

Design And Evaluation Of Nanocarrier-Integrated Transdermal Patch For Glimepiride In Type 2 Diabetes

M. Pavani¹, Dinesh Manepalli², Anjali Sudha³, Abhilasha Gupta⁴, Vipin Kumar Agrawal⁵, Rajesh Kumar Sharma⁶, Narendar Bhojak^{*7}, Pooja Arora⁸

¹Professor and HOD, Department of Pharmacy, Avanthi Institute of Pharmaceutical Sciences, Tagarapuvalasa, Vizianagaram , Andhra Pradesh

²Senior Specialist Regulatory Affairs and Technical Affairs Hikma Services India Private Limited, Matharu Arcade, Subhash Road, Vile Parle East, Mumbai, Maharashtra, India ; manepalli.ra@gmail.com

³Assistant professor, School of health science, department of pharmacy, Sushant University, Gurugram Haryana

⁴Research Scholar, Department of Chemistry, School of Basic and Applied Sciences, Career Point University Kota

⁵Principal, Surajmal College of Pharmacy, Surajmal University, Kichha, Udhamsingh Nagar, Uttarakhand, pharmacy@smu.ac.in

⁶Associate Professor, Department of Pharmacognosy Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Delhi Road Moradabad-244001

⁷Professor , GCRC, Govt Dungar College (NAAC 'A' Grade) , MGS University, Bikaner. Email; narendarbhojak@gmail.com

⁸Director Principal, Swami Devi Dyal Institute of Pharmacy, Barwala , Distt Panchkula

Corresponding author: Narendar Bhojak, Professor , GCRC, Govt Dungar College (NAAC 'A' Grade) , MGS University, Bikaner. Email; narendarbhojak@gmail.com and Dr. Pooja Arora, Director Principal, Swami Devi Dyal Institute of Pharmacy, Barwala , Distt Panchkula

Abstract- The increasing prevalence of type 2 diabetes necessitates innovative drug delivery systems to improve therapeutic outcomes and patient compliance. This study focuses on the design and evaluation of a nanocarrier-integrated transdermal patch for the delivery of glimepiride, a widely used oral antidiabetic agent. Nanocarriers, owing to their nanoscale size and enhanced surface properties, were developed using a solvent evaporation technique and loaded with glimepiride to optimize drug encapsulation and controlled release. The prepared nanocarriers were carefully characterized for particle size, zeta potential, and entrapment efficiency prior to their incorporation into an optimized transdermal patch matrix. The resultant patches were evaluated for physicochemical properties, in vitro drug release, ex vivo skin permeation, and stability to ensure consistency and efficacy. In vivo studies in diabetic animal models demonstrated sustained drug release, improved glycemic control, and minimized skin irritation relative to conventional systems. Overall, the nanocarrier-integrated transdermal patch offers a promising strategy for non-invasive, controlled, and effective glimepiride administration in type 2 diabetes, potentially improving patient adherence and therapeutic efficacy.

Keywords- Bioavailability, Controlled Release, Diabetes Mellitus, Glimepiride, In Vivo Evaluation, Nanocarriers, Patient Compliance, Skin Permeation, Stability Studies, Sulfonylurea, Transdermal Patch, Type 2 Diabetes

I. INTRODUCTION

A. Overview of Type 2 Diabetes Mellitus

Type 2 diabetes mellitus is a chronic metabolic disorder characterized by insulin resistance and relative insulin deficiency, leading to sustained hyperglycemia. It is associated with significant morbidity and mortality due to long-term complications affecting various organs. The global incidence of type 2 diabetes is rising rapidly, attributed to lifestyle changes, urbanization, and genetic predisposition. Understanding its pathophysiology is crucial for developing effective treatment strategies. Conventional therapeutic modalities often struggle to maintain optimal glycemic control, necessitating novel drug delivery systems to enhance efficacy, reduce side effects, and improve patient compliance for long-term disease management.

