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Abstract 
The accuracy and dependability of smart farming analytics are significantly compromised by missing sensor data, often 
caused by hardware malfunctions, energy constraints, or harsh environmental conditions. This paper introduces a novel 
fuzzy-driven hybrid imputation framework designed to enhance data completeness and semantic consistency in Internet 
of Things (IoT)-enabled agricultural monitoring systems. The core of the proposed method is the Agro-Fuzzy Adaptive 
Rule Engine (AFARE), which uses a Statistically Adaptive Semantic Partitioning (SASP) mechanism to construct 
fuzzy rules without requiring expert knowledge. These rules semantically infer missing values while respecting 
agricultural interpretability. To further improve robustness, the imputed outputs from AFARE are refined using a two-
phase hybrid model: MissForest for global correlation modeling and K-Nearest Neighbors (KNN) for localized 
smoothing.Experiments were conducted on the Crop Recommendation V2 dataset with artificially induced missingness 
at 10%, 20%, and 30% levels. The AFARE-HIM model outperformed both traditional and advanced baselines. At 
30% missing data, it achieved an RMSE of 0.411, R2 of 91%, and MAE of 0.82, surpassing MissForest (RMSE: 
2.31) and SoftImpute (NIA: 86.9%).Visual comparison using scatterplots and error histograms further validated the 
structural alignment of imputed values with the true distribution.  
Keywords:Smart Farming, Missing Data Imputation, Precision Agriculture, Domain Constraints, IoT Sensor Data, 
Machine Learning, Crop Analytics, Agronomic Validity. 
 
