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Abstract 
Background/Objectives: Transcatheter aortic valve implantation (TAVI) has grown to be a lifechanging, little 
invasive therapy for individuals with significant aortic stenosis at high or impractical surgical risk. To reduce technical 
problems, guide device selection, and maximize clinical results, excellent pre-procedural preparation is necessary. This 
systematic review aims to assess the present function of artificial intelligence (AI) in improving several elements of 
TAVI planning, including anatomical segmentation, valve sizing, risk stratification, and outcome prediction.     
Methods: Peer reviewed papers published between 2023 and 2025 were found in PubMed, Scopus, and IEEE 
Xplore using a thorough literature search. Studies using artificial intelligence including ML or DL to aid TAVI 
planning operations like image-based anatomical assessment, computational modeling, or clinical outcome prediction 
were included. Ten high-quality studies were chosen based on predetermined inclusion criteria and PRISMA criteria. 
Results: Most often used artificial intelligence techniques were convolutional neural networks (CNNs), UNet 
architectures, and Support Vector Machines (SVMs). While predictive models for postTAVI complications recorded 
AUCROC values ranging from 0.85 to 0.95, segmentation models achieved Dice Similarity Coefficients >0.90 and 
mean surface distances <1 mm. Numerous tools, DeepCarve included, showed clinically relevant processing rates and 
high agreement with expert assessments. Consistently reducing interobserver variance and increasing planning 
efficiency, AI systems. 
Conclusions: Faster, more accurate, and repeatable decision support that AI provides is quickly enhancing TAVI 
preprocedural planning. However, broader clinical translation calls for prospective validation, regulatory clarity, and 
better model interpretation. With ongoing interdisciplinary cooperation, artificial intelligence has the potential to 
considerably improve precision and safety in TAVI planning. 
Keywords: Artificial Intelligence; Transcatheter Aortic Valve Implantation; Pre-procedural Planning; Deep 
Learning; Medical Imaging; Risk Prediction; Machine Learning; Image Segmentation; Clinical Decision Support; 
Explainable AI. 
 

1. INTRODUCTION 
Among the most frequent and life-threatening valvular heart issues, aortic stenosis (AS) especially afflicts 
elderly people. AS is distinguished by progressive calcification and narrowing of the aortic valve, which 
lowers cardiac output and results in dyspnea, angina, and syncope. Without prompt intervention, severe 
symptomatic AS has a one-year mortality rate close to 50%, stressing the need for precise diagnosis and 
efficient treatment approaches [1], [2]. 
Given rising life expectancy everywhere, the load of AS is projected to soar. Around 4.6% of people 75 
years old and older are afflicted; globally, about 3.4 million have severe symptomatic forms of illness. This 
population change (see Table 1) puts increasing strain on healthcare systems to provide scalable, safe, and 
cost-efficient treatments for elderly and comorbid patients. Particularly in high and medium-risk 
populations [3], [4], Transcatheter Aortic Valve Implantation (TAVI) has arisen in response as a 
transformative, less invasive option to SAVR. 
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Table 1. Aortic Stenosis and TAVI Global Trends Utilization. 
Parameter Value/Estimate Source/Notes 

Global prevalence of AS in 
individuals ≥75 years 

~4.6% 
Population-based 
echocardiographic studies 
(2023) 

Symptomatic severe AS (≥75 
years) 

~3.4 million individuals 
worldwide 

Estimated by 2024 registry data 

Untreated mortality rate (1 year) ~50% 
ESC/EACTS Valvular Heart 
Disease Guidelines (2023) 

Annual TAVI procedures 
globally (2025 est.) 

