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Abstract

The accuracy and dependability of smart farming analytics are significantly compromised by missing sensor data, often
caused by hardware malfunctions, energy constraints, or harsh environmental conditions. This paper introduces a novel
fuzzy-driven hybrid imputation framework designed to enhance data completeness and semantic consistency in Internet
of Things (loT)enabled agricultural monitoring systems. The core of the proposed method is the Agro-Fuzzy Adaptive
Rule Engine (AFARE), which uses a Statistically Adaptive Semantic Partitioning (SASP) mechanism to construct
fuzzy rules without requiring expert knowledge. These rules semantically infer missing values while respecting
agricultural interpretability. To further improve robustness, the imputed outputs from AFARE are refined using a two-
phase hybrid model: MissForest for global correlation modeling and K-Nearest Neighbors (KNN) for localized
smoothing. Experiments were conducted on the Crop Recommendation V2 dataset with artificially induced missingness
at 10%, 20%, and 30% levels. The AFARE-HIM model outperformed both traditional and advanced baselines. At
30% missing data, it achieved an RMSE of 0.411, R2 of 91%, and MAE of 0.82, surpassing MissForest (RMSE:
2.31) and SoftImpute (NIA: 86.9%).Visual comparison using scatterplots and error histograms further validated the
structural alignment of imputed values with the true distribution.

Keywords:Smart Farming, Missing Data Imputation, Precision Agriculture, Domain Constraints, IoT Sensor Data,
Machine Learning, Crop Analytics, Agronomic Validity.

1. INTRODUCTION

Smart farming has emerged as a transformative approach in precision agriculture, enabling data-driven
decision-making through the deployment of IoT-based sensing systems [1]. These sensor networks
continuously monitor key agronomic variables such as soil moisture, pH, temperature, and nutrient
content to optimize irrigation, fertilization, and crop management [2]. The efficacy of these systems is
critically dependent on the integrity and completeness of the data acquired [3]. In real-world deployments,
sensor data is frequently marred by missing values, stemming from transmission failures, environmental
disturbances, or sensor degradation [4]. Such gaps in data not only compromise analytics reliability but
also propagate uncertainty in downstream vyield predictions and resource allocation [5].

To address this, the research paper has explored various imputation techniques, ranging from statistical
averages to machine learning-based models. While these approaches demonstrate utility in controlled
settings, their generalizability to dynamic, uncertain, and domain-specific agricultural environments
remains limited. They often ignore contextual semantics, inter-variable dependencies, and the agronomic
validity of imputed values.

Real-world agricultural data acquisition is inherently imperfect, with high susceptibility to missingness
due to intermittent connectivity, weather variability, and device failure. Traditional imputation techniques
often produce values that are numerically plausible but agronomically invalid. Furthermore, many state-
of-the-art methods focus purely on statistical consistency, ignoring semantic relevance, temporal trends,
and fuzzy agronomic categories such as “low nitrogen” or “moderate pH.” There is an urgent need for an
imputation framework that integrates domain understanding, statistical rigor, and adaptive learning to
improve decision quality in smart farming.

Smart farming datasets frequently contain missing values due to sensor or transmission failures. Existing
imputation methods lack semantic understanding of agronomic constraints. There is limited
incorporation of fuzzy domain knowledge in current imputation frameworks. Hybrid methods combining
fuzzy reasoning and machine learning remain underexplored in agriculture. Evaluation frameworks for
missing data imputation often ignore domain-specific utility and temporal consistency.

The following are the objectives of this research work:
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o To develop a statistically adaptive fuzzy reasoning framework for imputing missing agricultural sensor
values.

o To integrate global and local machine learning models with fuzzy reasoning for hybrid imputation.

o To validate the framework’s effectiveness using real-world smart farming datasets and downstream
analytics.

This work presents a novel imputation architecture, AFARE-HIM, which integrates the Agro-Fuzzy
Adaptive Rule Engine (AFARE) with hybrid machine learning models (MissForest and KNN). The
framework introduces Statistically Adaptive Semantic Partitioning (SASP), a dynamic rule generation
mechanism that minimizes reliance on expert knowledge. The model is assessed using the SF24 dataset
under both random (MCAR) and context-dependent (MNAR) missingness scenarios, exhibiting superior
performance in terms of RMSE, NIA, and yield prediction accuracy. An ablation study, along with
qualitative analyses, substantiates the semantic integrity and robustness of the framework across various
environmental conditions. Visualizations such as scatter plots and heatmaps are included to provide clear
insights into the fidelity of imputed values relative to ground truth.

2. Related Works

To better understand the landscape and limitations of existing techniques, the next section presents a
review of recent advancements in sensor data imputation, with emphasis on smart agriculture and IoT-
based systems.

Harsh Joshi (2025) [6] explored advanced data imputation techniques in the context of missing data
challenges. The proposed methodology involves a tri-step process combining statistical methods, random
forests, and autoencoders. The findings demonstrated that PAIN consistently outperformed traditional
imputation methods such as mean and median, and also surpassed MissForest in accuracy. However,
higher computational costs and limited performance in high-missingness datasets were reported. This
contribution provides a strong foundation for robust imputation under diverse scenarios.

Ibna Kowsar (2025) [7] presented a joint attention learning mechanism with CutMix data augmentation
to improve imputation in electronic health records. Their method outperformed nine state-of-the-art
techniques and achieved the best classification accuracy on real-world data. The model, however, is limited
to numerical features and performs poorly with small sample sizes. This work demonstrates the relevance
of attention-based augmentation frameworks in structured data imputation.

Shuo Tong et al. (2025) [8] introduced the Few-shot Uncertainty-aware and Self-Explaining Soft Sensor
(LLM-FUESS) framework, integrating a zero-shot auxiliary variable selector and uncertainty quantification
mechanisms. The model achieved strong predictive results with interpretability but faced higher
development costs and domain robustness issues.This effort marks progress in embedding explainability
into imputation pipelines.

Kavitha (2025) [9] developed the HOSNA framework combining clustering and energy-aware activation,
aided by genetic algorithms and PSO-based scheduling. Their model achieved 94% accuracy and improved
energy efficiency by 24% compared to LEACH. Limitations include adaptability in heterogeneous
networks and reliance on non-renewable energy sources. The study provides inspiration for energy-
efficient, sensor-driven imputations.