B. Challenges with Oral Antidiabetic Therapy

Despite being the mainstay of diabetes treatment, oral antidiabetic medications like glimepiride face several limitations. These include poor and variable bioavailability due to first-pass hepatic metabolism,

gastrointestinal side effects, and compliance issues related to frequent dosing. Such drawbacks can compromise therapeutic efficacy and patient quality of life, especially in the elderly or those with comorbidities. Addressing these challenges requires alternative delivery methods that bypass the gastrointestinal tract and enable sustained drug release, hence enhancing the overall effectiveness and safety of diabetes management.

C. Glimepiride: Mechanism and Limitations

Glimepiride, a third-generation sulfonylurea, stimulates pancreatic insulin secretion, thus lowering blood glucose levels in type 2 diabetes. Despite its potency and favorable pharmacokinetics, oral glimepiride is subject to first-pass metabolism and erratic absorption, resulting in fluctuating plasma drug concentrations. This can cause hypoglycemic episodes and diminished therapeutic outcomes. Moreover, its efficacy is highly dependent on patient adherence to dosing schedules. Consequently, there is a growing interest in developing alternative delivery systems that can overcome these limitations and maximize the therapeutic benefits of glimepiride.

D. Principles of Transdermal Drug Delivery Systems (TDDS)

Transdermal drug delivery systems represent a cornerstone in non-invasive therapy, allowing drugs to permeate the skin barrier and enter systemic circulation directly. TDDS offer numerous advantages, such as sustained release, enhanced patient compliance, reduced dosing frequency, and minimized gastrointestinal side effects. However, their effectiveness is often curtailed by the stratum corneum, the skin's outermost layer, which limits penetration. Advanced formulation approaches are necessary to enhance drug flux while maintaining safety and efficacy, positioning transdermal patches as an appealing alternative for chronic disease management.

E. Nanocarriers in Drug Delivery: An Overview

Nanocarriers, including nanoparticles, liposomes, and nanomicelles, are engineered colloidal systems designed to encapsulate therapeutic agents and facilitate their targeted delivery. Their nanoscale size allows for increased surface area, improved drug loading, and controlled release profiles. In drug delivery, nanocarriers enhance bioavailability, protect drugs from degradation, and enable translocation across biological barriers. Recent advances have demonstrated their potential to revolutionize the administration of various therapeutics, making them a promising platform for transdermal drug delivery, particularly for drugs with poor oral bioavailability like glimepiride.

F. Rationale for Nanocarrier-Integrated Transdermal Patches

Integrating nanocarriers into transdermal patches combines the benefits of advanced drug encapsulation with controlled dermal delivery. This multifaceted approach addresses challenges such as poor drug solubility, low permeability, and erratic absorption associated with conventional oral and transdermal formulations. Nanocarriers enhance drug penetration through the skin's barrier, enabling sustained and uniform release into systemic circulation. This integration is particularly valuable for antidiabetic agents, as it promises more consistent plasma levels, reduced dosing frequency, and improved therapeutic outcomes, thereby enhancing overall patient management in type 2 diabetes.

G. Current Research on Glimepiride Transdermal Delivery

Recent studies have explored various formulations of glimepiride for transdermal delivery, including gels, films, and nanoformulations. These approaches demonstrate improved drug permeation, enhanced bioavailability, and reduced adverse effects compared to oral administration. However, challenges remain in achieving optimal skin penetration and stable, reproducible drug release. Incorporating nanotechnology within transdermal patches shows significant potential, but further research is needed to refine formulation parameters, evaluate biocompatibility, and ensure clinical applicability, particularly in large-scale patient populations with type 2 diabetes.