1. INTRODUCTION  
Smart farming has emerged as a transformative approach in precision agriculture, enabling data-driven 
decision-making through the deployment of IoT-based sensing systems [1]. These sensor networks 
continuously monitor key agronomic variables such as soil moisture, pH, temperature, and nutrient 
content to optimize irrigation, fertilization, and crop management [2]. The efficacy of these systems is 
critically dependent on the integrity and completeness of the data acquired [3]. In real-world deployments, 
sensor data is frequently marred by missing values, stemming from transmission failures, environmental 
disturbances, or sensor degradation [4]. Such gaps in data not only compromise analytics reliability but 
also propagate uncertainty in downstream yield predictions and resource allocation [5]. 
To address this, the research paper has explored various imputation techniques, ranging from statistical 
averages to machine learning–based models. While these approaches demonstrate utility in controlled 
settings, their generalizability to dynamic, uncertain, and domain-specific agricultural environments 
remains limited. They often ignore contextual semantics, inter-variable dependencies, and the agronomic 
validity of imputed values. 
Real-world agricultural data acquisition is inherently imperfect, with high susceptibility to missingness 
due to intermittent connectivity, weather variability, and device failure. Traditional imputation techniques 
often produce values that are numerically plausible but agronomically invalid. Furthermore, many state-
of-the-art methods focus purely on statistical consistency, ignoring semantic relevance, temporal trends, 
and fuzzy agronomic categories such as “low nitrogen” or “moderate pH.” There is an urgent need for an 
imputation framework that integrates domain understanding, statistical rigor, and adaptive learning to 
improve decision quality in smart farming. 
Smart farming datasets frequently contain missing values due to sensor or transmission failures. Existing 
imputation methods lack semantic understanding of agronomic constraints. There is limited 
incorporation of fuzzy domain knowledge in current imputation frameworks. Hybrid methods combining 
fuzzy reasoning and machine learning remain underexplored in agriculture. Evaluation frameworks for 
missing data imputation often ignore domain-specific utility and temporal consistency. 
The following are the objectives of this research work: 
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• To develop a statistically adaptive fuzzy reasoning framework for imputing missing agricultural sensor 
values. 
• To integrate global and local machine learning models with fuzzy reasoning for hybrid imputation. 
• To validate the framework’s effectiveness using real-world smart farming datasets and downstream 
analytics. 
This work presents a novel imputation architecture, AFARE-HIM, which integrates the Agro-Fuzzy 
Adaptive Rule Engine (AFARE) with hybrid machine learning models (MissForest and KNN). The 
framework introduces Statistically Adaptive Semantic Partitioning (SASP), a dynamic rule generation 
mechanism that minimizes reliance on expert knowledge. The model is assessed using the SF24 dataset 
under both random (MCAR) and context-dependent (MNAR) missingness scenarios, exhibiting superior 
performance in terms of RMSE, NIA, and yield prediction accuracy. An ablation study, along with 
qualitative analyses, substantiates the semantic integrity and robustness of the framework across various 
environmental conditions. Visualizations such as scatter plots and heatmaps are included to provide clear 
insights into the fidelity of imputed values relative to ground truth. 
2. Related Works 
To better understand the landscape and limitations of existing techniques, the next section presents a 
review of recent advancements in sensor data imputation, with emphasis on smart agriculture and IoT-
based systems. 
Harsh Joshi (2025) [6] explored advanced data imputation techniques in the context of missing data 
challenges. The proposed methodology involves a tri-step process combining statistical methods, random 
forests, and autoencoders. The findings demonstrated that PAIN consistently outperformed traditional 
imputation methods such as mean and median, and also surpassed MissForest in accuracy. However, 
higher computational costs and limited performance in high-missingness datasets were reported. This 
contribution provides a strong foundation for robust imputation under diverse scenarios. 
Ibna Kowsar (2025) [7] presented a joint attention learning mechanism with CutMix data augmentation 
to improve imputation in electronic health records. Their method outperformed nine state-of-the-art 
techniques and achieved the best classification accuracy on real-world data. The model, however, is limited 
to numerical features and performs poorly with small sample sizes. This work demonstrates the relevance 
of attention-based augmentation frameworks in structured data imputation. 
Shuo Tong et al. (2025) [8] introduced the Few-shot Uncertainty-aware and Self-Explaining Soft Sensor 
(LLM-FUESS) framework, integrating a zero-shot auxiliary variable selector and uncertainty quantification 
mechanisms. The model achieved strong predictive results with interpretability but faced higher 
development costs and domain robustness issues.This effort marks progress in embedding explainability 
into imputation pipelines. 
Kavitha (2025) [9] developed the HOSNA framework combining clustering and energy-aware activation, 
aided by genetic algorithms and PSO-based scheduling. Their model achieved 94% accuracy and improved 
energy efficiency by 24% compared to LEACH. Limitations include adaptability in heterogeneous 
networks and reliance on non-renewable energy sources. The study provides inspiration for energy-
efficient, sensor-driven imputations. 
Avdesh Kumar Sharma and Abhishek Singh Rathore (2025) [10] proposed a CNN–LSTM hybrid model 
for multisensor-based crop yield prediction. The system enhanced accuracy to over 90% and provided 
real-time alerts. Although the study lacked a direct discussion on imputation, its multi-sensor 
preprocessing architecture supports robust feature reconstruction in noisy conditions. 
Vasanth Kumar et al. (2025) [11] integrated IoT and ML for smart agriculture, leveraging real-time 
monitoring to enhance resource use and productivity. While the work emphasized the utility of intelligent 
farming ecosystems, limitations were not explicitly discussed. The contribution showcases the operational 
significance of complete and accurate sensor data streams in agricultural settings. 
Several recent studies have emphasized the importance of integrating hybrid sensing approaches to 
optimize agricultural data quality while managing costs. Rana et al. (2025) [12] proposed a hybrid model 
that integrates unmanned aerial vehicles (UAVs) with ground-based sensors for precision agriculture. 
While ground sensors provide highly accurate localized data, their deployment cost remains high. In 
contrast, UAV-based aerial sensing offers broader but less granular information. The hybrid model 
effectively combines these strengths, enhancing accuracy while reducing sensor deployment costs. 
However, the approach may still be limited by infrastructural scalability in large farmlands. 
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Advancing this direction, Nurani et al. (2025) [13] conducted a comprehensive literature review of the 
Artificial Intelligence of Things (AIoT) in smart farming. The authors highlighted how AI integration 
improves real-time data analysis, decision automation, and sustainable farming practices. Their findings 
emphasize AI’s ability to optimize resource management (e.g., water, fertilizer) and improve productivity, 
especially in IoT-enabled smart agriculture systems. However, the work did not explore domain-specific 
imputation challenges when sensor data is lost due to transmission errors or hardware failure. 
The challenge of missing data in time-series agricultural analysis was explored by Collado‐Villaverde et al. 
(2025) [14], who introduced the BRATI model. BRATI combines Bidirectional Recurrent Networks with 
attention mechanisms to estimate missing values in multivariate time-series data. The model effectively 
handles both short and long-term dependencies across temporal data. Experimental results demonstrated 
its superiority over existing deep learning models under various missingness conditions. Yet, the work did 
not address domain-specific semantics for agricultural features, nor did it incorporate explainability 
mechanisms in the imputation process. 
Addressing missing sensor data in real-time applications, Yan et al. (2025) [15] introduced a predictive 
deformation model that integrates K-nearest neighbors (KNN), Convolutional Block Attention Modules 
(CBAM), and BiLSTM networks. The model accurately forecasts dynamic deformations even under sensor 
data loss by leveraging spatial correlations and deep neural components. The prediction method was 
shown to reduce maximum deformation errors to 0.28 mm, with corrective effects reaching up to 90%. 
However, its reliance on control points and pre-trained networks may reduce generalizability to unseen 
agricultural conditions. 
In a different context of yield prediction, YueruYan et al. (2025) [16] analyzed time-series crop yield data 
using hybrid machine learning models including Random Forest, XGBoost, and Bagging Regressors. The 
study utilized multiple agricultural features like rainfall, temperature, and pesticide usage across various 
regions. Their results showed that ensemble models like Random Forest provided the highest prediction 
accuracy. However, no specific handling of missing sensor data was addressed, making the models less 
robust in real-world IoT deployments where sensor failures are common. 
Liu et al. (2025) [17] proposed a novel approach for high-dimensional time-series data imputation using a 
bidirectional generative adversarial network (tf-BiGAIN) with f-divergence loss. This method eliminates 
the dependency on predefined data distributions and captures both forward and backward temporal 
relationships. Their model achieved superior imputation performance over traditional techniques and 
deep learning baselines. Nevertheless, tf-BiGAIN does not incorporate contextual information specific to 
agricultural semantics, which can be essential for ensuring agronomic validity of the imputed values. 
Several recent contributions have explored innovative directions in imputation, sensor modeling, and 
smart agriculture analytics, demonstrating significant improvements in model accuracy and data 
reliability.  
Muhammad Hameed Siddiqi et al. (2025) [18] introduced a hyper-tuned multilayer perceptron (MLP) 
approach for data imputation, employing ensemble models within an error-correcting output code 
(ECOC) framework. Their results demonstrate that well-optimized MLP classifiers can significantly 
enhance prediction accuracy. Additionally, ensemble models operating under the ECOC framework 
exhibit promising potential for effective data imputation. The study highlights that further research is 
necessary to advance missing data imputation methods, particularly about improving both the precision 
and stability of such techniques. 
Bordoloi et al. (2025) [19] proposed an enhanced iterative imputation strategy named F3I, which 
augments the conventional K-Nearest Neighbor (KNN) approach with feedback from downstream tasks 
to guide the imputation direction. This feedback-aware method improves robustness and semantic 
consistency in missing value estimation, especially under variable sparsity patterns. However, performance 
tends to degrade with high-variance data, which is a noted limitation. 
Abdel-salamet al. (2025) [20] presented a multi-stage framework combining hyperparameter-tuned 
Support Vector Regressor (SVR) classifiers with early imputation using decision trees and correlation-
based techniques. This hybrid strategy led to increased prediction precision in agriculture-related time-
series datasets. The approach, however, is constrained by reliance on statistical imputers at the initial stage 
and may underperform when handling unstructured missingness without temporal context. Their study 
highlights the importance of domain-specific tuning when applying general-purpose models in 
agricultural analytics. 
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Armando et al. (2025) [21] applied an Unscented Kalman Filter (UKF) and its fusion variant (UKF_FL) 
to integrate IoT sensor observations for crop condition estimation. Their findings indicate that UKF_FL 
performs superior to baseline models in dynamic field conditions. This work is particularly relevant in 
scenarios involving sensor noise, but the absence of empirical error bounds under high missingness was 
noted as a potential gap. 
Kuang et al. (2025) [22] introduced a deep generative approach using Missing-data Multiple Importance 
Sampling Variational Autoencoder (MMISVAE), tailored to capture latent dependencies in sparse 
agricultural records. Their experiments showed that MMISVAE surpasses traditional VAEs in both 
reconstruction accuracy and downstream task utility. Although highly expressive, the model requires 
extensive training time and sensitivity to initial hyperparameter configurations, which may limit scalability 
in real-time edge deployments. 
Akbar et al. (2025) [23] shifted focus toward incorporating physical domain knowledge by integrating 
physics-based hydrological models with statistical learning. Their soil-water dynamic model predicted crop 
outcomes under variable irrigation with high fidelity. This modeling strategy led to a 15% increase in 
yield while minimizing water stress. Nevertheless, adaptability to heterogeneous terrains or sensor failures 
remains an open issue, limiting its widespread applicability. 
Singh et al. (2025) [24] proposed a novel hybrid ensemble leveraging EfficientNetB0 with attention-
enhanced Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) for smart 
agriculture diagnostics. Their architecture demonstrated robust performance across multi-modal sensor 
streams, highlighting the strength of combining temporal, spatial, and frequency domain features. While 
their results were encouraging, the framework assumes consistent sensor sampling rates and lacks dynamic 
missing data handling strategies. 
In pursuit of precision and intelligent decision-making in crop breeding, Guofeng Yang et al. (2025) [25] 
introduced a novel hybrid method integrating WOFOST, WW-4VES, and time-series temporal fusion 
transformer (TFT) models. This system, assimilated with remote sensing data and driven by a large 
language model (LLM), enables interactive wheat yield forecasting. A key contribution of this study is a 
web-based yield prediction tool that supports breeders in making dynamic, data-driven decisions. 
However, the prediction accuracy remains dependent on input data quality, and regional calibration is 
necessary to generalize the tool effectively across geographies. 
To support sustainable agriculture in remote or tropical regions, da Silva et al. (2025) [26] developed a 
low-cost mobile chemical analysis system utilizing colorimetric paper sensors and machine learning for 
real-time soil pH classification. The approach demonstrated high accuracy (97%) while drastically 
reducing the turnaround time for soil analysis. Though the study strongly advocated the utility of 
smartphone-based diagnosis for smallholders, the authors did not explicitly outline system limitations, 
leaving room for future scalability assessments across broader soil nutrient parameters. 
Mohammed (2025) [27] emphasized the integration of artificial intelligence (AI), machine learning, 
sensors, and IoT in smart irrigation systems to address water scarcity and increase efficiency in resource 
use. The chapter delineated various components such as automation, weather forecasting, and analytics, 
offering improved sustainability, yield, and cost-effectiveness. While highlighting future enhancements in 
AI and energy optimization, challenges in implementation—like high infrastructure costs and data 
management complexities—were also discussed, emphasizing the need for equitable policy and resource 
allocation in agriculture. 
Sandeep D. Kulkarni (2025) [28] conducted a field-based quantitative study involving 225 Indian farmers 
to assess how AI and IoT could improve sustainability in agriculture. The statistical findings showed that 
AI and IoT accounted for approximately 55.2% of the variance in enhanced agricultural productivity, 
reinforcing their critical role in green practices. Despite demonstrating a significant correlation between 
technological adoption and improved outcomes, the study acknowledged the need for more inclusive and 
accessible implementations, especially considering rural farmers’ resource constraints. 
Zhou et al. (2025) [29] introduced the Probability Mass Similarity Kernel (PMK), a method for handling 
incomplete heterogeneous data without assuming data type or missingness mechanisms.Unlike 
traditional imputation-based approaches, PMK models data distribution directly, unifying categorical and 
numerical variables under a common kernel space. Evaluations across diverse datasets revealed superior 
performance of PMK in classification and clustering tasks, especially under non-random missing data 
conditions. This method’s effectiveness without prior preprocessing demonstrates its robustness and 
suitability for real-world agricultural datasets where missingness patterns are rarely uniform. 
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For large-scale agricultural monitoring, Şimşek (2025) [30] proposed an innovative crop classification 
approach based on time-series Enhanced Vegetation Index (EVI) data and corrected farmer-declared 
parcels (FDP). By applying multiple classification algorithms including Random Forests, SVM, ANN, and 
XGBoost, the study achieved a peak accuracy of 92.14% using XGBoost. The approach proved FDP to be 
a cost-effective and efficient alternative to field-collected ground truth data. However, overlapping 
phenological stages in double-crop classification posed challenges, which affected model performance and 
reliability. This study validated the role of corrected administrative data in improving agricultural 
classification models. 
Dobrev and Szerszen (2025) [31] introduced two complementary approaches for outlier-robust filtering: 
supervised missing data substitution (MD) utilizing a Huber threshold, and unsupervised substitution via 
exogenous randomization (RMDX).These techniques aim to suppress both large and subtle outliers in 
time-series data by converting them into missing values before applying robust estimation. Through 
empirical validation and Monte Carlo simulations, the methods demonstrated significant improvement 
in forecasting accuracy. While limitations were not explicitly discussed, the techniques show promise in 
agricultural sensor networks where noisy measurements may skew results unless robustly handled. 
 
