level exploration operations are run on manual mapping 
and subjective geologic interpretation and this sometimes takes too long and is error prone. 
With the introduction of satellite remote sensing, a new phase in the observation and the perception of 
the earth surface has been a revolution. Such satellites as Landsat, ASTER, Sentinel-2, among others, 
offer multi-spectral and hyperspectral image processing which has the potential to capture the chemical 
and structural components of the earths crust. The datasets are commonly used to identify hydrothermal 
alteration zones, lithological boundaries, and structure like faults and lineaments which are very vital 
mineral deposit indicators. Nonetheless, remote sensing data is usually multi-dimensional and 
voluminous, thus posing a bottle neck analytical issue. It is even harder to interpret manually long and 
complex data on a large geographical scale. 
That is where Artificial Intelligence (AI), particularly Machine Learning (ML), comes to the rescue as a 
revolutionary solution. The ML algorithms are able to discover minute patterns and non-linear 
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correlations within data of high-dimension, and this application applies to multiple cases of complex 
geologic features under remote sensing data. Training the models based on known occurrences of 
minerals will enable high spatial accuracy in prediction of occurrence of new undiscovered deposits. 
Random Forests, Support Vector Machines, and Gradient Boosted Trees are effective methods especially 
in prospectivity modeling because they accept noisy multi-source data and are capable of accommodating 
the nonlinear relationship [11]. 
A number of aspects contribute to the fact that the use of AI in combination with remote sensing is a 
promising paradigm shift. First, the remote sensing provides an extensive spatial coverage that is 
characterized by regular revisit periods providing up to date surface information. Second, AI makes 
feature extraction and prospectivity scoring automatable with the required computer power and 
flexibility. Third, when it comes to visualizing, validating, and integrating model output with additional 
geological data, geospatial tools can be used to aid smooth execution geo platform for information systems 
(GIS). Coupled with other tools, these instruments are able to speed up the mineral exploration process, 
lessen field expenses and considerably lessen environmental interruption by working just those zones that 
have high possibility [10]. 
Nevertheless, there are a number of obstacles. The remote sensing has to be pre-processed by way of 
atmospheric correction, geometric alignment and smoothing of the noise. Besides, the training of AI 
models needs the ground truth data, which might be scarce in the backhanded areas of exploration. 
Notwithstanding these shortcomings, on a case study, AI-assisted mineral prospectivity maps have proven 
to point towards a higher accuracy than the manual method. They also give integratable workflow that 
fits into various geological environments. 
This paper offers a sound, AI-based framework that combines multi-source remote sensing data in 
satellites in conjunction with machine learning in order to come up with predictive mineral prospectivity. 
The technical technique includes feature extraction, supervised training, spatial prediction and evaluation 
performance [12]. An evaluation of the accuracy and usefulness of the framework uses a real-world test 
case. The aim is not only to come up with a model, it is also to prove a replicable pipeline that exploration 
companies, governments, and prospector researchers to target effectively minerals. 
Such combination of AI and remote sensing may transform mineral exploration into predictive rather 
than reactive undertaking, i.e. able to reveal mineral-rich areas faster, more efficiently and with increased 
confidence by helping those making decisions [15]. 
Novelty and Contribution  
The originality of the research is that it is systematic and integrative to the combination of artificial 
intelligence with remote sensing technologies to generate mineral prospectivity mapping data, which is 
an area where such hybrid solutions are Godsend even now. As compared to the traditional approaches, 
which process remote sensing data in a manual manner or use a single source of data, our model offers a 
comprehensive mineral prediction model by synthesizing satellite imageries, digital elevation models, 
geological maps and geological structures [9]. 
The leading insights into this work are: 
• End-To-End AI Framework Of MPM: We propose an end-to-end pipeline where we have integrated 
acquisition of data, feature engineering, training model, spatial prediction, and validation. Such a 
systematic design makes it reproducible and flexible to other types of minerals and lands. 
• Multi-Source Feature Fusion: We utilize the richness of features available through remote sensing: 
vegetation indices, band ratios, results of principal component analysis, terrain derivates (slope, 
curvature), nearness to mapped faults, etc. to train models that have much more contextual information 
available, and therefore better success at classification [13]. 
• Comparative Algorithm Evaluation: The given work contrasts the Random Forest, SVM, and 
Gradient Boosting to determine the most suitable model, unlike in the previous researches, which use 
one approach based on the machine learning method. The validation of the performance is based on a 
case in the real-world and standard metrics (F1, ROC-AUC, etc.). 
• Useful Mineral Targeting Implementation: The work provides an academic methodology transfer to 
utility by matching the predictive maps on recognized mineral deposits, verifying the predictive overlaps 
and providing a working example of how exploration is directed through the output as a decision support 
tool. 
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• Open Data Usage and Scalability: The remote sensing data used in the application are open-access 
and the AI framework they use open-source, which makes the method cost-efficient and scalable, 
accessible to exploration teams operating on a low budget. 
This research contribution is not only contributing to the technical debate on the use of AI in geosciences 
but it also provides a real-world, data-based tool to use in the exploration process in the mining industry; 
in environmental planning by various organizations and agencies such as the Geological survey [16]. 