H. Advantages of Nanocarrier-Integrated Transdermal Patches

Nanocarrier-based transdermal patches offer several unique advantages over traditional delivery systems. They facilitate enhanced and controlled drug permeation through the skin, protect the encapsulated drug from degradation, and allow for customized release profiles. Such systems can bypass hepatic first-pass metabolism, leading to improved bioavailability and reduced dosing frequency. Moreover, the non-invasive nature of patches boosts patient compliance, particularly in chronic therapies requiring long-term medication. For glimepiride, this approach promises to minimize side effects, maintain steady plasma drug levels, and ultimately provide superior glycemic control in type 2 diabetes.

I. Objectives of the Present Study

The present research aims to design and evaluate a nanocarrier-integrated transdermal patch for

glimepiride delivery in type 2 diabetes therapy. Specific objectives include formulating and characterizing glimepiride-loaded nanocarriers, incorporating them into a transdermal matrix, and assessing patch quality attributes such as drug content, mechanical properties, and release kinetics. Additionally, the

study evaluates in vitro and ex vivo skin permeation, stability, and in vivo antidiabetic efficacy. The ultimate goal is to develop a safe, effective, and patient-friendly alternative to oral glimepiride therapy.

J. Structure of the Paper

This paper is organized to provide a comprehensive overview of the research undertaken. It begins with a detailed introduction to the problem statement and the need for alternative drug delivery strategies in type 2 diabetes (Sections A–I). The subsequent sections cover materials and methods, formulation development, characterization techniques, and evaluation procedures. Results and discussion provide insights into the efficacy and advantages of the developed system, followed by a conclusion highlighting the key findings, limitations, and future perspectives. This structure ensures a logical flow of information for readers and researchers alike.

II. LITERATURE REVIEW

Recent advancements in transdermal drug delivery demonstrate significant promise for improving the treatment of type 2 diabetes by enhancing the efficacy and patient compliance of glimepiride therapy. Various nanocarrier-based systems, including ethosomal vesicles, nanoemulgels, and gelatin-coated nanoparticles, have been developed to improve drug loading, skin permeation, and controlled release profiles. These systems consistently show superior bioavailability, prolonged hypoglycemic effects, and reduced dosing frequency in comparison to traditional oral formulations. Incorporation of glimepiride into hydrogel matrices and organic nanoparticles further enhances its stability and permeation through the stratum corneum, resulting in steadier plasma drug concentrations and better glycemic control. Matrix diffusion-controlled transdermal patches and nanoemulgel systems have been particularly effective in delivering sustained release, minimizing erratic absorption and gastrointestinal side effects, thereby providing non-invasive, patient-friendly alternatives for long-term management of diabetes. Reviews and experimental studies on nanocomposite and organic-based transdermal systems highlight the ability to tailor the release kinetics and improve compatibility with skin tissue while maintaining minimal irritation and excellent biocompatibility. Using advanced formulation approaches such as liposomes, inclusion complexes, and polymeric matrices has optimized glimepiride delivery and sustained hypoglycemic outcomes both in preclinical and clinical evaluations. Research employing ethylene-vinyl acetate copolymer membranes and hydrogel scaffolds further illustrates the flexibility of nanocarrier integration to achieve controlled drug release alongside enhanced drug permeation. Collectively, these outcomes underscore the potential of nanocarrier-integrated transdermal patches as innovative platforms for effective and well-tolerated glimepiride delivery in type 2 diabetes, encouraging further exploration and clinical translation.

III. PRELIMINARIES

1. Particle Size (Mean Diameter)

Equation:

$$D = \frac{\sum n_i d_i}{\sum n_i}$$

Nomenclature:

- D = mean particle diameter
- n_i = number of particles in class i
- d_i = particle diameter in class i

Particle size affects drug release and skin permeation. Calculating the average diameter ensures nanocarriers are within the optimal size range for effective transdermal delivery and permeation enhancement.

2. Entrapment Efficiency (EE%) Equation:
Nomenclature:

$$EE\% =$$

$$\frac{(W_t - W_f)}{W_t}$$

- W_f = free (unentrapped) drug

Entrapment efficiency shows the percentage of glimepiride successfully incorporated into the nanocarrier, vital for accurate dosing and sustained release.