3. Proposed Work 
3.1 AFARE-HMM (Hybrid Imputation Model) Overview 
In agricultural IoT systems, the accuracy of predictive analytics and decision-support pipelines is tightly 
coupled with the quality and completeness of sensory data. However, missing values are pervasive due to 
factors such as hardware degradation, transmission loss, and environmental interference. To address this 
challenge, the proposed framework introduces a novel hierarchical hybrid imputation model named 
AFARE-HMM, which integrates three complementary stages: (i) Agro-Fuzzy Adaptive Rule Engine with 
Statistically Adaptive Semantic Partitioning (AFARE-SASP) for semantically grounded estimation, (ii) 
MissForest for global statistical refinement, and (iii) K-Nearest Neighbors (KNN) for local contextual 
smoothing. This multi-level pipeline enables a robust balance between semantic interpretability, 
multivariate correlation modeling, and environmental adaptability. 

 
Figure 1. The first stage, AFARE-SASP, constructs fuzzy membership functions from statistical 
distributions using the SASP strategy and generates interpretable imputation rules grounded in 
agronomic semantics. These rules form an initial fuzzy approximation for missing values that conform to 
domain-consistent relationships such as "medium soil pH implies medium nitrogen." Despite its 
interpretability and semantic alignment, AFARE operates in a rule-based space and is limited in its ability 
to model high-dimensional, nonlinear dependencies across features, especially when multiple interacting 
modalities influence a target attribute. 
To overcome this, the second stage introduces MissForest, a Random Forest-based iterative imputation 
strategy. This module refines the preliminary fuzzy estimates by leveraging ensemble-based regression 
models trained on the full feature space, thereby capturing complex multivariate interactions. While 
MissForest excels in global learning and statistical consistency, it may overlook fine-grained spatial or 
environmental nuances embedded in the data, which are particularly relevant in real-world agricultural 
settings. 
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The final stage addresses this limitation through KNN-based contextual refinement, which adapts each 
imputed value by referencing the behavior of its most similar peers in the dataset. KNN identifies a local 
neighborhood based on Euclidean distance across non-missing features and recomputes imputed values 
through unweighted or distance-weighted averaging. This step restores localized patterns that may have 
been diluted by global models, such as microclimate variations, crop-specific fertilization behavior, or soil 
type effects. 
The synergistic interaction among these three stages underpins the core novelty of AFARE-HMM. AFARE 
injects semantic constraints into the imputation process; MissForest ensures that the imputation aligns 
with global statistical regularities; and KNN imposes contextual fidelity through local smoothing. This 
cascading correction mechanism ensures that imputed values are not only statistically plausible but also 
agrnomically valid and contextually adaptive, addressing the multifaceted nature of uncertainty in smart 
farming data. 
3.2 Missingness Simulation 
To evaluate the robustness of the proposed imputation framework, a controlled missingness simulation 
was performed on the Smart Farming 2024 (SF24) dataset [32]. This simulation aimed to mimic realistic 
patterns of data loss encountered in agricultural IoT environments, where sensor faults, environmental 
interferences, and data transmission delays result in both random and non-random missing values. 
The simulation incorporated two primary mechanisms: Missing Completely at Random (MCAR) and 
Missing Not at Random (MNAR). In the MCAR scenario, 15% of the data entries were randomly 
removed across key features such as temperature, nitrogen, pH, and soil moisture, ensuring no underlying 
correlation between missingness and observed values. This emulates failures caused by sporadic 
transmission losses or temporary power outages, where missing values are independent of feature 
distributions. 
Conversely, the MNAR simulation introduced another 15% of missingness that was conditionally 
dependent on specific environmental or crop-based thresholds. For instance, pH values were selectively 
masked when soil moisture dropped below 20%, reflecting sensor behavior degradation in drier 
conditions. Similarly, nitrogen values were removed when pest pressure exceeded an empirically defined 
upper quartile, simulating disrupted nutrient sensors during biological stress events. These conditions 
were derived based on domain knowledge and frequency analysis of feature interactions in the original 
dataset. 
The final corrupted dataset contained 30% missingness, with a balanced representation of both random 
and systematic gaps. This setup created a challenging yet realistic imputation scenario, ensuring that the 
proposed fuzzy-guided model could be evaluated under heterogeneous and domain-consistent missing 
data patterns. 
3.3 Agro-Fuzzy Adaptive Rule Engine (AFARE) 
In precision agriculture, variables such as soil nutrients, pH, moisture, and climatic conditions exhibit 
high degrees of variability and uncertainty, especially when data is collected via distributed IoT sensors. 
Traditional fuzzy logic systems often rely on expert-defined linguistic boundaries and static rules. However, 
such systems may not generalize across diverse geographies or crop types. To address this, we propose a 
fully data-driven fuzzy logic system named Agro-Fuzzy Adaptive Rule Engine (AFARE), which incorporates 
a novel technique: Statistically Adaptive Semantic Partitioning (SASP). This technique eliminates the 
dependency on expert knowledge and dynamically constructs fuzzy sets and rules based on observed data 
distributions. 
3.3.1 Preliminaries and Notation 
Let 𝒟 = {𝑥𝑖}𝑖=1