>300,000 
Exponential growth from 
~180,000 in 2020 

TAVI adoption in 
intermediate/low-risk patients 

45–60% (varies by region) 
Increased guideline-based 
expansion (ACC/AHA 2024 
updates) 

TAVI-related mortality at 30 
days 

2.5–4.0% 
Depending on center experience 
and patient risk profile 

Average hospital stays (TAVI vs. 
SAVR) 

3.1 vs. 6.7 days Multicenter cohort study (2024) 

 
From its first inhumane use in 2002, TAVI has grown from a backup choice for inoperable patients to a 
guideline-endorsed treatment appropriate for a wide range of risk classes [5]. By 2025, yearly worldwide 
TAVI surgeries are expected to reach 300,000, with increasing indications including low-risk patients as 
well (Table 1). In terms of mortality, functional recovery, and length of hospital stay [6], clinical trials and 
registry data have proven that TAVI offers results equal or, in some cohorts, better than SAVR. 
Because intraoperative flexibility is limited compared to open surgery, the minimal invasiveness of TAVI 
requires exact preprocedural preparation. Good outcomes and prevention of problems including 
paravalvular leak, annular rupture, and coronary obstruction depend on exact assessment of the aortic 
annulus and surrounding anatomy, choice of prosthesis type and size, identification of appropriate 
vascular access routes, and postprocedural risk prediction [7], [8]. 
To satisfy these demanding challenges, artificial intelligence (AI) has grown increasingly prominent in 
structural cardiac procedures. With Deep Learning (DL) and Machine Learning (ML) algorithms, artificial 
intelligence systems may automatically segment images, measure anatomical characteristics, forecast bad 
results, and support real-time decision-making. Especially in cardiovascular imaging, artificial intelligence 
models have proven very promising to reduce operator variance, enhance reproducibility, and shorten 
time-consuming diagnostic tests [9], [10]. 
AI applications for segmenting the aortic valve complex from CT and echocardiographic data, simulating 
hemodynamics using computational models, forecasting postTAVI complications, and automatically 
prosthesis sizing by means of statistical shape modeling have been investigated in the context of TAVI. 
Furthermore, AI-generated synthetic patient cohorts are being employed to improve training datasets and 
support model validation, hence tackling the challenge of sparse annotated data in cardiovascular imaging 
[11], [12]. 
Though the field is moving quickly, some obstacles still exist. Though often lacking focus on recent 
technical developments or real-world validation, past reviews have highlighted AI in TAVI imaging and 
planning's promise. Heterogeneity in model kinds, clinical datasets, and outcome measures has also made 
it challenging to compare results throughout trials or reach agreement for clinical inclusion [13]. 
Focusing on publications from 2023 to 2025, this systematic review so seeks to critically assess the state-
of-the-art uses of artificial intelligence in pre-procedural planning for TAVI. It tries to address the 
following: 
• Which artificial intelligence models are being applied in TAVI planning? 
• What are their clinical responsibilities and performance indicators? 
• How are these models validated, and what obstacles restrict their adoption? 
This review offers a thorough basis for researchers, clinicians, and policymakers considering the future of 
AI-assisted structural heart procedures by combining data from image analysis, predictive modeling, 
simulation, and clinical decision support across several AI disciplines. 
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2. METHODS 
To guarantee methodological rigor and openness, this methodical study was carried out following the 
PRISMA rules. The choice procedure comprised four major phases: Identification, Screening, Eligibility, 
and Inclusion. Figure 1 shows the step-by-step flow of the literary selection process. 
2.1. Identification Stage 
A thorough literature search across PubMed, Scopus, and IEEE Xplore, three top academic databases, 
was undertaken to find pertinent studies on artificial intelligence applications in pre-procedural planning 
for TAVI. Given the interdisciplinary character of the review, these platforms were chosen for their 
combined indexing of high-quality biomedical (PubMed), multidisciplinary (Scopus), engineering and 
computational (IEEE Xplore) publications. Though other databases including Embase or Web of Science 
might also contain relevant studies, they were omitted to prevent repetition and restricted access. This is 
admitted to be a possible drawback in the debate. 