Avdesh Kumar Sharma and Abhishek Singh Rathore (2025) [10] proposed a CNN-LSTM hybrid model
for multisensor-based crop yield prediction. The system enhanced accuracy to over 90% and provided
real-time alerts. Although the study lacked a direct discussion on imputation, its multi-sensor
preprocessing architecture supports robust feature reconstruction in noisy conditions.

Vasanth Kumar et al. (2025) [11] integrated IoT and ML for smart agriculture, leveraging real-time
monitoring to enhance resource use and productivity. While the work emphasized the utility of intelligent
farming ecosystems, limitations were not explicitly discussed. The contribution showcases the operational
significance of complete and accurate sensor data streams in agricultural settings.

Several recent studies have emphasized the importance of integrating hybrid sensing approaches to
optimize agricultural data quality while managing costs. Rana et al. (2025) [12] proposed a hybrid model
that integrates unmanned aerial vehicles (UAVs) with ground-based sensors for precision agriculture.
While ground sensors provide highly accurate localized data, their deployment cost remains high. In
contrast, UAV-based aerial sensing offers broader but less granular information. The hybrid model
effectively combines these strengths, enhancing accuracy while reducing sensor deployment costs.
However, the approach may still be limited by infrastructural scalability in large farmlands.
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Advancing this direction, Nurani et al. (2025) [13] conducted a comprehensive literature review of the
Artificial Intelligence of Things (AloT) in smart farming. The authors highlighted how Al integration
improves real-time data analysis, decision automation, and sustainable farming practices. Their findings
emphasize Al’s ability to optimize resource management (e.g., water, fertilizer) and improve productivity,
especially in loT-enabled smart agriculture systems. However, the work did not explore domain-specific
imputation challenges when sensor data is lost due to transmission errors or hardware failure.

The challenge of missing data in time-series agricultural analysis was explored by Collado-Villaverde et al.
(2025) [14], who introduced the BRATI model. BRATI combines Bidirectional Recurrent Networks with
attention mechanisms to estimate missing values in multivariate time-series data. The model effectively
handles both short and long-term dependencies across temporal data. Experimental results demonstrated
its superiority over existing deep learning models under various missingness conditions. Yet, the work did
not address domain-specific semantics for agricultural features, nor did it incorporate explainability
mechanisms in the imputation process.

Addressing missing sensor data in real-time applications, Yan et al. (2025) [15] introduced a predictive
deformation model that integrates K-nearest neighbors (KNN), Convolutional Block Attention Modules
(CBAM), and BiLSTM networks. The model accurately forecasts dynamic deformations even under sensor
data loss by leveraging spatial correlations and deep neural components. The prediction method was
shown to reduce maximum deformation errors to 0.28 mm, with corrective effects reaching up to 90%.
However, its reliance on control points and pre-trained networks may reduce generalizability to unseen
agricultural conditions.

In a different context of yield prediction, YueruYan et al. (2025) [16] analyzed time-series crop yield data
using hybrid machine learning models including Random Forest, XGBoost, and Bagging Regressors. The
study utilized multiple agricultural features like rainfall, temperature, and pesticide usage across various
regions. Their results showed that ensemble models like Random Forest provided the highest prediction
accuracy. However, no specific handling of missing sensor data was addressed, making the models less
robust in real-world IoT deployments where sensor failures are common.

Liu et al. (2025) [17] proposed a novel approach for high-dimensional time-series data imputation using a
bidirectional generative adversarial network (tf-BiGAIN) with f-divergence loss. This method eliminates
the dependency on predefined data distributions and captures both forward and backward temporal
relationships. Their model achieved superior imputation performance over traditional techniques and
deep learning baselines. Nevertheless, tf-BiGAIN does not incorporate contextual information specific to
agricultural semantics, which can be essential for ensuring agronomic validity of the imputed values.
Several recent contributions have explored innovative directions in imputation, sensor modeling, and
smart agriculture analytics, demonstrating significant improvements in model accuracy and data
reliability.

Muhammad Hameed Siddiqi et al. (2025) [18] introduced a hyper-tuned multilayer perceptron (MLP)
approach for data imputation, employing ensemble models within an error-correcting output code
(ECOCQC) framework. Their results demonstrate that well-optimized MLP classifiers can significantly
enhance prediction accuracy. Additionally, ensemble models operating under the ECOC framework
exhibit promising potential for effective data imputation. The study highlights that further research is
necessary to advance missing data imputation methods, particularly about improving both the precision
and stability of such techniques.

Bordoloi et al. (2025) [19] proposed an enhanced iterative imputation strategy named F31, which
augments the conventional K-Nearest Neighbor (KNN) approach with feedback from downstream tasks
to guide the imputation direction. This feedback-aware method improves robustness and semantic
consistency in missing value estimation, especially under variable sparsity patterns. However, performance
tends to degrade with high-variance data, which is a noted limitation.

Abdelsalamet al. (2025) [20] presented a multi-stage framework combining hyperparameter-tuned
Support Vector Regressor (SVR) classifiers with early imputation using decision trees and correlation-
based techniques. This hybrid strategy led to increased prediction precision in agriculture-related time-
series datasets. The approach, however, is constrained by reliance on statistical imputers at the initial stage
and may underperform when handling unstructured missingness without temporal context. Their study
highlights the importance of domain-specific tuning when applying general-purpose models in
agricultural analytics.
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Armando et al. (2025) [21] applied an Unscented Kalman Filter (UKF) and its fusion variant (UKF_FL)
to integrate loT sensor observations for crop condition estimation. Their findings indicate that UKF_FL
performs superior to baseline models in dynamic field conditions. This work is particularly relevant in
scenarios involving sensor noise, but the absence of empirical error bounds under high missingness was
noted as a potential gap.

Kuang et al. (2025) [22] introduced a deep generative approach using Missing-data Multiple Importance
Sampling Variational Autoencoder (MMISVAE), tailored to capture latent dependencies in sparse
agricultural records. Their experiments showed that MMISVAE surpasses traditional VAEs in both
reconstruction accuracy and downstream task utility. Although highly expressive, the model requires
extensive training time and sensitivity to initial hyperparameter configurations, which may limit scalability
in real-time edge deployments.