II. RELATED WORKS 
In 2022 Y. Kong et al., [14] suggested the mineral prospectivity mapping has changed in a tempered but 
revolutionary trend through a departure with manual geoscience inference towards data-based modeling. 
The insertion of remote sensing data into the mineral exploration processes was a remarkable 
achievement allowing covering larger regions with more spatial and spectral data. The remote sensed 
imagery on missions like Landsat, ASTER, and Sentinel, have been extensively utilized in detection of 
alterations of the commodities existing at the surface and in lithological boundaries as well as lineaments 
or structural boundaries- parameters that cumulatively have been collected painstakingly by field 
operations. 
Early attempts to combine remote sensing with mineral exploration were claim mostly on band ratioing, 
principal component analysis, and the visual interpretation of false-color composites. Although such 
methods were successful in helping to identify some of the alteration minerals, they were not predicting 
and generalising in different geological contexts. Moreover, multidisciplinary nature of most geological 
environments necessitated integration of multisource data including elevation, geochemistry and 
geological maps which would not have been effective using conventional image processing algorithms. 
As machine learning took a next step, paradigm transformed into the mechanization and quantification 
of mineral potential mapping. Techniques of supervised classification started out displacing visual 
interpretation, where models were trained on prior knowledge of where mineral deposits occur and use 
that knowledge to predict future target zones. The non-linear association among predictor variables and 
occurrence of minerals was modeled using algorithms like decision trees, random forests, support vector 
machines, and gradient boosting. These procedures allowed drawing of mineral potential maps that were 
more objective and accurate [5]. 
A significant advantage that machine learning had was the capability of processing the high-dimensional, 
noisy, and heterogeneous data. The same may include remote sensing data, digital elevation, distance to 
faults, distance to lithological units or slope or curvature maps, etc., all in a mix, and fed into an algorithm 
to instantly point out pertinent patterns. Consequently, application of AI in mineral prospectivity 
mapping has addressed such shortcomings as manual bias, subjective thresholds as well as varied 
interpretations among geologists. 
In 2024 T. Sun et al., [8] introduced the other front that has experienced tremendous growth is the 
multispectral and hyperspectral remote sensing clouded together with the AI models. Although 
multispectral sensors have wide coverage, hyperspectral data can cover data with information in the 
spectrum range of hundreds of narrow bands, presenting more information about a mineralogical feature 
leading to better identification. Hyperspectral data processed in this way with AI algorithms is capable of 
showing the more subliminal mineral signature that is frequently overlooked with common tools. The 
difficulty however is manifested in the computational complexity of the problem and the necessity to 
reduce that dimensionality which has been successfully solved through techniques such as PCA, 
autoencoders and feature selection routines. 
New studies have also been conducted in the aspects of incorporating terrain analysis in mineral 
exploration. Topographic derivatives like the slope, aspect and curvature when deployed in conjunction 
with the spectral indices have been found to be helpful in the modelling of structural controls to 
mineralization. Some mineral deposits tend to exist along ridges, faults or at given elevation zones and 
incorporation of such terrain features in the AI models increases the level of space resolution and more 
value to predictions. As a result of this multifactor modelling, it has become possible to develop better 
and place-specific prospectivity maps. 
Geographic Information Systems (GIS) have been supplementary in the sense that it provides spatial 
infrastructure to create source materials over various datasets that are organized and visualized through 
arranging and layering. Interactive mineral prospectivity maps are easy to interpret and plan explorations 
as they are build using GIS-based modeling and output of AI. The model also allows connecting the maps 
to other geoscience maps such as geological map and geophysical maps. GIS tools also enable 
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incorporation of ancillary information like geological contacts, river networks and past mine location that 
add to the spatial context of the predictions. 
In 2024 R. Zuoet al., [6] proposed the use of AI in mineral exploration has also been democratized by the 
cloud computing platforms and the open-access satellite data repositories. Today, by using tools on the 
web, such as the Google Earth Engine, exploration teams can process, and extract in the least amount of 
hardware investment, petabytes of those images and draw certain geological features. This availability has 
increased accessibility to mineral prospectivity projects where governments, universities and emerging 
companies are being able to enrol in predictive modelling without relying entirely on exclusive software 
and data. 
Although older statistical procedures like logistic-regression and weights-of-evidence models continue to 
be employed, they do not replace or supplement them with higher levels of flexibility, adaptability and 
automation. Besides, development of ensemble modeling and hybrid techniques (multiple algorithms are 
used together to achieve greater predictive accuracy) have reinforced the predictive abilities of the field 
even further. 
To sum up, mapping of mineral prospectivity by integration of AI and remote sensing has become an 
important tool of exploration, taking exploration activity out of the reactive and field-based work into 
proactive, data-based targeting. This can be regarded as a part of a wider nature of change in geosciences 
in which artificial intelligence is not just a method of computation but a method of strategy in the 
management of natural resources. The combination of the AI models, the remotely sensed data, and 
spatial analysis environments has already provided the basis of the future of mineral exploration 
technologies. 
 