To catch the most recent and clinically relevant applications of artificial intelligence in TAVI, the search 
covered 2023 to 2025. A Boolean logic-based keyword strategy was employed using the following search 
string: 
("TAVI" OR "TAVR") or "transcatheter aortic valve implantation" 
and ("Artificial Intelligence" or "Machine Learning" or "Deep Learning") 
AND ("Valve Sizing" OR "Computed Tomography" OR "Risk Prediction" or "Preprocedural Planning") 
Seventy-two articles from PubMed, forty-nine from Scopus, and forty-three from IEEE Xplore resulted 
from this search totaling 164 papers. After removing 8 duplicates, a total of 156 unique records remained 
for screening. 
2.2. Screening Stage 
The 156 records were screened based on title and abstract using predefined inclusion and exclusion 
criteria (summarized in Table 2). At this stage, studies were included if they: 
• Employed Artificial Intelligence (AI) techniques including Machine Learning (ML) or Deep Learning 
(DL); 
• Concentrating on pre-procedural planning activities for TAVI, including anatomic segmentation, 
valve sizing, risk estimation, or simulation modeling; 
• Were peer-reviewed, full-text English published papers available. 
Studies were excluded if they: 
• Concentrating on cardiovascular procedures other than TAVI, or on post-TAVI complications only; 
• Did not use methodologies based on AI/ML/DL techniques; 
• Whether conference abstracts, editorials, or failed full-text access. 
Thirty-four studies were eliminated depending on these criteria: twenty owing to subject irrelevance and 
fourteen due to non-peer-reviewed status or access problems. This resulted in 122 publications needing 
full-text inspection. 
2.3. Eligibility Stage 
The 122 full-text articles were reviewed in detail to assess technical depth and relevance. Studies were 
excluded if they: 
• Lacked a well-defined AI strategy including unstated algorithms, datasets, or evaluation metrics; 
• Concentrated solely on intra- or post-procedural results, including valve durability, hemodynamics 
after TAVI; 
• Was missing quantitative model performance indicators like accuracy, AUC, sensitivity, specificity, or 
Dice coefficient. 
For clarity, “adequate methodological detail” was defined as the presence of: 
• A clearly described AI model architecture (e.g., CNN, U-Net, SVM); 
• Input data type and source (e.g., CT, Echo, clinical variables); 
• Training/validation strategy (e.g., cross-validation, external testing); 
• At least one quantitative evaluation metric. 
As a result, 41 studies were excluded 23 for lacking methodological depth and 18 for focusing on 
outcomes unrelated to pre-procedural planning. This left 81 studies for inclusion assessment. 
2.4. Inclusion Stage 
The remaining 81 full-text studies were then reviewed for final inclusion. Studies were selected if they: 
• Utilized AI/ML/DL algorithms in pre-procedural TAVI planning; 
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• Addressed one or more core domains: image segmentation, prosthetic valve sizing, anatomical 
modeling, risk prediction, or workflow automation; 
• Reported quantitative performance outcomes using standard metrics; 
• Presented a validation approach including hold-out, k-fold, or prospective pilot studies; 
• English writer, peer-reviewed full-text. 
Ten high-quality research satisfying all criteria were included in this systematic review after using these 
demanding criteria. These form the evidence base for subsequent synthesis in the Research Findings 
section. Figure 1 outlines the full selection process. 
2.5. Reviewer Workflow and Disagreement Resolution 
Two reviewers with cardiology and biomedical AI knowledge performed separately every title/abstract 
review, full-text assessment, and data extraction step. Through conversation, a consensus was reached in 
instances of disagreement. Should disagreement continue, a third judge guaranteed objectivity in the 
ruling. This multi-reviewer approach complements PRISMA guidelines and strengthens the scientific 
accuracy of the review process. 
2.6. Risk of Bias and Quality Assessment 
No official risk of bias evaluation tool (e. g. QUADAS-2 for imaging studies or PROBAST for predictive 
models) was used due to the heterogeneity in research design and reporting methods among the included 
investigations. Every study was rigorously reviewed for methodological soundness, AI model transparency, 
validating techniques, and clinical relevance. This absence of consistent bias assessment is seen as a flaw 
and directs toward upcoming development in evidence synthesis for AI-driven medical research. 
 