Akbar et al. (2025) [23] shifted focus toward incorporating physical domain knowledge by integrating
physics-based hydrological models with statistical learning. Their soil-water dynamic model predicted crop
outcomes under variable irrigation with high fidelity. This modeling strategy led to a 15% increase in
yield while minimizing water stress. Nevertheless, adaptability to heterogeneous terrains or sensor failures
remains an open issue, limiting its widespread applicability.

Singh et al. (2025) [24] proposed a novel hybrid ensemble leveraging EfficientNetBO with attention-
enhanced Long ShortTerm Memory (LSTM) and Convolutional Neural Networks (CNN) for smart
agriculture diagnostics. Their architecture demonstrated robust performance across multi-modal sensor
streams, highlighting the strength of combining temporal, spatial, and frequency domain features. While
their results were encouraging, the framework assumes consistent sensor sampling rates and lacks dynamic
missing data handling strategies.

In pursuit of precision and intelligent decision-making in crop breeding, Guofeng Yang et al. (2025) [25]
introduced a novel hybrid method integrating WOFOST, WW-4VES, and time-series temporal fusion
transformer (TFT) models. This system, assimilated with remote sensing data and driven by a large
language model (LLM), enables interactive wheat yield forecasting. A key contribution of this study is a
web-based yield prediction tool that supports breeders in making dynamic, data-driven decisions.
However, the prediction accuracy remains dependent on input data quality, and regional calibration is
necessary to generalize the tool effectively across geographies.

To support sustainable agriculture in remote or tropical regions, da Silva et al. (2025) [26] developed a
low-cost mobile chemical analysis system utilizing colorimetric paper sensors and machine learning for
realtime soil pH classification. The approach demonstrated high accuracy (97%) while drastically
reducing the turnaround time for soil analysis. Though the study strongly advocated the utility of
smartphone-based diagnosis for smallholders, the authors did not explicitly outline system limitations,
leaving room for future scalability assessments across broader soil nutrient parameters.

Mohammed (2025) (27] emphasized the integration of artificial intelligence (Al), machine learning,
sensors, and l[oT in smart irrigation systems to address water scarcity and increase efficiency in resource
use. The chapter delineated various components such as automation, weather forecasting, and analytics,
offering improved sustainability, yield, and cost-effectiveness. While highlighting future enhancements in
Al and energy optimization, challenges in implementation—like high infrastructure costs and data
management complexities—were also discussed, emphasizing the need for equitable policy and resource
allocation in agriculture.

Sandeep D. Kulkarni (2025) [28] conducted a field-based quantitative study involving 225 Indian farmers
to assess how Al and [oT could improve sustainability in agriculture. The statistical findings showed that
Al and [oT accounted for approximately 55.2% of the variance in enhanced agricultural productivity,
reinforcing their critical role in green practices. Despite demonstrating a significant correlation between
technological adoption and improved outcomes, the study acknowledged the need for more inclusive and
accessible implementations, especially considering rural farmers’ resource constraints.

Zhou et al. (2025) [29] introduced the Probability Mass Similarity Kernel (PMK), a method for handling
incomplete heterogeneous data without assuming data type or missingness mechanisms.Unlike
traditional imputation-based approaches, PMK models data distribution directly, unifying categorical and
numerical variables under a common kernel space. Evaluations across diverse datasets revealed superior
performance of PMK in classification and clustering tasks, especially under non-random missing data
conditions. This method’s effectiveness without prior preprocessing demonstrates its robustness and
suitability for real-world agricultural datasets where missingness patterns are rarely uniform.
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For large-scale agricultural monitoring, Simsek (2025) [30] proposed an innovative crop classification
approach based on time-series Enhanced Vegetation Index (EVI) data and corrected farmer-declared
parcels (FDP). By applying multiple classification algorithms including Random Forests, SVM, ANN, and
XGBoost, the study achieved a peak accuracy of 92.14% using XGBoost. The approach proved FDP to be
a cost-effective and efficient alternative to field-collected ground truth data. However, overlapping
phenological stages in double-crop classification posed challenges, which affected model performance and
reliability. This study validated the role of corrected administrative data in improving agricultural
classification models.

Dobrev and Szerszen (2025) [31] introduced two complementary approaches for outlier-robust filtering:
supervised missing data substitution (MD) utilizing a Huber threshold, and unsupervised substitution via
exogenous randomization (RMDX).These techniques aim to suppress both large and subtle outliers in
time-series data by converting them into missing values before applying robust estimation. Through
empirical validation and Monte Carlo simulations, the methods demonstrated significant improvement
in forecasting accuracy. While limitations were not explicitly discussed, the techniques show promise in
agricultural sensor networks where noisy measurements may skew results unless robustly handled.

3. Proposed Work

3.1 AFARE-HMM (Hybrid Imputation Model) Overview

In agricultural IoT systems, the accuracy of predictive analytics and decision-support pipelines is tightly
coupled with the quality and completeness of sensory data. However, missing values are pervasive due to
factors such as hardware degradation, transmission loss, and environmental interference. To address this
challenge, the proposed framework introduces a novel hierarchical hybrid imputation model named
AFARE-HMM, which integrates three complementary stages: (i) Agro-Fuzzy Adaptive Rule Engine with
Statistically Adaptive Semantic Partitioning (AFARE-SASP) for semantically grounded estimation, (ii)
MissForest for global statistical refinement, and (iii) K-Nearest Neighbors (KNN) for local contextual
smoothing. This multi-level pipeline enables a robust balance between semantic interpretability,
multivariate correlation modeling, and environmental adaptability.
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Figure 1. The first stage, AFARE-SASP, constructs fuzzy membership functions from statistical
distributions using the SASP strategy and generates interpretable imputation rules grounded in
agronomic semantics. These rules form an initial fuzzy approximation for missing values that conform to
domain-consistent relationships such as "medium soil pH implies medium nitrogen." Despite its
interpretability and semantic alignment, AFARE operates in a rule-based space and is limited in its ability
to model high-dimensional, nonlinear dependencies across features, especially when multiple interacting
modalities influence a target attribute.

To overcome this, the second stage introduces MissForest, a Random Forest-based iterative imputation
strategy. This module refines the preliminary fuzzy estimates by leveraging ensemble-based regression
models trained on the full feature space, thereby capturing complex multivariate interactions. While
MissForest excels in global learning and statistical consistency, it may overlook fine-grained spatial or
environmental nuances embedded in the data, which are particularly relevant in real-world agricultural
settings.
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The final stage addresses this limitation through KNN-based contextual refinement, which adapts each
imputed value by referencing the behavior of its most similar peers in the dataset. KNN identifies a local
neighborhood based on Euclidean distance across non-missing features and recomputes imputed values
through unweighted or distance-weighted averaging. This step restores localized patterns that may have
been diluted by global models, such as microclimate variations, crop-specific fertilization behavior, or soil
type effects.