𝑛  be the dataset, where each record 𝑥𝑖 ∈ 𝑅
𝑑 represents 𝑑 sensor features. Let ℳ ⊆ 𝒟 be 

the subset of records containing missing values. 
A fuzzy variable 𝑋 is defined over domain 𝛺𝑋 ⊂ 𝑅, associated with a label set ℒ𝒳 = {Low,Medium,High}. 
Each label 𝑙 ∈ ℒ𝒳 is characterized by a trapezoidal membership function 𝜇𝑙: 𝛺𝑋 → [0,1], parameterized 
dynamically. 
3.3.2 Statistically Adaptive Semantic Partitioning (SASP) 
The SASP mechanism is proposed as a novel method for generating fuzzy sets without the need for expert-
defined linguistic boundaries. Instead, it leverages the underlying statistical properties of each feature in 
the dataset to construct adaptive fuzzy membership functions. This allows the fuzzy system to align more 
accurately with the distribution of sensor data typically found in smart agriculture scenarios, where 
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features such as temperature, pH, or soil moisture may not follow standard Gaussian distributions and 
may vary significantly across regions and crop types. 
In SASP, each continuous feature 𝑋𝑗 ∈ 𝒟 is modeled as a fuzzy variable with three linguistic labels: 𝐿𝑜𝑤,
𝑀𝑒𝑑𝑖𝑢𝑚, 𝑎𝑛𝑑 𝐻𝑖𝑔ℎ. These labels are associated with trapezoidal membership functions that are defined 
dynamically using quantile-based boundary estimation combined with local dispersion. SASP is designed 
to let the fuzzy system adapt to various data distributions by using percentile markers instead of fixed 
thresholds. 
For each feature 𝑋𝑗, let 𝑄1, 𝑄2, 𝑄3, 𝑄4 denote the 25th, 50th (median), 75th, and 90th percentiles, 
respectively. Additionally, let 𝜎 represent the standard deviation of 𝑋𝑗, and let 𝛼 ∈ (0,1) be a scaling 
coefficient that controls the softness or spread of the fuzzy sets around the core percentiles. Typically, 𝛼 
is chosen in the range 0.2 to 0.5 to ensure sufficient overlap between adjacent fuzzy sets while minimizing 
ambiguity in boundary regions. 
The trapezoidal membership functions for the three fuzzy labels are defined as follows: 

𝜇Low(𝑥) = 𝑇(𝑥;𝑄1 − 𝛼𝜎, 𝑄1, 𝑄2, 𝑄2 + 𝛼𝜎) 

𝜇Medium(𝑥) = 𝑇(𝑥;𝑄2 − 𝛼𝜎, 𝑄2, 𝑄3, 𝑄3 + 𝛼𝜎) 

𝜇High(𝑥) = 𝑇(𝑥;𝑄3 − 𝛼𝜎, 𝑄3, 𝑄4, 𝑄4 + 𝛼𝜎) 
Here, 𝑇(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) denotes the standard trapezoidal membership function defined as: 

𝑇(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) =

{
  
 

  
 

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

1, 𝑏 <  𝑥 <  𝑐 
𝑑 − 𝑥

𝑑 − 𝑐
, 𝑐 ≤ 𝑥 < 𝑑

0, 𝑥 ≥ 𝑑

 

This formulation ensures a smooth transition between adjacent fuzzy labels. For instance, a data point 
around the median 𝑄2 may partially belong to both the Low and Medium sets, enabling soft reasoning 
rather than binary decisions. Set overlaps allow for smoother representation of gradual changes, like soil 
moisture shifting from “Optimal” to “Deficit”, without creating abrupt boundaries. 
The SASP method offers several advantages. First, it is completely data-driven and requires no subjective 
input, making it highly suitable for generalized deployments across different farming contexts. Second, it 
adapts to skewed distributions and non-uniform variance, which are typical of real-world sensor readings. 
Third, it provides robust support for rule induction by enabling consistent and interpretable fuzzy label 
assignments across the feature space. 
By constructing fuzzy partitions in this statistically grounded manner, SASP allows AFARE to define 
membership functions that are both interpretable and mathematically robust, thus improving the quality 
of imputation and decision-making under uncertainty. This adaptive fuzzy modeling forms the foundation 
upon which reliable fuzzy rules can be generated and applied for sensor data recovery in smart agriculture. 
3.3.3 Rule Induction via Fuzzy Mutual Activation 
In the context of imputation for agricultural sensor data, reliable and interpretable inference depends on 
the construction of meaningful fuzzy rules that can capture latent relationships between variables. The 
Agro-Fuzzy Adaptive Rule Engine (AFARE) addresses this by employing a fully automatic, data-driven 
approach to fuzzy rule induction based on fuzzy mutual activation. This mechanism can extract highly 
expressive conditional rules without requiring human-curated knowledge, thereby enhancing adaptability 
and scalability across diverse agro-climatic datasets. 
Each candidate rule in AFARE is framed as a conditional linguistic expression of the form: 

IF 𝑋1 is 𝑙1 AND 𝑋2 is 𝑙2 AND …  AND 𝑋𝑝 is 𝑙𝑝 THEN 𝑋𝑡 is 𝑙𝑡 
where 𝑋1, 𝑋2, … , 𝑋𝑝 are antecedent features, 𝑋𝑡 is the target (or consequent) feature with missing values, 
and 𝑙𝑗 ∈ ℒ𝒳𝒿  represents the fuzzy linguistic label (e.g., Low, Medium, High) associated with the fuzzy 

partition of the feature 𝑋𝑗. 
To evaluate the plausibility and influence of each rule, AFARE computes a fuzzy activation degree over 
each data instance. Given an input vector 𝑥𝑖 ∈ 𝑅

𝑑, the fuzzy activation 𝜇𝑟(𝑥𝑖) of a candidate rule r is 
determined by the product of the membership degrees for each antecedent term: 
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𝜇𝑟(𝑥𝑖) =∏𝜇𝑙𝑗(𝑥𝑖
𝑗
)

𝑝

𝑗=1

 

This multiplicative structure ensures that the rule's activation is strong only when all conditions are 
simultaneously satisfied to a significant degree. It captures the conjunctive semantics inherent in fuzzy 
logic, where partial satisfaction of each antecedent contributes to the overall rule truth value. 
To assess the generality and support of a rule across the dataset, AFARE introduces a statistical aggregation 
known as the Fuzzy Support Score (FSS). This score reflects the average activation strength of a given rule 
across all complete records in the dataset and is formally defined as: 