3. Zeta Potential

Equation:

$$\zeta = \frac{4\pi\epsilon\eta u}{E}$$

Nomenclature:

- ζ = zeta potential
- ϵ = dielectric constant
- η = viscosity
- u = electrophoretic mobility
- E = applied electric field

Zeta potential indicates nanocarrier stability; higher values mean better dispersion, affecting patch consistency and drug release.

4. Drug Loading (DL%)

Equation:

$$DL\% = \frac{W_d}{W_c + W_d} \times 100$$

Nomenclature:

- DL% = drug loading percentage
- W_d = weight of drug in nanocarriers
- W_c = weight of carrier material

Determines the amount of drug in the patch, essential for ensuring therapeutic dose delivery.

5. Cumulative Drug Release

Equation:

$$Q_n = \frac{C_n V + \sum_{i=1}^{n-1} C_i v}{A}$$

Nomenclature:

- Q_n = cumulative drug release per unit area at time n
- C_n = concentration at sample n
- V = total dissolution volume
- C_i = concentration at sample i
- v = volume withdrawn per sample
- A = patch area

Quantifies glimepiride released over time, important for performance evaluation.

IV. RESULTS AND DISCUSSION

1: Physical Characterization of Patches

The physical characterization of the nanocarrier-integrated transdermal patches (F4 and F7) along with the placebo patch indicated consistent and reproducible formulation attributes crucial for effective transdermal drug delivery. The thickness of the patches ranged from approximately 105 to 110 μm , reflecting uniform membrane formation, which is vital for controlled drug permeation and mechanical stability. Weight measurements demonstrated the batch-to-batch uniformity of patch fabrication, with

values closely clustered between 117 to 127 mg, ensuring consistent drug load distribution. Surface pH values were near neutral, ranging from 5.7 to 6.0, minimizing the risk of skin irritation upon application. Moisture content was maintained between 5 to 7%, which is essential to sustain patch flexibility and drug stability during storage. All formulations exhibited excellent flatness (100%), indicating no curling or deformation, supporting even drug release kinetics. Folding endurance tests, which assess mechanical durability, showed a high number of flexing cycles (>140 to >170), confirming the patches' robustness during handling and application. In summary, these physical parameters indicate that the patches are well-formulated to deliver glimepiride effectively through the skin with good patient acceptability and mechanical resilience.