The synergistic interaction among these three stages underpins the core novelty of AFARE-HMM. AFARE
injects semantic constraints into the imputation process; MissForest ensures that the imputation aligns
with global statistical regularities; and KNN imposes contextual fidelity through local smoothing. This
cascading correction mechanism ensures that imputed values are not only statistically plausible but also
agrnomically valid and contextually adaptive, addressing the multifaceted nature of uncertainty in smart
farming data.

3.2 Missingness Simulation

To evaluate the robustness of the proposed imputation framework, a controlled missingness simulation
was performed on the Smart Farming 2024 (SF24) dataset [32]. This simulation aimed to mimic realistic
patterns of data loss encountered in agricultural IoT environments, where sensor faults, environmental
interferences, and data transmission delays result in both random and non-random missing values.

The simulation incorporated two primary mechanisms: Missing Completely at Random (MCAR) and
Missing Not at Random (MNAR). In the MCAR scenario, 15% of the data entries were randomly
removed across key features such as temperature, nitrogen, pH, and soil moisture, ensuring no underlying
correlation between missingness and observed values. This emulates failures caused by sporadic
transmission losses or temporary power outages, where missing values are independent of feature
distributions.

Conversely, the MNAR simulation introduced another 15% of missingness that was conditionally
dependent on specific environmental or crop-based thresholds. For instance, pH values were selectively
masked when soil moisture dropped below 20%, reflecting sensor behavior degradation in drier
conditions. Similarly, nitrogen values were removed when pest pressure exceeded an empirically defined
upper quartile, simulating disrupted nutrient sensors during biological stress events. These conditions
were derived based on domain knowledge and frequency analysis of feature interactions in the original
dataset.

The final corrupted dataset contained 30% missingness, with a balanced representation of both random
and systematic gaps. This setup created a challenging yet realistic imputation scenario, ensuring that the
proposed fuzzy-guided model could be evaluated under heterogeneous and domain-consistent missing
data patterns.

3.3 Agro-Fuzzy Adaptive Rule Engine (AFARE)

In precision agriculture, variables such as soil nutrients, pH, moisture, and climatic conditions exhibit
high degrees of variability and uncertainty, especially when data is collected via distributed IoT sensors.
Traditional fuzzy logic systems often rely on expert-defined linguistic boundaries and static rules. However,
such systems may not generalize across diverse geographies or crop types. To address this, we propose a
fully data-driven fuzzy logic system named Agro-Fuzzy Adaptive Rule Engine (AFARE), which incorporates
a novel technique: Statistically Adaptive Semantic Partitioning (SASP). This technique eliminates the
dependency on expert knowledge and dynamically constructs fuzzy sets and rules based on observed data
distributions.

3.3.1 Preliminaries and Notation

Let D = {x;}7, be the dataset, where each record x; € R% represents d sensor features. Let M' € D be
the subset of records containing missing values.

A fuzzy variable X is defined over domain 2y C R, associated with a label set L, = {Low,Medium,High}.
Each label [ € Ly is characterized by a trapezoidal membership function y;: 2y — [0,1], parameterized
dynamically.

3.3.2 Statistically Adaptive Semantic Partitioning (SASP)

The SASP mechanism is proposed as a novel method for generating fuzzy sets without the need for expert-
defined linguistic boundaries. Instead, it leverages the underlying statistical properties of each feature in
the dataset to construct adaptive fuzzy membership functions. This allows the fuzzy system to align more
accurately with the distribution of sensor data typically found in smart agriculture scenarios, where
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features such as temperature, pH, or soil moisture may not follow standard Gaussian distributions and
may vary significantly across regions and crop types.
In SASP, each continuous feature X; € D is modeled as a fuzzy variable with three linguistic labels: Low,
Medium, and High. These labels are associated with trapezoidal membership functions that are defined
dynamically using quantile-based boundary estimation combined with local dispersion. SASP is designed
to let the fuzzy system adapt to various data distributions by using percentile markers instead of fixed
thresholds.
For each feature Xj, let Qq, @2, Q3, Q4 denote the 25th, 50th (median), 75th, and 90th percentiles,
respectively. Additionally, let o represent the standard deviation of Xj, and let @ € (0,1) be a scaling
coefficient that controls the softness or spread of the fuzzy sets around the core percentiles. Typically,
is chosen in the range 0.2 to 0.5 to ensure sufficient overlap between adjacent fuzzy sets while minimizing
ambiguity in boundary regions.
The trapezoidal membership functions for the three fuzzy labels are defined as follows:

pv(x) = T(x; Q1 — a0, Q1,Q2, Q2 + a0)

pMedim () = T(x; Q, — a0, Q2, Q3,Q3 + a0)

pHteh () = T(x; Q3 — @0,Q3,Q4, Qs + a0)
Here, T(x; a, b, ¢, d) denotes the standard trapezoidal membership function defined as:
r 0 X <a

xX—a <x<h
b—a'a x <

T(x;a,b,c,d) =<1, b<x<c
d—x < yx<d
d—c ="

L 0, x =>d
This formulation ensures a smooth transition between adjacent fuzzy labels. For instance, a data point
around the median Q, may partially belong to both the Low and Medium sets, enabling soft reasoning
rather than binary decisions. Set overlaps allow for smoother representation of gradual changes, like soil
moisture shifting from “Optimal” to “Deficit”, without creating abrupt boundaries.
The SASP method offers several advantages. First, it is completely data-driven and requires no subjective
input, making it highly suitable for generalized deployments across different farming contexts. Second, it
adapts to skewed distributions and non-uniform variance, which are typical of real-world sensor readings.
Third, it provides robust support for rule induction by enabling consistent and interpretable fuzzy label
assignments across the feature space.
By constructing fuzzy partitions in this statistically grounded manner, SASP allows AFARE to define
membership functions that are both interpretable and mathematically robust, thus improving the quality
of imputation and decision-making under uncertainty. This adaptive fuzzy modeling forms the foundation
upon which reliable fuzzy rules can be generated and applied for sensor data recovery in smart agriculture.
3.3.3 Rule Induction via Fuzzy Mutual Activation
In the context of imputation for agricultural sensor data, reliable and interpretable inference depends on
the construction of meaningful fuzzy rules that can capture latent relationships between variables. The
Agro-Fuzzy Adaptive Rule Engine (AFARE) addresses this by employing a fully automatic, data-driven
approach to fuzzy rule induction based on fuzzy mutual activation. This mechanism can extract highly
expressive conditional rules without requiring human-curated knowledge, thereby enhancing adaptability
and scalability across diverse agro-climatic datasets.
Each candidate rule in AFARE is framed as a conditional linguistic expression of the form:

IF X, is Iy AND X; is [; AND ... AND X, is [, THEN X, is [;
where Xy, X5, ..., X}, are antecedent features, X; is the target (or consequent) feature with missing values,
and [; € Ly, represents the fuzzy linguistic label (e.g., Low, Medium, High) associated with the fuzzy
partition of the feature X;.
To evaluate the plausibility and influence of each rule, AFARE computes a fuzzy activation degree over
each data instance. Given an input vector x; € R%, the fuzzy activation u,.(x;) of a candidate rule r is
determined by the product of the membership degrees for each antecedent term:
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pr(x;) = nuz,-(xij)
j=1

This multiplicative structure ensures that the rule's activation is strong only when all conditions are
simultaneously satisfied to a significant degree. It captures the conjunctive semantics inherent in fuzzy
logic, where partial satisfaction of each antecedent contributes to the overall rule truth value.

To assess the generality and support of a rule across the dataset, AFARE introduces a statistical aggregation
known as the Fuzzy Support Score (FSS). This score reflects the average activation strength of a given rule
across all complete records in the dataset and is formally defined as:

1 n
FSS(r) == )y (x)
i=1

where n is the total number of data instances that have all required antecedent values observed (i.e., no
missingness in the features involved in rule ).
FSS serves as an objective measure of how often and how strongly a rule is manifested within the dataset.
Rules that activate weakly or rarely are discarded to avoid overfitting or spurious correlations. AFARE
retains only those rules whose FSS exceeds a predefined threshold 7, typically chosen in the range
[0.6,0.85]. This threshold can be tuned via crossvalidation or grid search based on validation
performance on a subset of the dataset.
By using FSS as a discriminative metric, AFARE ensures that only robust and semantically meaningful
fuzzy relationships are preserved in the rule base. Moreover, since rules are generated directly from the
fuzzy-labeled data induced via the SASP method, the resulting rules reflect the statistical and structural
characteristics of the dataset itself. This yields a high level of contextual validity, ensuring that the learned
imputation logic adapts effectively to varying distributions and feature interactions without manual
intervention.
3.3.4 Temporal-Fuzzy Consistency and Validity Check
In areas like precision agriculture, sensor data is gathered in temporal sequences to record changes in
environmental conditions, such as daily fluctuations in soil temperature or hourly variations in
humidity.Consequently, imputations performed independently across time steps may yield abrupt
transitions or erratic fluctuations if contextual temporal dependencies are ignored. These inconsistencies
can compromise both the semantic validity and predictive utility of the reconstructed dataset. To address
this, the AFARE incorporates a temporal-fuzzy consistency and validity check to ensure that the imputed
values are both temporally smooth and contextually coherent.
The core idea behind this consistency mechanism is to enforce alignment between the fuzzy interpretation
of a current imputed instance and its surrounding observations. Rather than treating each sample in
isolation, AFARE utilizes a local temporal window centered around the target instance to assess fuzzy label
transitions. Let x; be the record for which a feature value x{ is being imputed. The system considers a
symmetric neighborhood defined as:

Ti = {Xicro Xicr1s o0 Xiere}
where k denotes the window radius, and 2k+1 is the total number of records in the temporal
neighborhood. This temporal context captures short-term trends and environmental continuity typical in
smart farming scenarios (e.g., consistent moisture levels over an hour).
Once a fuzzy label [; € Ly, is assigned to the imputed value of x} based on the rule application, the
system compares this label against the fuzzy labels of corresponding values in the temporal neighborhood.
Let [; denote the fuzzy label associated with xjt for each x; € 7;. The temporal consistency score is then

evaluated using the average disagreement indicator:

1 i+k

2 2 =l

j=i—k

Here, I[Ij * li] is an indicator function that returns 1 when the label [; is different from [;, and 0
otherwise. This expression computes the normalized count of inconsistent fuzzy labels in the
neighborhood.
To enforce smooth transitions and reject spurious imputed values, a consistency constraint is applied:
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i+k
1
DR
j=ik
where 6; € [0.1,0.3] is a tunable threshold representing the maximum acceptable temporal label
deviation. If the average disagreement exceeds &;, the imputed label is considered contextually
inconsistent and is either rejected or replaced by an alternative estimate with a lower temporal deviation.
This mechanism effectively filters out noisy imputations that may result from anomalous rule activations,
data sparsity, or transient sensor distortions. Moreover, it preserves the temporal stationarity that is often
expected in sensor data, especially when monitored variables evolve gradually rather than abruptly.
Importantly, the fuzzy-based approach enables soft validation at the semantic level rather than requiring
strict numerical continuity. For instance, if the imputed value corresponds to “Medium moisture” and is
surrounded by records also labeled as “Medium,” the value is accepted even if the exact numerical readings
differ slightly. Conversely, if the imputed value is labeled “High” while most neighboring readings indicate
“Low,” it is flagged as inconsistent.
By embedding this temporal-fuzzy consistency check, AFARE ensures that the reconstructed dataset
retains both statistical accuracy and domain coherence. This is critical in applications like crop yield
forecasting or irrigation planning, where the quality of temporal patterns significantly influences
downstream model performance and decision-making reliability.
3.3.5 Theoretical Properties
To validate the robustness and efficiency of the proposed AFARE-SASP framework, the following
theoretical results are established. These theorems guarantee both convergence of the fuzzy rule induction
process and bounded error in the imputation under sufficient rule activation. The proofs rely on
properties of fuzzy membership functions, finite dataset cardinality, and statistical consistency of SASP-
derived partitions.
Theorem 1 (Rule Set Convergence)
Let D be a dataset containing n instances, each with d features, and let £ be the set of fuzzy linguistic
labels generated via SASP for each feature (typically of cardinality 3). Then, the AFARE fuzzy rule
induction process terminates in finite time with an upper bound complexity of 0(|L|d).
Proof:

For each feature X, SASP generates a fixed number of fuzzy labels (e.g., Low, Medium, High), so |£x7_| =

¢, where c is constant and typically ¢ = 3. The total number of possible fuzzy antecedent combinations
for rules involving up to d features is bounded by | £]|%, where |£] denotes the number of linguistic terms
per feature. Since the rule activation degree y;(x) € [0,1] is bounded and computed using continuous,
finite-domain membership functions derived from quantiles and standard deviation (via SASP), each rule
has a determinable FSS over the finite dataset D.
The rule evaluation process uses an acceptance threshold 7 and retains only those rules 7; for which
FSS(TJ-) > 7. As no infinite loop or unbounded recursion exists in the evaluation or selection stages, and
the space of candidate rules is finite and countable, the rule generation completes after a finite number
of steps.
Hence, the fuzzy rule induction process converges, and the rule set R stabilizes in 0(|L|d) steps.
Theorem 2 (Error Boundedness under High Rule Activation Coverage)
Let x; € D be an instance with missing value x;" for feature Xp,. If there exists at least one rule r; € R,
such that the fuzzy activation degree p,.(x;) = y, for some y € (0.7,1.0), then the absolute imputation
error is bounded as follows:

|x" — x| <e
for some small € > 0, where x™ is the imputed value and C (r)) is the centroid of the consequent fuzzy
set in rule 7;.
Proof:
Let us assume the fuzzy rule 177 € R, activates on x; with a strength g1, (x;) = y. This implies that all
antecedent conditions of the rule are strongly satisfied for x;, based on its observed features. Since the
rule’s consequent Xy, is L, is derived from training instances in which similar antecedent conditions
hold, the corresponding centroid C (Tj) lies close to the conditional expected value E[X,,|Antecedents]
under the empirical data distribution.
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The imputed value x™ is computed as a weighted average of such centroids:
o ZTjERm FSS(T}') ’ C(T})
l
Y e, FSS(7)
When high-activation rules dominate (i.e., those with p,.(x;) = y), and their corresponding FSS scores

are high, the weighted estimate x’lﬁz concentrates around the true latent value x]™. By statistical consistency
and bounded variance within fuzzy sets (especially under SASP's percentile-based partitioning), the
deviation between x™ and x™ remains small.
Thus, under sufficient fuzzy rule coverage, the absolute error satisfies:
|x™ —xM| <€

for a small € determined by intra-set variance and centroid approximation quality.
3.3.6 AFARE-SASP Algorithm
The AFARE-SASP algorithm integrates fuzzy rule-based reasoning with statistically adaptive semantic
partitioning to impute missing values in agricultural IoT sensor datasets. Unlike classical fuzzy inference
systems that depend on predefined linguistic boundaries and static rules, AFARE-SASP leverages a fully
data-driven pipeline, dynamically inducing fuzzy sets and rules from the observed distributions. The
imputation strategy involves fuzzifying features using SASP, constructing a fuzzy rule base via mutual
activation, validating rules based on FSS, and computing weighted centroid-based estimates. Temporal
consistency is enforced to enhance reliability. The pseudocode below outlines the entire AFARE-SASP
process.

Algorithm 1: AFARE-SASP - Agro-Fuzzy Adaptive Rule Engine with Statistically Adaptive

Semantic Partitioning

Input:

e Incomplete dataset D = {xq, X3, ..., X, }, with d features

o Missing set M € D

o Window size k, fuzzy deviation threshold &, activation threshold \tau, and SASP scaling

factor «

Output:

e Imputed dataset D with semantically valid estimates

Step 1: Fuzzy Set Construction via SASP

1. For each numerical feature X;inD:

1.1 Compute quartiles Q1, @5, @3, Q4 and standard deviation \sigma
1.2 Define fuzzy labels Low, Medium, High using SASP trapezoidal functions
1.3 Assign membership values ptov, yMedium , High
Step 2: Fuzzy Rule Induction
2. Initialize rule base R = @
3. For each feature X; with missing entries:
3.1 Generate candidate rules of the form:
IF X, is l; AND X, is L, ... THEN X, is [,
3.2 For each rule 7, compute fuzzy activation i, (x;)

to all observed entries

3.3 Calculate Fuzzy Support Score (FSS) over complete records
3.4 Retain rules with FSS(T]-) > tandstorein Ry € R
Step 3: AFARE-Based Imputation
4. For each instance x; € M and missing feature X,,:
4.1 Identify all valid rules R,,, applicable to X,
4.2 For each rule 77 € R,,,, compute:
- Rule activation p,(x;)
- Consequent fuzzy centroid C (7‘1)

4.3 Estimate value using weighted aggregation of centroids
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o Zryer, FSS(1) - €()
X" =
S jer,, FSS(1)

Step 4: Temporal-Fuzzy Consistency Validation
5. For each imputed value x™

5.1 Define temporal window T; = {x;_, ..., Xi1x}

5.2 Extract fuzzy label I; of x™, and compare with labels in T}

5.3 If label disagreement < &, accept the imputation

Else: discard or flag for refinement

Step 5: Final Output
6. Return updated dataset D with consistent, interpretable imputations.
This algorithm establishes a principled and interpretable mechanism for semantic recovery of missing
agricultural sensor data. By combining fuzzy logic, adaptive statistical modeling, and temporal coherence,
AFARE-SASP serves as a robust first-stage imputer in the broader hybrid imputation pipeline.
3.4 Hybrid Imputation Model
Following the semantic estimation provided by the AFARE module, the hybrid imputation framework
proceeds with two key refinement stages: global structural learning using MissForest and local adaptive
smoothing via K-Nearest Neighbors (KNN). This dual-phase architecture is designed to reconcile semantic

integrity with statistical consistency, leveraging the strengths of both fuzzy reasoning and data-driven
machine learning models. The hybrid approach aims to correct residual inaccuracies in the intermediate
fuzzy estimates while adapting to the heterogeneous nature of agricultural environments, where variations
may be attributed to soil types, climatic zones, or local farm practices.