FSS(𝑟) =
1

𝑛
∑𝜇𝑟(𝑥𝑖)

𝑛

𝑖=1

 

where n is the total number of data instances that have all required antecedent values observed (i.e., no 
missingness in the features involved in rule r). 
FSS serves as an objective measure of how often and how strongly a rule is manifested within the dataset. 
Rules that activate weakly or rarely are discarded to avoid overfitting or spurious correlations. AFARE 
retains only those rules whose FSS exceeds a predefined threshold 𝜏, typically chosen in the range 
[0.6, 0.85]. This threshold can be tuned via cross-validation or grid search based on validation 
performance on a subset of the dataset. 
By using FSS as a discriminative metric, AFARE ensures that only robust and semantically meaningful 
fuzzy relationships are preserved in the rule base. Moreover, since rules are generated directly from the 
fuzzy-labeled data induced via the SASP method, the resulting rules reflect the statistical and structural 
characteristics of the dataset itself. This yields a high level of contextual validity, ensuring that the learned 
imputation logic adapts effectively to varying distributions and feature interactions without manual 
intervention. 
3.3.4 Temporal-Fuzzy Consistency and Validity Check 
In areas like precision agriculture, sensor data is gathered in temporal sequences to record changes in 
environmental conditions, such as daily fluctuations in soil temperature or hourly variations in 
humidity.Consequently, imputations performed independently across time steps may yield abrupt 
transitions or erratic fluctuations if contextual temporal dependencies are ignored. These inconsistencies 
can compromise both the semantic validity and predictive utility of the reconstructed dataset. To address 
this, the AFARE incorporates a temporal-fuzzy consistency and validity check to ensure that the imputed 
values are both temporally smooth and contextually coherent. 
The core idea behind this consistency mechanism is to enforce alignment between the fuzzy interpretation 
of a current imputed instance and its surrounding observations. Rather than treating each sample in 
isolation, AFARE utilizes a local temporal window centered around the target instance to assess fuzzy label 
transitions. Let 𝑥𝑖 be the record for which a feature value 𝑥𝑖

𝑡 is being imputed. The system considers a 
symmetric neighborhood defined as: 

𝒯𝒾 = {𝑥𝑖−𝑘 , 𝑥𝑖−𝑘+1, … , 𝑥𝑖+𝑘} 
where k denotes the window radius, and 2k+1 is the total number of records in the temporal 
neighborhood. This temporal context captures short-term trends and environmental continuity typical in 
smart farming scenarios (e.g., consistent moisture levels over an hour). 
Once a fuzzy label 𝑙𝑖 ∈ ℒ𝒳𝓉  is assigned to the imputed value of 𝑥𝑖

𝑡 based on the rule application, the 
system compares this label against the fuzzy labels of corresponding values in the temporal neighborhood. 
Let 𝑙𝑗 denote the fuzzy label associated with 𝑥𝑗

𝑡 for each 𝑥𝑗 ∈ 𝒯𝒾. The temporal consistency score is then 
evaluated using the average disagreement indicator: 

1

2𝑘
∑ 𝐼[𝑙𝑗 ≠ 𝑙𝑖]

𝑖+𝑘

𝑗=𝑖−𝑘

 

Here, 𝐼[𝑙𝑗 ≠ 𝑙𝑖] is an indicator function that returns 1 when the label 𝑙𝑗 is different from 𝑙𝑖, and 0 
otherwise. This expression computes the normalized count of inconsistent fuzzy labels in the 
neighborhood. 
To enforce smooth transitions and reject spurious imputed values, a consistency constraint is applied: 
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1

2𝑘
∑ 𝐼[𝑙𝑗 ≠ 𝑙𝑖]

𝑖+𝑘

𝑗=𝑖−𝑘

≤ 𝛿𝑡 

where 𝛿𝑡 ∈ [0.1,0.3] is a tunable threshold representing the maximum acceptable temporal label 
deviation. If the average disagreement exceeds 𝛿𝑡, the imputed label is considered contextually 
inconsistent and is either rejected or replaced by an alternative estimate with a lower temporal deviation. 
This mechanism effectively filters out noisy imputations that may result from anomalous rule activations, 
data sparsity, or transient sensor distortions. Moreover, it preserves the temporal stationarity that is often 
expected in sensor data, especially when monitored variables evolve gradually rather than abruptly. 
Importantly, the fuzzy-based approach enables soft validation at the semantic level rather than requiring 
strict numerical continuity. For instance, if the imputed value corresponds to “Medium moisture” and is 
surrounded by records also labeled as “Medium,” the value is accepted even if the exact numerical readings 
differ slightly. Conversely, if the imputed value is labeled “High” while most neighboring readings indicate 
“Low,” it is flagged as inconsistent. 
By embedding this temporal-fuzzy consistency check, AFARE ensures that the reconstructed dataset 
retains both statistical accuracy and domain coherence. This is critical in applications like crop yield 
forecasting or irrigation planning, where the quality of temporal patterns significantly influences 
downstream model performance and decision-making reliability. 
3.3.5 Theoretical Properties 
To validate the robustness and efficiency of the proposed AFARE-SASP framework, the following 
theoretical results are established. These theorems guarantee both convergence of the fuzzy rule induction 
process and bounded error in the imputation under sufficient rule activation. The proofs rely on 
properties of fuzzy membership functions, finite dataset cardinality, and statistical consistency of SASP-
derived partitions. 
Theorem 1 (Rule Set Convergence) 
Let 𝒟 be a dataset containing n instances, each with d features, and let ℒ be the set of fuzzy linguistic 
labels generated via SASP for each feature (typically of cardinality 3). Then, the AFARE fuzzy rule 
induction process terminates in finite time with an upper bound complexity of 𝒪(|ℒ|𝑑). 
Proof: 

For each feature 𝑋𝑗, SASP generates a fixed number of fuzzy labels (e.g., Low, Medium, High), so |ℒ𝒳𝒿| =

𝑐, where c is constant and typically 𝑐 =  3. The total number of possible fuzzy antecedent combinations 
for rules involving up to d features is bounded by |ℒ|𝑑, where |ℒ| denotes the number of linguistic terms 
per feature. Since the rule activation degree 𝜇𝑙(𝑥) ∈ [0,1] is bounded and computed using continuous, 
finite-domain membership functions derived from quantiles and standard deviation (via SASP), each rule 
has a determinable FSS over the finite dataset 𝒟. 
The rule evaluation process uses an acceptance threshold 𝜏 and retains only those rules 𝑟𝑗 for which 
FSS(𝑟𝑗) ≥ 𝜏. As no infinite loop or unbounded recursion exists in the evaluation or selection stages, and 
the space of candidate rules is finite and countable, the rule generation completes after a finite number 
of steps. 
Hence, the fuzzy rule induction process converges, and the rule set ℛ stabilizes in 𝒪(|ℒ|𝑑) steps. 
Theorem 2 (Error Boundedness under High Rule Activation Coverage) 
Let 𝑥𝑖 ∈ 𝒟 be an instance with missing value 𝑥𝑖