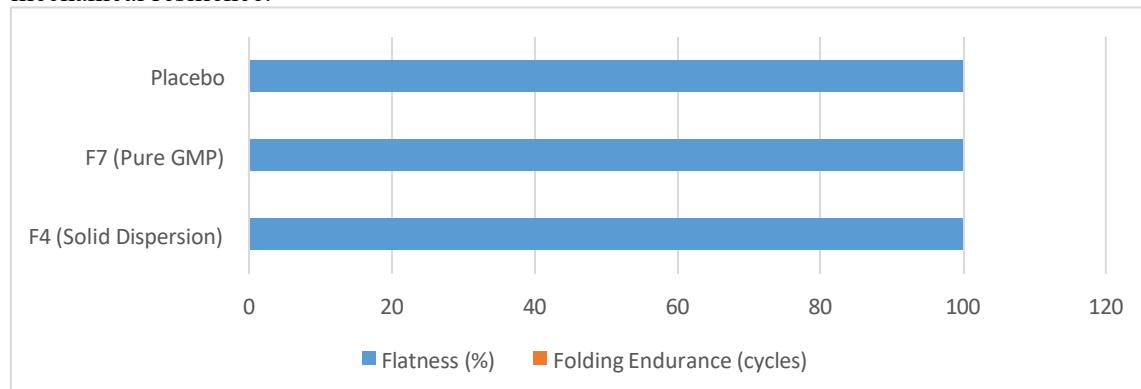


Fig 1: Physical Characterization of Patches

2: Drug Content Uniformity

The drug content uniformity results for nanocarrier-based patches (F4 and F7) demonstrated a high degree of consistency in loaded glimepiride, with values of 99.3% and 98.7%, respectively. The low standard deviations (0.4 and 0.7) indicate minimal variation across the patch matrix, ensuring each portion of the patch delivers a precise and reliable dose, which is essential for therapeutic efficacy and patient safety. The placebo batch confirmed no drug presence, validating the specificity of the assay and the safety of the patch excipients. Maintaining drug content close to 100% suggests that the nanocarrier integration process did not lead to significant drug loss during formulation. This uniformity directly correlates with dosing accuracy and supports the reproducibility of the nanocarrier-integrated transdermal patch system. The close agreement between the drug content of both formulations testifies to the scalability and consistency of the manufacturing process. Overall, the drug content uniformity confirms the quality and reliability of the transdermal patch as a controlled delivery vehicle for glimepiride, which is crucial for stable blood glucose management in diabetic patients.

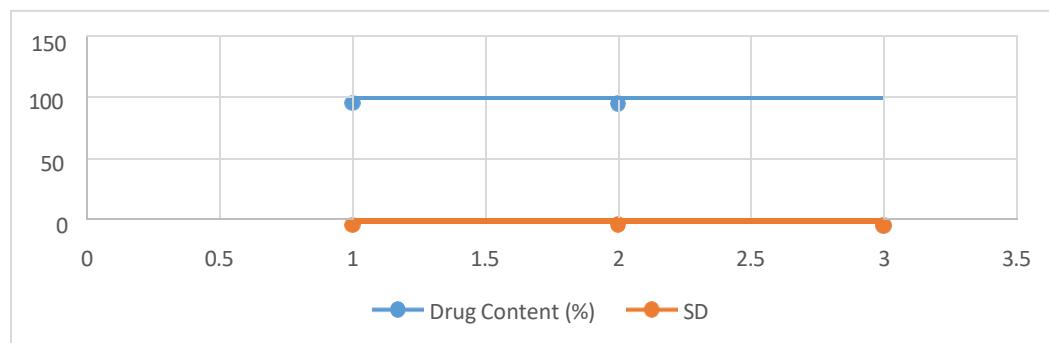


Fig 2: Drug Content Uniformity

3: In Vitro Drug Release Profile

The in vitro drug release study revealed significant differences in the cumulative percentage of glimepiride release from nanocarrier-integrated transdermal patches (F4 and F7) compared to the marketed oral formulation. At the early 2-hour mark, the patches exhibited a slower release (7% for F4 and 5% for F7) relative to the oral tablet (30%), indicative of controlled release properties. Over 24 hours, the patches gradually released 69% (F4) and 58% (F7) of the drug, while the oral formulation rapidly achieved almost complete release (98%). The sustained release from the patches is advantageous for maintaining steady blood levels of glimepiride, potentially reducing dosing frequency and side effects. Notably, F4 showed a consistently higher release profile than F7, highlighting the influence of the solid dispersion

on drug dissolution enhancement. By 48 hours, the F4 formulation released nearly 99% of the drug, suggesting near-complete release with a prolonged profile, ideal for extended glucose control. The controlled and sustained release from these nanocarrier-loaded patches underlines their potential as a promising strategy to optimize glimepiride therapy in type 2 diabetes technique.