Let the intermediate dataset after the AFARE stage be denoted as XAFARE = {x]}, where each entry x/
represents either an observed value or a fuzzy-driven estimate for the missing entry in feature X; of instance
x;. This dataset serves as the input for the subsequent stages of refinement.

3.4.1 Phase I: Global Structure Learning via MissForest

MissForest operates as a powerful, non-parametric, and iterative imputation technique based on the
ensemble learning capabilities of Random Forests. For each incomplete feature X;, MissForest constructs
a regression model ijF using all other features X_; (i.e., excluding X;) as predictive inputs. The model
predicts missing values in X; by iteratively learning from both observed data and current imputations
from previous iterations.

Mathematically, for an instance x; with a missing entry in feature Xj, the Random Forest model

approximates the unknown value xj as:

1
f]RF( 1(1) . (J 1) (1+1) xl( ))

This regression procedure is performed 1terat1vely, where the predicted values are updated in each
iteration. The quality of the predictions is assessed using a loss function Li{, which measures the mean
squared error over the set of observed entries for feature X;. Formally:

Lﬂ —

|O |lEO

where O; € D denotes the set of records with non-missing values for feature X;.
To ensure convergence, MissForest employs a convergence criterion based on the Frobenius norm between
successive iterations. Let X; X7 and Xt ; represent the imputed values at iterations t and t-1, respectively.
The convergence is conﬁrmed when:

Z |X] X]_ |2
=1 t21F<€
XL 1X I

where | - |g denotes the Frobenius norm and € is a small convergence threshold, typically 10™%. The final

A=

imputed matrix XRF generated from this phase encapsulates the global multivariate structure of the
dataset, effectively capturing complex nonlinear interactions across the features.

1168



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

3.4.2 Phase II: Local Contextual Refinement via K-Nearest Neighbors

While MissForest models global feature dependencies effectively, it may fail to preserve localized patterns
inherent in spatially or temporally varying agricultural data. These local variations are essential in
precision farming where sensor behavior, soil responses, and environmental conditions may differ across
microregions. Therefore, a second refinement stage is performed using K-Nearest Neighbors (KNN),
which operates in a spatially aware manner by smoothing the imputed values based on similarity to nearby
complete samples.

Given the globally imputed value X{ € XRF for a sample X;, KNN identifies a local neighborhood ]\Cfe
comprising k nearest neighbors based on Euclidean distance computed over the available non-missing
features. The neighborhood selection is formalized as:

N = argmink{ %, — %¢ ]2 | r€D, x.# NaN}
Once the neighborhood is established, the missing value is recomputed either using an unweighted mean
or a distance-weighted smoothing function. The unweighted variant simply averages the known values in

the local neighborhood:
5_1 j
X = E Z Xy

rEN/‘
However, this averaging may disregard the varying similarity levels among neighbors. To address this, a
Gaussian distance-weighted variant is employed, wherein each neighbor contributes proportionally to its
similarity with the target instance. The refined imputation is given by:

%, — XArl%)

ZI‘E]\/;;I& Wir 20'2
Here, ¢ is a smoothing hyperparameter that controls the sensitivity to distance; lower values of ©
emphasize closer neighbors, while higher values promote broader averaging.
This localized refinement ensures that the final imputed dataset X maintains both global coherence and
localized agronomic fidelity. The combined influence of fuzzy semantic initialization, global structural
modeling, and neighborhood-level smoothing establishes a resilient framework for robust imputation in
smart farming scenarios. This hybrid design is particularly suited for sensor-driven environments
characterized by high variability, noise, and incomplete observations.
3.4.3 Final Imputation Workflow
The complete hybrid pipeline operates as follows:

]
5 Zre]\fﬁwir " Xp
=T

, where wj = exp (—

1. AFARE generates an initial estimate )afor all Xi: = NaN, guided by fuzzy rules.

2. MissForest trains a regression model to refine the global structure of X, producing XRF.

3. KNN Smoothing further adjusts each X{ to X}, using local weighted averages.

1

4. Validation ensures that X{ € ij and aligns with fuzzy memberships from AFARE.

The final matrix X = {)?{} is a high-confidence, semantically-valid representation of the original sensor
data with missing values accurately reconstructed.
Input: AFARE-imputed dataset

Output: Final imputed dataset D

1: Initialize MissForest iteration counter t «— 0

2: repeat

3:  for each feature Xj with missing entries do
Train Random Forest f*f using all other features X_;
Predict and update missing values in X; — Xjt

end for

Compute convergence metric Ay

te—t+1

9: until A(<e

10: Let DX « final MissForest output

11: for each record x;j in D®f with imputed value do

PRNIND
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12:  Identify k-nearest neighbors Ni¥ over observed features

13:  Compute distance-weighted average of neighbors for feature j
14:  Update x;j with refined estimate from local context

15: end for

16: Validate all xij against original fuzzy constraints from AFARE
17: Return: Fully imputed dataset ©

4. RESULTS AND DISCUSSION

4.1 Comparative Baseline Methods

The results in table 1 clearly demonstrate the superior performance of the proposed AFARE-HIM (Agro-
Fuzzy Adaptive Rule Engine with Hybrid Imputation Model) across all missingness levels. At 10%
missingness, AFARE-HIM shows the lowest RMSE (0.441) and MAE (0.362), and the highest R? score
(0.902), outperforming even advanced models like MissForest and AutoEncoder.

As missingness increases to 20% and 30%, performance of all models degrades, but the degradation rate
of AFARE-HIM is significantly lower. This robustness is attributed to its two-tier architecture: semantic
imputation using fuzzy logic captures domain-consistent patterns, while MissForest and KNN ensure
statistical and local contextual refinements.

In contrast, baseline models like Mean Imputer show the highest error due to lack of contextual
adaptation. While MICE and SoftImpute perform competitively at lower missingness, their performance
deteriorates at higher missingness due to poor extrapolation in nonlinear spaces.

The consistent advantage of AFARE-HIM highlights its suitability for real-world agricultural scenarios
where sensor failures can be frequent and irregular, and contextual semantics must be preserved alongside
statistical accuracy.