III. PROPOSED METHODOLOGY 
The methodology integrates multi-source geospatial data with AI-based predictive modeling for mineral 
prospectivity mapping. The core steps include data acquisition, preprocessing, feature engineering, model 
training, spatial prediction, and validation [4]. 
Step 1: Remote Sensing Data Acquisition 
Multispectral imagery was collected from Landsat 8 and Sentinel-2, with topographic data from the SRTM 
DEM. Geological maps and mineral occurrence points were extracted from geospatial databases. 
Step 2: Preprocessing and Normalization 
Radiometric correction was applied using: 

R =
L − Lmin

Lmax − Lmin
 

Where R is the reflectance, L is the radiance, and Lmin , Lmax  are the minimum and maximum radiance 
values. 
Topographic correction for slope-induced errors used: 

Rc =
Ro

cos⁡(θi)
 

Here, R0 is the observed reflectance and θi is the incidence angle. 
Step 3: Feature Extraction 
Multiple indices were calculated. For example, the Normalized Difference Vegetation Index (NDVI): 

NDVI =
NIR − RED

NIR + RED
 

And the Iron Oxide Ratio: 

IOR =
R3

R1
 

where R3 and R1 are reflectance values from red and blue bands, respectively. 
Principal Component Analysis (PCA) was also used: 

Z = XW 
Where Z is the principal component matrix, X is the input feature matrix, and W is the eigenvector 
matrix. 
Step 4: Feature Selection and Dataset Formation 
The dataset matrix D was formed as: 

D = [f1, f2, … , fn] 
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Where fi are the extracted features (band ratios, indices, topographic attributes). Labels were binary: 1 for 
mineral occurrence, 0 otherwise. 
To improve training efficiency, features were standardized: 

x′ =
x − μ

σ
 

Step 5: Machine Learning Model Training 
A Random Forest (RF) classifier was selected. Each tree in the forest is defined as: 

f(x) = ∑  

T

i=1

1

T
hi(x) 

Where hi is the prediction of the ith tree and T is the total number of trees. 
Model optimization was performed by minimizing Gini impurity: 

G = 1 −∑  

C

i=1

pi
2 

Where pi is the probability of class i, and C is the number of classes. 
Step 6: Spatial Prediction and Prospectivity Mapping 
The trained model was applied across the entire raster dataset to generate a prospectivity score: 

P(x) = ℙ(y = 1 ∣ x) 
Where P(x) is the predicted probability of mineralization at pixel x. High-score areas (e.g., P(x) > 0.8 ) 
were reclassified as mineral prospects [1]. 
Step 7: Validation and Accuracy Assessment 
The performance was validated using ROC-AUC and confusion matrix metrics. Precision was computed 
as: 

 Precision =
TP

TP + FP
 

Where TP and FP are true and false positives respectively. 
Model accuracy was calculated by: 

 Accuracy =
TP + TN

TP + FP + FN + TN
 

 
Figure 1: Workflow For Ai-Driven Mineral Prospectivity Mapping Using Remote Sensing Data 
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IV. RESULT&DISCUSSIONS 
The mineral prospectivity model has resulted into predictive maps where the high-potential areas are 
clearly outlined by the use of spectral, topographic, and geologic data. Figure 2 demonstrates the 
generation of the mineral prospectivity map based on the Random Forest (RF) model, as the regions 
(probably) having the high probability of mineral existence are displayed in red and yellow gradations. 
This eyes-on distribution is well correlated with known mineral Localities and other geologically 
advantageous structures in the area of interest. The trend indicates that the mineralized rocks spatially 
extend and continue along mapped fault planes and intrusive contacts indicating that the model has been 
able to learn significant spatial associations among input variables. 