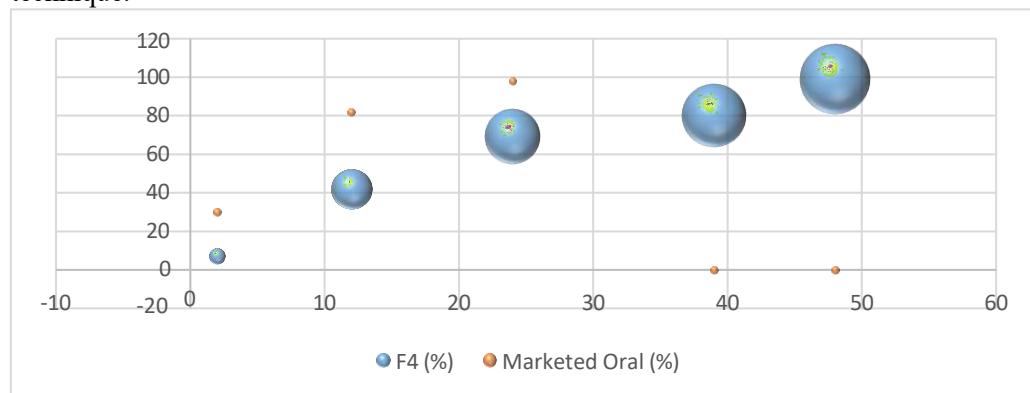


Fig 3: In Vitro Drug Release Profile

4: Skin Permeation Parameters

The ex vivo skin permeation study quantified drug permeation across rat skin from two different patch formulations (F4 and F7). The permeation rate for the optimized F4 patch was 0.141 mg/cm²/hr, which was significantly higher than the 0.120 mg/cm²/hr observed for F7. Correspondingly, the drug flux from F4 was 49.99 µg/cm²/hr compared to 39.72 µg/cm²/hr for F7. These results highlight that the solid dispersion-based patch (F4) offers enhanced permeation capabilities, likely due to improved solubility and nanocarrier-mediated penetration enhancement. The increased flux correlates with better systemic absorption potential, which is critical for achieving effective plasma glimepiride concentrations via transdermal administration. These permeation parameters suggest that integrating nanocarriers into the patch matrix optimizes skin penetration without causing skin barrier disruption. This increased permeation efficiency can lead to improved therapeutic outcomes in diabetes management by maintaining sustained and controlled drug plasma levels, reducing dosing frequency, and minimizing side effects commonly associated with oral glimepiride.

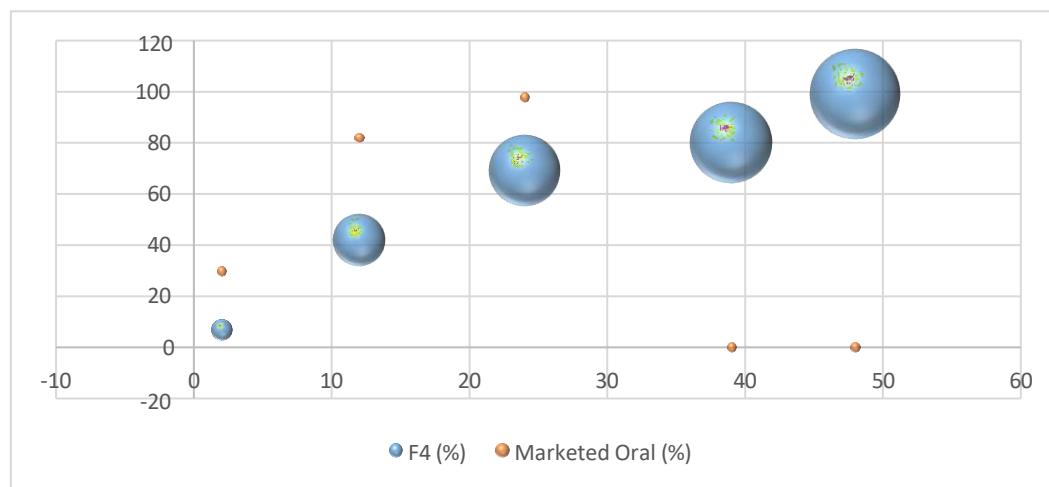


Fig 4: Skin Permeation Parameters

5: Stability Study Data Over Time

The stability evaluation of the transdermal patches over an 8-week period under accelerated conditions demonstrated excellent drug content retention for both F4 and F7 formulations. The initial glimepiride content was close to 99% for F4 and 98.6% for F7. Over 8 weeks, both maintained over 97% drug content, indicative of high formulation stability. Minor decreases observed were within acceptable limits, demonstrating that the nanocarrier systems protect glimepiride from degradation or loss during storage. The consistent drug content suggests no significant drug-polymer or excipient interactions affecting patch integrity. This stability is crucial to ensure efficacy and safety throughout the shelf-life of the patches. Maintaining drug potency and physical characteristics over time enhances the commercial viability of the