𝑚 for feature 𝑋𝑚. If there exists at least one rule 𝑟𝑗 ∈ ℛ𝓂 
such that the fuzzy activation degree 𝜇𝑟(𝑥𝑖) ≥ 𝛾, for some 𝛾 ∈ (0.7,1.0), then the absolute imputation 
error is bounded as follows: 

|𝑥𝑖
𝑚 − 𝑥𝑖

𝑚̂| ≤ 𝜖 
for some small 𝜖 >  0, where 𝑥𝑖

𝑚̂ is the imputed value and 𝐶(𝑟𝑗) is the centroid of the consequent fuzzy 
set in rule 𝑟𝑗. 
Proof: 
Let us assume the fuzzy rule 𝑟𝑗 ∈ ℛ𝓂 activates on 𝑥𝑖 with a strength 𝜇𝑟(𝑥𝑖) ≥ 𝛾. This implies that all 
antecedent conditions of the rule are strongly satisfied for 𝑥𝑖, based on its observed features. Since the 
rule’s consequent 𝑋𝑚 is 𝑙𝑚 is derived from training instances in which similar antecedent conditions 
hold, the corresponding centroid 𝐶(𝑟𝑗) lies close to the conditional expected value 𝐸[𝑋𝑚|Antecedents] 
under the empirical data distribution. 
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The imputed value 𝑥𝑖
𝑚̂ is computed as a weighted average of such centroids: 

𝑥𝑖
𝑚̂ =

∑ FSS(𝑟𝑗)𝑟𝑗∈ℛ𝓂 ⋅ 𝐶(𝑟𝑗)

∑ FSS(𝑟𝑗)𝑟𝑗∈ℛ𝓂

 

When high-activation rules dominate (i.e., those with 𝜇𝑟(𝑥𝑖) ≥ 𝛾), and their corresponding FSS scores 
are high, the weighted estimate 𝑥𝑖

𝑚̂ concentrates around the true latent value 𝑥𝑖
𝑚. By statistical consistency 

and bounded variance within fuzzy sets (especially under SASP's percentile-based partitioning), the 
deviation between 𝑥𝑖

𝑚̂ 𝑎𝑛𝑑 𝑥𝑖
𝑚 remains small. 

Thus, under sufficient fuzzy rule coverage, the absolute error satisfies: 
|𝑥𝑖
𝑚 − 𝑥𝑖

𝑚̂| ≤ 𝜖 
for a small 𝜖 determined by intra-set variance and centroid approximation quality. 
3.3.6 AFARE-SASP Algorithm 
The AFARE-SASP algorithm integrates fuzzy rule-based reasoning with statistically adaptive semantic 
partitioning to impute missing values in agricultural IoT sensor datasets. Unlike classical fuzzy inference 
systems that depend on predefined linguistic boundaries and static rules, AFARE-SASP leverages a fully 
data-driven pipeline, dynamically inducing fuzzy sets and rules from the observed distributions. The 
imputation strategy involves fuzzifying features using SASP, constructing a fuzzy rule base via mutual 
activation, validating rules based on FSS, and computing weighted centroid-based estimates. Temporal 
consistency is enforced to enhance reliability. The pseudocode below outlines the entire AFARE-SASP 
process. 
Algorithm 1: AFARE-SASP – Agro-Fuzzy Adaptive Rule Engine with Statistically Adaptive 
Semantic Partitioning 
Input: 
• Incomplete dataset 𝒟 = {𝑥1, 𝑥2, … , 𝑥𝑛}, with d features 
• Missing set ℳ ⊆ 𝒟 
• Window size k, fuzzy deviation threshold 𝛿𝑡, activation threshold \tau, and SASP scaling 
factor 𝛼 
Output: 
• Imputed dataset 𝒟̂ with semantically valid estimates 
Step 1: Fuzzy Set Construction via SASP 
1. For each numerical feature 𝑋𝑗𝑖𝑛𝒟: 
     1.1 Compute quartiles 𝑄1, 𝑄2, 𝑄3, 𝑄4 and standard deviation \sigma 
     1.2 Define fuzzy labels 𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ using SASP trapezoidal functions 
     1.3 Assign membership values 𝜇Low, 𝜇Medium, 𝜇High to all observed entries 
Step 2: Fuzzy Rule Induction 
2. Initialize rule base ℛ = ∅ 
3. For each feature 𝑋𝑡 with missing entries: 
  3.1 Generate candidate rules of the form: 
    IF 𝑋1 is 𝑙1 AND 𝑋2 is 𝑙2… THEN 𝑋𝑡 is 𝑙𝑡 
  3.2 For each rule 𝑟𝑗, compute fuzzy activation 𝜇𝑟(𝑥𝑖) 
  3.3 Calculate Fuzzy Support Score (FSS) over complete records 
  3.4 Retain rules with FSS(𝑟𝑗) ≥ 𝜏 and store in ℛ𝓉 ⊂ ℛ 
Step 3: AFARE-Based Imputation 
4. For each instance 𝑥𝑖 ∈ ℳ and missing feature 𝑋𝑚: 
  4.1 Identify all valid rules ℛ𝓂 applicable to 𝑋𝑚 
  4.2 For each rule 𝑟𝑗 ∈ ℛ𝓂, compute: 
    - Rule activation 𝜇𝑟(𝑥𝑖) 
    - Consequent fuzzy centroid 𝐶(𝑟𝑗) 
  4.3 Estimate value using weighted aggregation of centroids 
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    𝑥𝑖
𝑚̂ =

∑ FSS(𝑟𝑗)𝑟𝑗∈ℛ𝓂
⋅ 𝐶(𝑟𝑗)

∑ FSS(𝑟𝑗)𝑟𝑗∈ℛ𝓂

 

Step 4: Temporal-Fuzzy Consistency Validation 
5. For each imputed value 𝑥𝑖𝑚̂: 
  5.1 Define temporal window 𝒯𝒾 = {𝑥𝑖−𝑘, … , 𝑥𝑖+𝑘} 
  5.2 Extract fuzzy label 𝑙𝑖 of 𝑥𝑖𝑚̂, and compare with labels in 𝒯𝒾 
  5.3 If label disagreement ≤ 𝛿𝑡, accept the imputation 
    Else: discard or flag for refinement 
Step 5: Final Output 
6. Return updated dataset 𝒟̂ with consistent, interpretable imputations. 

This algorithm establishes a principled and interpretable mechanism for semantic recovery of missing 
agricultural sensor data. By combining fuzzy logic, adaptive statistical modeling, and temporal coherence, 
AFARE-SASP serves as a robust first-stage imputer in the broader hybrid imputation pipeline. 
3.4 Hybrid Imputation Model 
Following the semantic estimation provided by the AFARE module, the hybrid imputation framework 
proceeds with two key refinement stages: global structural learning using MissForest and local adaptive 
smoothing via K-Nearest Neighbors (KNN). This dual-phase architecture is designed to reconcile semantic 
integrity with statistical consistency, leveraging the strengths of both fuzzy reasoning and data-driven 
machine learning models. The hybrid approach aims to correct residual inaccuracies in the intermediate 
fuzzy estimates while adapting to the heterogeneous nature of agricultural environments, where variations 
may be attributed to soil types, climatic zones, or local farm practices. 