 
Figure 2: Pixel Classification Intensity 
A comparative analysis on different classifiers was performed on three supervised machine learning 
schemes, i.e. Random Forest, Gradient Boosting Tree, and Support Vector Machine on the same feature 
input to assess the overall performance of the model. All these assessment criteria are displayed in Table 
1, titled, Performance Comparison of Machine Learning Models in Mineral Prospectivity Mapping, which 
reveals accuracy, precision, recall, and F1-score. As revealed, the Random Forest model had the highest 
accuracy of 91.8 percent, then Gradient Boosting with 88.2 percent and SVM with 83.4 percent. F1-
scores were also inclined in the cue, which evidenced the strength of Random Forest in accuracy-recall 
tradeoff among classes. 
Table 1: Performance Comparison of Machine Learning Models for Mineral Prospectivity Mapping 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 
Random Forest 91.8 89.5 93.2 91.3 
Gradient Boosting 88.2 86.4 88.5 87.4 
Support Vector 
Machine 

83.4 81.2 84.0 82.6 

 
The ROC (Receiver Operating Characteristic) curves of all the three models are illustrated in Figure 3. 
The RF model presented the best value of AUC (Area Under the Curve) larger than 0.96, which 
demonstrated the high capacity to identify the mineralized and the non-mineralized areas. This visual 
comparison confirms the quantitative performance measures that can be observed in Table 1. A withheld 
test set and historical records of mineral occurring were also used to validate the model. Majority of any 
high potential areas that were estimated by the RF model coincided in locations of any known deposit 
which offers a robust reason to apply this model in the mineral exploration processes taken when working 
on early mineral explorations. 

 
Figure 3: AUC Score by Model 
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Bar graph comparison of feature importance according to the RF model is shown in figure 4. Of all the 
features, Iron Oxide Ratio (IOR), Elevation, Curvature, and SWIR bands had a significant contribution 
in predictions made by the model. The prevalence of IOR and terrain attribute justifies the knowledge of 
geologist that mineralization is likely to be associated with geochemical signature, and tectonic or structure 
contexts. The effectiveness of the use of the dimensionality reduced composite band in the supervised 
learning applications was also evidenced by the fact that the inclusion of the PCA bands also resulted in 
meaningful variance-based abstraction of the spectral data. 

 
Figure 4: Top Feature Importance Scores 
In continuation of demonstrating usefulness of the model in practical exploration, the zones predicted 
by the model as containing possible mineralisation targets were matched with target zones manually 
interpreted by experts at the area of interest. All of the results of the overlap analysis are demonstrated in 
Table 2, or Overlap Analysis between Predicted and Expert-Interpreted Zones, where the percentage of 
overlap and the total area of the predicted zones is observed. The spatial overlap of prediction by the RF 
with the zones created by the experts was 84.7 per cent, much higher than SVM 70.1 per cent and GBT 
75.4 per cent. 
Table 2: Overlap Analysis between Predicted and Expert-Interpreted Zones 

Model Predicted Area (sq. km) Overlap with Expert Zones (%) 
Random Forest 213.6 84.7 
Gradient Boosting 198.1 75.4 
SVM 174.3 70.1 

 
These findings affirm that intersecting of remote sensing with AI generates not merely statistically sound 
forecasts yet geologically sound ones as well. Also, the generalization characteristics of the RF model, 
which enables the model to work on a variety of terrains including flat basins and rugged uplands, were 
evident on the visual and spatial outputs [3]. 
Although the tested AI-driven approach was completely displayed in Figures 2 to 4, there are various 
limitations that were identified towards the end of testing. As an example spectral confusion was a 
problem in areas of dense vegetation, and model confidence dropped in the areas with not much 
historical data. This notwithstanding, incorporation of terrain and elevation parameters assist in keeping 
the predictive stability. NDVI masking and topographically enhanced the accuracy of spectral distortion 
and the NDVI masking and topographic correction enhanced the accuracy of the classification in the 
shady areas and steep slopes. 
Figure 2, Figure 3, and Figure 4 are the unified example of the visual power of the AI-assisted method. 
The real mineral prospectivity heat map is provided in Figure 2, and the comparative diagnostic value of 
the models is focused in Figure 3, and the predominant features that contributed most to those 
predictions are highlighted in Figure 4. All these diagrams confirm the discussion and provide evidence 
that AI is the repeatable, scalable and precise process in making an expedited approach to enhancing 
mineral exploration. 
 
V. CONCLUSION 
This research proves that the utilization of AI in connection with remote sensing data increases the project 
efficiency and accuracy of the process of mineral prospectivity mapping by a substantial margin. The given 
solution automates the process of identifying future zones based on satellite characteristics of the area in 
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terms of spectral properties and geographical timelines minimizing the need to survey the area in the 
field. More specifically, the random forest model had a better performance in mineralized zones 
identification. In the future, the combination of hyperspectral imagery and deep learning models will be 
considered in order to make more accurate predictions [2]. The framework presented herein would offer 
an economical, scalable, and trustworthy exploration to the geologists especially in the areas that are 
inaccessible or have no much budget to spend. 
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