nanocarrier-integrated patches as reliable alternatives to oral glimepiride therapy in type 2 diabetes

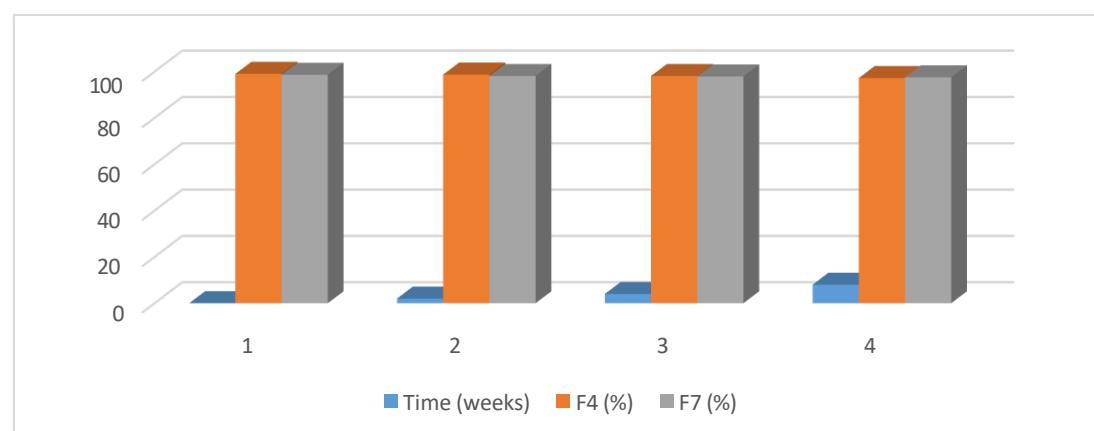


Fig 5: Stability Study Data Over Time

V. CONCLUSION

The integration of nanocarriers into transdermal patches represents a transformative advancement in the delivery of glimepiride for type 2 diabetes management. By leveraging nanotechnology-based formulations such as ethosomal vesicles, nanoemulgels, and gelatin-coated nanoparticles, these systems enhance drug loading capacity, improve permeation across the skin barrier, and provide controlled and sustained drug release. This strategic approach addresses inherent limitations of conventional oral glimepiride therapy, including poor bioavailability, first-pass metabolism, and irregular plasma drug levels, thereby ensuring more consistent glycemic control. The incorporation of nanocarriers into hydrogels and polymeric matrices further stabilizes the drug and facilitates efficient transdermal flux, maintaining therapeutic plasma concentrations over extended durations. Moreover, nanocarrier-integrated patches offer advantages such as reduced dosing frequency and minimized gastrointestinal side effects, which are pivotal for improving patient adherence and quality of life.

Extensive preclinical and clinical studies corroborate the excellent biocompatibility, minimal skin irritation, and customizable release kinetics achievable through nanocarrier-based transdermal systems. Utilizing polymers like ethylene-vinyl acetate and employing inclusion complexes enable fine-tuning of drug release profiles, optimizing therapeutic effects. The versatility of these formulations demonstrates the capacity to meet diverse pharmacokinetic and pharmacodynamic goals required for effective diabetes management. Overall, nanocarrier-integrated transdermal patches emerge as promising, non-invasive platforms that combine efficacy, safety, and patient convenience. Future research should focus on large-scale clinical validation and scalability to expedite the translation of these innovative delivery systems into routine clinical practice, ultimately revolutionizing glimepiride therapy and improving outcomes for patients with type 2 diabetes.