 
Figure 1. Step-by-step screening and inclusion process for the systematic review. 
Table 2. Inclusion and Exclusion Criteria for Selected Studies. 

Inclusion Criteria Exclusion Criteria 

Studies that employed artificial 
intelligence (AI), machine learning 
(ML), or deep learning (DL) techniques 
for pre-procedural planning in 
Transcatheter Aortic Valve 
Implantation (TAVI) 

Studies that did not specifically address 
TAVI or did not include pre-procedural AI 
applications 

Research that targeted anatomical 
segmentation, prosthetic valve sizing, 
patient-specific risk prediction, or 
simulation modeling before TAVI 

Articles focused solely on post-procedural 
outcomes, intraoperative techniques, or 
used only traditional (non-AI-based) 
planning methods 

Peer-reviewed journal articles that were 
available in full text and written in 
English 

Non-English publications, conference 
abstracts, editorials, commentaries, or 
opinion pieces without an accessible full text 
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Studies that utilized clinical imaging data 
(e.g., CT, echocardiography) or patient 
clinical variables to train or validate AI 
models 

Research that did not describe AI 
methodology in sufficient detail (e.g., lacked 
explanation of model type, input data, 
evaluation metrics, or validation approach) 

 
3. Research Findings 
This section may be divided by subheadings. It should provide a concise and precise description of the 
experimental results, their interpretation, as well as the experimental conclusions that can be drawn. 
3.1. Overview of Included Studies 
Ten peer-reviewed publications published between 2023 and 2025 examining the use of AI in pre-
procedural preparation for TAVI are included in this systematic review. Deep learning, machine learning, 
imaging-based artificial intelligence segmentation, risk prediction models, and computational 
hemodynamic simulations are all used in the studies, therefore reflecting a varied and multidisciplinary 
set of approaches that improves procedural planning and results in TAVI. Of these 10 studies: 
• Five studies focused on CT-based or echocardiography-based anatomical segmentation and 
measurement tools, including DL architectures such as U-Net and proprietary software platforms like 
4TAVR, which demonstrated high Dice Similarity Coefficients (up to 0.93) and mean surface distance 
metrics compatible with expert assessments [14], [15], [16], [17], [18]. These tools offered significant time 
savings over traditional semi-automated methods, with some generating complete outputs in under 45 
seconds [14]; 
• Using multimodal data sources including CT imaging, electrocardiograms (ECGs), transthoracic 
echocardiography (TTE), and clinical variables, three studies created predictive machine learning models 
to estimate post-TAVI outcomes like pacemaker implantation, mortality, and certain complications [17], 
[19], [20]. Predicting pacemaker needs among them, an SVM-based model attained an AUC-ROC of 92. 
1% and accuracy of 87.9% [19]. These predictive models aim to enhance pre-procedural patient 
stratification and device decision-making; 
• Two studies investigated computational and fluid-structure interaction (FSI) models for patient-
specific simulation of hemodynamics during and after TAVI [21], [22]. These models outperformed 
conventional methods in both speed and accuracy (e.g., constructing meshes in about 2 seconds) [22] by 
using AI-enhanced geometry reconstruction algorithms such DeepCarve and C-MAC. The simulations 
gave information on crucial variables for procedural planning in high-risk cohorts: wall shear stress, 
transvalvular pressure gradients, and thrombotic risk; 
• Additional innovations include the use of dual-layer spectral CT with virtual monoenergetic imaging 
(VMI) to reduce contrast burden in patients with renal insufficiency while maintaining adequate image 
quality [23], and the generation of synthetic virtual patient cohorts using statistical shape modeling and 
ML techniques to assist in valve sizing and pressure gradient prediction [20]. 
Together, these investigations show how increasingly sophisticated artificial intelligence systems are 
throughout the TAVI planning spectrum, from automated anatomical assessment and virtual modeling 
to customized risk assessment. With better reproducibility, workflow efficiency, and scalability, most AI-
driven solutions exhibited measurement accuracy close to that of expert human annotations. Several 
studies highlighted the capacity of these technologies to lower interobserver variance and streamline 
procedural planning, therefore improving both procedural results and resource use. An overview of the 
included studies is shown in Table 3. 
Table 3. Summary of Included Studies on AI Applications in TAVI Pre-Procedural Planning 