Let the intermediate dataset after the AFARE stage be denoted as 𝑋AFARÊ = {𝑥𝑖
𝑗̂
}, where each entry 𝑥𝑖

𝑗̂ 
represents either an observed value or a fuzzy-driven estimate for the missing entry in feature 𝑋𝑗 of instance 
𝑥𝑖. This dataset serves as the input for the subsequent stages of refinement. 
3.4.1 Phase I: Global Structure Learning via MissForest 
MissForest operates as a powerful, non-parametric, and iterative imputation technique based on the 
ensemble learning capabilities of Random Forests. For each incomplete feature 𝑋𝑗, MissForest constructs 
a regression model 𝑓𝑗

RF using all other features 𝑋−𝑗 (i.e., excluding 𝑋𝑗) as predictive inputs. The model 
predicts missing values in 𝑋𝑗 by iteratively learning from both observed data and current imputations 
from previous iterations. 
Mathematically, for an instance 𝑥𝑖 with a missing entry in feature 𝑋𝑗, the Random Forest model 

approximates the unknown value 𝑥𝑖
𝑗̂ as: 

𝑥𝑖
𝑗̂
= 𝑓𝑗

RF (𝑥𝑖
(1)̂ ,… , 𝑥𝑖

(𝑗−1)̂
,𝑥𝑖
(𝑗+1)̂

,…, 𝑥𝑖
(𝑑)̂
) 

This regression procedure is performed iteratively, where the predicted values are updated in each 
iteration. The quality of the predictions is assessed using a loss function ℒR

𝒿 , which measures the mean 
squared error over the set of observed entries for feature 𝑋𝑗. Formally: 

ℒR
𝒿
=

1

|𝒪𝒿|
∑ (𝑥𝑖

𝑗
− 𝑥𝑖

𝑗̂
)
2

𝑖∈𝒪𝒿

 

where 𝒪𝒿 ⊂ 𝒟 denotes the set of records with non-missing values for feature 𝑋𝑗. 
To ensure convergence, MissForest employs a convergence criterion based on the Frobenius norm between 

successive iterations. Let 𝑋𝑡
𝑗̂ and 𝑋𝑡−1

𝑗̂  represent the imputed values at iterations t and t-1, respectively. 
The convergence is confirmed when: 

Δt =
∑ |d
j=1 Xt

ĵ
− Xt−1

ĵ
|F
2

∑ |d
j=1 Xt−1

ĵ
|F
2

< ϵ 

where | ⋅ |F denotes the Frobenius norm and ϵ is a small convergence threshold, typically 10−4. The final 
imputed matrix XRF̂ generated from this phase encapsulates the global multivariate structure of the 
dataset, effectively capturing complex nonlinear interactions across the features. 
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3.4.2 Phase II: Local Contextual Refinement via K-Nearest Neighbors 
While MissForest models global feature dependencies effectively, it may fail to preserve localized patterns 
inherent in spatially or temporally varying agricultural data. These local variations are essential in 
precision farming where sensor behavior, soil responses, and environmental conditions may differ across 
micro-regions. Therefore, a second refinement stage is performed using K-Nearest Neighbors (KNN), 
which operates in a spatially aware manner by smoothing the imputed values based on similarity to nearby 
complete samples. 

Given the globally imputed value xi
ĵ
∈ XRF̂ for a sample xi, KNN identifies a local neighborhood 𝒩𝒾

𝓀 
comprising k nearest neighbors based on Euclidean distance computed over the available non-missing 
features. The neighborhood selection is formalized as: 

𝒩𝒾
𝓀 = argmink { |xî − xr̂|2 ∣∣ r ∈ 𝒟,  xr

j
≠ NaN } 

Once the neighborhood is established, the missing value is recomputed either using an unweighted mean 
or a distance-weighted smoothing function. The unweighted variant simply averages the known values in 
the local neighborhood: 

xi
j̃
=
1

k
∑ xr

j

r∈𝒩𝒾
𝓀

 

However, this averaging may disregard the varying similarity levels among neighbors. To address this, a 
Gaussian distance-weighted variant is employed, wherein each neighbor contributes proportionally to its 
similarity with the target instance. The refined imputation is given by: 

xi
j̃
=
∑ wirr∈𝒩𝒾

𝓀 ⋅ xr
j

∑ wirr∈𝒩𝒾
𝓀

,  where wir = exp(−
|xî − xr̂|2

2

2σ2
) 

Here, σ is a smoothing hyperparameter that controls the sensitivity to distance; lower values of σ 
emphasize closer neighbors, while higher values promote broader averaging. 
This localized refinement ensures that the final imputed dataset X̃ maintains both global coherence and 
localized agronomic fidelity. The combined influence of fuzzy semantic initialization, global structural 
modeling, and neighborhood-level smoothing establishes a resilient framework for robust imputation in 
smart farming scenarios. This hybrid design is particularly suited for sensor-driven environments 
characterized by high variability, noise, and incomplete observations. 
3.4.3 Final Imputation Workflow 
The complete hybrid pipeline operates as follows: 

1. AFARE generates an initial estimate xi
ĵ
for all xi

j
= NaN, guided by fuzzy rules. 

2. MissForest trains a regression model to refine the global structure of X̂, producing XRF̂. 

3. KNN Smoothing further adjusts each xi
ĵ to xi

j̃, using local weighted averages. 

4. Validation ensures that xi
j̃
∈ ΩXj  and aligns with fuzzy memberships from AFARE. 

The final matrix X̃ = {xi
j̃
} is a high-confidence, semantically-valid representation of the original sensor 

data with missing values accurately reconstructed. 
Input: AFARE-imputed dataset 𝔇 ̂ᴬ 
Output: Final imputed dataset 𝔇 ̃ 
1:  Initialize MissForest iteration counter t ← 0 
2:  repeat 
3:      for each feature Xⱼ with missing entries do 
4:          Train Random Forest fⱼᴿᶠ using all other features X₋ⱼ 
5:          Predict and update missing values in Xⱼ → X ̂ⱼᵗ 
6:      end for 
7:      Compute convergence metric Δₜ 
8:      t ← t + 1 
9:  until Δₜ < ε 
10: Let 𝔇 ᴿᶠ ← final MissForest output 
11: for each record xᵢⱼ in 𝔇 ̂ᴿᶠ with imputed value do 
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12:     Identify k-nearest neighbors ℕᵢᵏ over observed features 
13:     Compute distance-weighted average of neighbors for feature j 
14:     Update xᵢⱼ with refined estimate from local context 
15: end for 
16: Validate all xᵢⱼ against original fuzzy constraints from AFARE 
17: Return: Fully imputed dataset 𝔇 ̃ 