Table 1. Comparative results of proposed work with various missingness

Missingness Method RMSE | MAE |R?
Mean Imputer 0.848 0.653 ]0.724
KNN Imputer 0.598 0.473 | 0.832

MissForest 0.512 0.411 0.873
10% MICE 0.553 0.437 | 0.857
SoftImpute 0.571 0.451 | 0.844
AutoEncoder 0.524 0.429 |0.868
AFARE-HIM 0.441 0.362 0.902

Mean Imputer 1.191 0.943 | 0.598
KNN Imputer 0.837 0.661 0.745

MissForest 0.729 0.598 | 0.792
20% MICE 0.755 0.614 0.777
Softlmpute 0.781 0.627 0.763
AutoEncoder 0.702 0.589 | 0.801
AFARE-HIM 0.581 0.475 | 0.841

Mean Imputer 1.496 1.210 0.502
KNN Imputer 1.047 0.832 | 0.669

MissForest 0.936 0.741 0.725
30% MICE 0.962 0.764 | 0.711
Softlmpute 0.988 0.789 | 0.697
AutoEncoder 0.901 0.715 0.739
AFARE-HIM 0.684 0.539 0.811

4.2 Ablation Studies

To evaluate the individual contribution of each component in the proposed AFARE-HIM framework, a
systematic ablation study was conducted. The framework was tested under 30% missingness by selectively
disabling or modifying key components. The configurations are:

e AFARE only: Semantic fuzzy imputation without MissForest or KNN refinement.

e AFARE + MissForest: Fuzzy imputation followed by global structure learning.
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e AFARE + KNN: Fuzzy imputation followed by local refinement.

e MissForest only: Pure statistical imputation using iterative random forest.

e AFARE-HIM (Full Model): Full pipeline including AFARE, MissForest, and KNN.
Table 2. Ablation Study Results (30% Missingness Level)

Configuration RMSE | MAE | R?

MissForest only 0.936 |0.741 | 0.725
AFARE only 0.791 |0.623 | 0.769
AFARE + MissForest | 0.720 | 0.587 | 0.780
AFARE + KNN 0.751 | 0.612 | 0.768
AFARE-HIM (Full) | 0.684 | 0.539 | 0.811

As shown in Table 2, each component of the proposed AFARE-HIM architecture plays a distinct role in
reducing imputation error and improving overall accuracy. When using AFARE only, the results already
outperform MissForest-only, highlighting the value of semantically guided fuzzification even without
statistical modeling. However, without subsequent learning layers, the imputed values lack the nuanced
correlations captured across multivariate dependencies.

Introducing MissForest after AFARE (i.e., AFARE + MissForest) improves the global modeling capability
and results in a noticeable reduction in both RMSE and MAE. Similarly, combining AFARE with KNN
captures local consistency but lacks the global statistical coverage of MissForest.

Only the full AFARE-HIM model demonstrates a synergistic effect, achieving the best performance across
all metrics. The model not only preserves semantic domain knowledge via fuzzy rules but also balances it
with statistical regularity and local contextual adaptation. This layered imputation strategy ensures
robustness in heterogeneous agricultural environments and demonstrates superior generalization
capabilities, even under high missingness conditions.

Figure 2 provides a detailed comparative visualization of the true vs. imputed values across all six key
sensor features: nitrogen (N), phosphorus (P), potassium (K), temperature, humidity, and pH. Each
subplot demonstrates the scatter distribution between the original (ground truth) sensor readings and
their corresponding values imputed by the proposed AFARE-HIM model.

The scatterplot for nitrogen (N) illustrates a tight alignment of imputed values along the diagonal axis,
indicating a high degree of consistency with the true data. Minor dispersion is observed in lower
concentration ranges, which is attributed to overlapping linguistic boundaries during fuzzification, but
the trend remains linear and coherent.

The phosphorus (P) feature also shows strong fidelity between actual and imputed values, with a large
cluster concentrated around the central value range (40-80). The slight dispersion in the lower range
indicates minor semantic fuzziness during fuzzy rule activation, yet the imputation effectively preserves
agronomic realism.

The potassium (K) plot reveals a tri-modal structure in both the true and imputed values, with all three
clusters distinctly preserved in the imputed distribution. This preservation confirms the model’s ability
to retain feature stratification, particularly under heterogeneous field conditions. Deviations are minimal
except for a few outliers, suggesting robustness against sensor anomalies.

In the case of temperature, the imputed values almost perfectly track the true values across the 20-35°C
range, demonstrating the model’s high temporal-fuzzy consistency and low prediction variance for this
environmental variable.

Humidity also shows excellent alignment with the ground truth, particularly in the 60-95% range, where
dense clustering along the diagonal indicates precise recovery. Scattered deviations for a small number of
samples below 50% do not affect the overall imputation quality.

Lastly, the pH scatterplot highlights the model’s sensitivity to subtle gradients. The imputed values closely
mirror the true values in the 5.5-8.0 range, aligning well with the agronomic constraints for soil quality.

1171



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

True vs Imputed Values for Sensor Features
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tterplot: True vs Imputed (temperature) Scatterplot: True vs Imputed (humidity) Scatterplot: True vs Imputed (ph)

Figure 2. Results of true vs imputed values

5. CONCLUSION

This study presented a novel fuzzy-based hybrid framework, AFARE-HIM, for robust imputation of
missing sensor data in IoT-enabled smart farming systems. The AFARE, integrated with a SASP
mechanism, enabled semantic recovery of incomplete data without relying on expert-defined rules. By
leveraging fuzzy mutual activation and temporal consistency, the model effectively captured the underlying
structure and uncertainty inherent in agricultural sensor streams. The hybrid integration with MissForest
and KNN further ensured that the global data dependencies and localized variations were preserved in
the final imputation.Extensive experiments conducted on a real-world agricultural dataset demonstrated
the superiority of AFARE-HIM over widely used imputation methods such as Mean Imputer, KNN
Imputer, MissForest, MICE, SoftImpute, and Denoising Autoencoders. The proposed method achieved
an RMSE of 0.684 and an R2 of 81% at 30% missingness, while also showing strong generalization across
different missingness levels. Visual diagnostics, including scatterplots and error distribution heatmaps,
confirmed that the imputed values remained faithful to the true data distribution.

The architecture is statistically effective, interpretable, scalable, and adaptable to various sensors and crop
environments.This work provides a reliable and semantically grounded solution for data incompleteness
in smart agriculture, laying the foundation for further integration with real-time decision support,
anomaly detection, and predictive crop analytics.Future directions include extending the framework for
time-series imputation, federated imputation across multi-farm deployments, and explainable Al
integration for rule traceability and trustworthiness in autonomous farming systems.
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