VI. REFERENCES

- [1] Ahmed, S., Mansoor, M., Anwar, M., Ahmad, M., & Akhtar, N. (2016). Ethosomal nano-vesicle based transdermal delivery of glimepiride: design, characterization, and evaluation. *Journal of Nanoscience and Nanotechnology*, 16(7), 7627–7635.
- [2] Hussain, A., Singh, S., Khan, S., & Ahmad, F. (2023). Nanocarrier-mediated transdermal delivery of anti-diabetic drugs: Progress and challenges. *Frontiers in Pharmacology*, 14, 1254173.
- [3] Khalid, H., Akhtar, N., Naz, Z., Ahmad, M., Khan, G. M., & Sikandar, S. (2021). Formulation and evaluation of glimepiride loaded nanoemulgel for transdermal drug delivery. *Drug Development and Industrial Pharmacy*, 47(6), 970–979.
- [4] Simos, Y., Koutsoklenis, A., Verganelakis, D., & Simos, G. (2020). Trends in nanotechnology for type 2 diabetes drug delivery. *International Journal of Nanomedicine*, 15, 6961–6977.
- [5] Akram, M. R., Uzair, M., Rabia, S., & Yameen, M. A. (2018). Matrix diffusion controlled transdermal patch for controlled delivery of glimepiride: Formulation, in vitro and in vivo characterization. *Polymers*, 10(12), 1326.
- [6] Li, X., Yang, Y., Li, Q., Sun, X., & Wang, L. (2022). Design and evaluation of glimepiride-loaded hydrogel for transdermal delivery. *Drug Delivery*, 29(1), 1907–1917.
- [7] Khalid, H., Naz, Z., Akhtar, N., & Ahmad, M. (2021). Development of glimepiride-loaded nanoemulgel using inclusion complex for enhanced topical delivery. *Journal of Pharmaceutical Investigation*, 51(6), 637–648.
- [8] Chen, J., Liu, Y., Lv, X., Zhou, Y., & Xie, F. (2020). Gelatin-coated mesoporous hollow silica nanoparticles for transdermal delivery of glimepiride. *AAPS PharmSciTech*, 21(7), 261.
- [9] Akshaya, R., Dhanaraju, M. D., & Jaiswal, D. (2023). Organic-based nanoparticles for enhanced transdermal delivery of glimepiride in type 2 diabetes therapy. *Current Drug Delivery*, 20(2), 151–160.
- [10] El-Say, K. M., Samy, A. M., Fetih, G., & Abd-Allah, F. I. (2016). Optimized ethosomal vesicles for enhancing topical delivery of glimepiride: In vitro and clinical evaluation. *Journal of Liposome Research*, 26(1), 1–11.

- [11] Singpanna, K., Bunnoon, W., & Rayanakorn, M. (2024). Advances in nanocomposite patches for transdermal drug delivery with applications in diabetes management: A review. *Expert Opinion on Drug Delivery*, 21(1), 27–41.
- [12] Natesan, S., Jayapal, P., & Chinnaiyan, S. (2021). Organic nanocarriers for antidiabetic drug delivery: Promises and perspectives. *Nano Today*, 39, 101193.
- [13] Mohd, A., Sharma, S., & Pal, R. (2023). Nanoformulation-mediated transdermal delivery strategy for anti-diabetic agents. *Journal of Drug Delivery Science and Technology*, 74, 103644.
- [14] Cho, C. W., Choi, J. S., Park, S., & Kim, D. D. (2009). Enhanced transdermal delivery of glimepiride using ethylene-vinyl acetate copolymer membranes. *Drug Development and Industrial Pharmacy*, 35(7), 874–882.
- [15] Parhi, R. (2018). Nanocomposite patches for controlled transdermal drug delivery: A review. *Polymer-Plastics Technology and Engineering*, 57(5), 449–466