4. RESULTS AND DISCUSSION 
4.1 Comparative Baseline Methods 
The results in table 1 clearly demonstrate the superior performance of the proposed AFARE-HIM (Agro-
Fuzzy Adaptive Rule Engine with Hybrid Imputation Model) across all missingness levels. At 10% 
missingness, AFARE-HIM shows the lowest RMSE (0.441) and MAE (0.362), and the highest R² score 
(0.902), outperforming even advanced models like MissForest and AutoEncoder. 
As missingness increases to 20% and 30%, performance of all models degrades, but the degradation rate 
of AFARE-HIM is significantly lower. This robustness is attributed to its two-tier architecture: semantic 
imputation using fuzzy logic captures domain-consistent patterns, while MissForest and KNN ensure 
statistical and local contextual refinements. 
In contrast, baseline models like Mean Imputer show the highest error due to lack of contextual 
adaptation. While MICE and SoftImpute perform competitively at lower missingness, their performance 
deteriorates at higher missingness due to poor extrapolation in nonlinear spaces. 
The consistent advantage of AFARE-HIM highlights its suitability for real-world agricultural scenarios 
where sensor failures can be frequent and irregular, and contextual semantics must be preserved alongside 
statistical accuracy. 
Table 1. Comparative results of proposed work with various missingness 

Missingness Method RMSE MAE R² 

10% 

Mean Imputer 0.848 0.653 0.724 
KNN Imputer 0.598 0.473 0.832 
MissForest 0.512 0.411 0.873 
MICE 0.553 0.437 0.857 
SoftImpute 0.571 0.451 0.844 
AutoEncoder 0.524 0.429 0.868 
AFARE-HIM 0.441 0.362 0.902 

20% 

Mean Imputer 1.191 0.943 0.598 
KNN Imputer 0.837 0.661 0.745 
MissForest 0.729 0.598 0.792 
MICE 0.755 0.614 0.777 
SoftImpute 0.781 0.627 0.763 
AutoEncoder 0.702 0.589 0.801 
AFARE-HIM 0.581 0.475 0.841 

30% 

Mean Imputer 1.496 1.210 0.502 
KNN Imputer 1.047 0.832 0.669 
MissForest 0.936 0.741 0.725 
MICE 0.962 0.764 0.711 
SoftImpute 0.988 0.789 0.697 
AutoEncoder 0.901 0.715 0.739 
AFARE-HIM 0.684 0.539 0.811 

4.2 Ablation Studies 
To evaluate the individual contribution of each component in the proposed AFARE-HIM framework, a 
systematic ablation study was conducted. The framework was tested under 30% missingness by selectively 
disabling or modifying key components. The configurations are: 
• AFARE only: Semantic fuzzy imputation without MissForest or KNN refinement. 
• AFARE + MissForest: Fuzzy imputation followed by global structure learning. 
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• AFARE + KNN: Fuzzy imputation followed by local refinement. 
• MissForest only: Pure statistical imputation using iterative random forest. 
• AFARE-HIM (Full Model): Full pipeline including AFARE, MissForest, and KNN. 
Table 2. Ablation Study Results (30% Missingness Level) 

Configuration RMSE MAE R² 
MissForest only 0.936 0.741 0.725 
AFARE only 0.791 0.623 0.769 
AFARE + MissForest 0.720 0.587 0.780 
AFARE + KNN 0.751 0.612 0.768 
AFARE-HIM (Full) 0.684 0.539 0.811 

As shown in Table 2, each component of the proposed AFARE-HIM architecture plays a distinct role in 
reducing imputation error and improving overall accuracy. When using AFARE only, the results already 
outperform MissForest-only, highlighting the value of semantically guided fuzzification even without 
statistical modeling. However, without subsequent learning layers, the imputed values lack the nuanced 
correlations captured across multivariate dependencies. 
Introducing MissForest after AFARE (i.e., AFARE + MissForest) improves the global modeling capability 
and results in a noticeable reduction in both RMSE and MAE. Similarly, combining AFARE with KNN 
captures local consistency but lacks the global statistical coverage of MissForest. 
Only the full AFARE-HIM model demonstrates a synergistic effect, achieving the best performance across 
all metrics. The model not only preserves semantic domain knowledge via fuzzy rules but also balances it 
with statistical regularity and local contextual adaptation. This layered imputation strategy ensures 
robustness in heterogeneous agricultural environments and demonstrates superior generalization 
capabilities, even under high missingness conditions. 
Figure 2 provides a detailed comparative visualization of the true vs. imputed values across all six key 
sensor features: nitrogen (N), phosphorus (P), potassium (K), temperature, humidity, and pH. Each 
subplot demonstrates the scatter distribution between the original (ground truth) sensor readings and 
their corresponding values imputed by the proposed AFARE-HIM model. 
The scatterplot for nitrogen (N) illustrates a tight alignment of imputed values along the diagonal axis, 
indicating a high degree of consistency with the true data. Minor dispersion is observed in lower 
concentration ranges, which is attributed to overlapping linguistic boundaries during fuzzification, but 
the trend remains linear and coherent. 
The phosphorus (P) feature also shows strong fidelity between actual and imputed values, with a large 
cluster concentrated around the central value range (40–80). The slight dispersion in the lower range 
indicates minor semantic fuzziness during fuzzy rule activation, yet the imputation effectively preserves 
agronomic realism. 
The potassium (K) plot reveals a tri-modal structure in both the true and imputed values, with all three 
clusters distinctly preserved in the imputed distribution. This preservation confirms the model’s ability 
to retain feature stratification, particularly under heterogeneous field conditions. Deviations are minimal 
except for a few outliers, suggesting robustness against sensor anomalies. 
In the case of temperature, the imputed values almost perfectly track the true values across the 20–35°C 
range, demonstrating the model’s high temporal-fuzzy consistency and low prediction variance for this 
environmental variable. 
Humidity also shows excellent alignment with the ground truth, particularly in the 60–95% range, where 
dense clustering along the diagonal indicates precise recovery. Scattered deviations for a small number of 
samples below 50% do not affect the overall imputation quality. 
Lastly, the pH scatterplot highlights the model’s sensitivity to subtle gradients. The imputed values closely 
mirror the true values in the 5.5–8.0 range, aligning well with the agronomic constraints for soil quality. 
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Figure 2. Results of true vs imputed values 
5. CONCLUSION 
This study presented a novel fuzzy-based hybrid framework, AFARE-HIM, for robust imputation of 
missing sensor data in IoT-enabled smart farming systems. The AFARE, integrated with a SASP 
mechanism, enabled semantic recovery of incomplete data without relying on expert-defined rules. By 
leveraging fuzzy mutual activation and temporal consistency, the model effectively captured the underlying 
structure and uncertainty inherent in agricultural sensor streams. The hybrid integration with MissForest 
and KNN further ensured that the global data dependencies and localized variations were preserved in 
the final imputation.Extensive experiments conducted on a real-world agricultural dataset demonstrated 
the superiority of AFARE-HIM over widely used imputation methods such as Mean Imputer, KNN 
Imputer, MissForest, MICE, SoftImpute, and Denoising Autoencoders. The proposed method achieved 
an RMSE of 0.684 and an R2 of 81% at 30% missingness, while also showing strong generalization across 
different missingness levels. Visual diagnostics, including scatterplots and error distribution heatmaps, 
confirmed that the imputed values remained faithful to the true data distribution. 
The architecture is statistically effective, interpretable, scalable, and adaptable to various sensors and crop 
environments.This work provides a reliable and semantically grounded solution for data incompleteness 
in smart agriculture, laying the foundation for further integration with real-time decision support, 
anomaly detection, and predictive crop analytics.Future directions include extending the framework for 
time-series imputation, federated imputation across multi-farm deployments, and explainable AI 
integration for rule traceability and trustworthiness in autonomous farming systems. 
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