Author AI Technique Application Area 
Key Findings / 
Performance Metrics 

Remarks 

Saitta et al. 
[14] 

Deep Learning 
(DL) – 
Segmentation 

CT-based aortic root 
morphology 
assessment 

Dice: 0.93; MSD: 1.10 mm 
(aortic root), 0.68 mm 
(annulus); Runtime: <45s 

High accuracy and speed; 
minor underestimation 

Benjamin et 
al. [17] 

Multiple DL & 
ML models 

TAVI diagnosis, 
planning, outcome 
prediction 

Accurate valve sizing, FFR 
prediction, complication 
forecasting, EKG screening, 
and mortality prediction 

Broad application across 
TAVI workflow 

Santaló et 
al. [18] 

Deep Learning 
Valve hydrodynamics; 
DL for planning 

Acceptable Sapien 3 valve 
performance post-TAVI; 

Multimodal study; valve 
performance focus 
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DL tools discussed 
alongside PCI outcomes 

Toggweiler 
et al. [15] 

AI-powered 
software 

Automated annular 
measurement and 
IFU-based sizing 

87–88% agreement with 
manual sizing; consistent, 
unbiased annular 
measurements 

Validated tool for 
standardizing planning 

Tahir et 
al. [16] 

DL (U-Net, AG-
UCNet); ML 
regressors 

Aorta segmentation; 
PVL and mortality risk 
prediction 

DSC up to 91.2%; 
regression models predict 
wall shear stress and 
complications accurately 

DL models outperform 
traditional CFD/FEA 

Ouahidi et 
al. [19] 

ML – SVM 
Pacemakers need 
prediction after TAVI 

AUC-ROC: 92.1%; F1: 
71.8%; Accuracy: 87.9% 

Clinical tool developed 

Fontana et 
al. [23] 

Dual-Layer 
Spectral CT (AI-
aided) 

Low-contrast CT 
planning for TAVI 

40 keV VMI enhanced 
contrast; correlation 
between BMI and 
enhancement 

Safety for patients with renal 
concerns 

Zingaro et 
al. [21] 

Fluid-Structure 
Interaction (FSI) 

Flow simulation & 
pressure gradients 

Matched 4D MRI and CT; 
underestimates some 
values; TKE: 15.8 J/m³; 
TPG: 13 mmHg 

Good alignment with clinical 
imaging 

Ozturk et 
al. [22] 

DL-based 
geometry 
reconstruction 

Personalized flow 
dynamics modeling 

Time-resolved mesh in ~2s; 
100× faster than 
traditional; suitable for 3D 
printing 

Advanced virtual modeling 

Scuoppo et 
al. [20] 

Statistical Shape 
Modeling + ML 

Synthetic patient 
generation for virtual 
TAVI 

Accurate peak pressure & 
sizing prediction; synthetic 
cohort matched real-world 
patient shapes 

Supports model training & 
device selection 

 
3.2. AI Applications in TAVI Pre-Procedural Planning 
3.2.1. Image Segmentation and 3D Reconstruction 
An accurate anatomical assessment of the aortic root along with the annulus and adjoining vascular 
structures is a very vital step in preprocedural planning for TAVI. Conventional manual and semi-
automated segmentation methods are labor-intensive and suffer from interobserver variability. In this 
respect, DL techniques, particularly CNNs and U-Net architectures, had shown great promise in 
implementing automatic methods with very high accuracy. All these developments in image segmentation 
have been summed up pictorially in Figure 2, where these models solidly figure as fast and accurate 
anatomical reconstruction permitters, being driven by such advanced AI techniques as CNNs and U-Net 
architecture. 
Multiple studies employed CNN-based architecture for segmentation tasks. For instance, a CT-based DL 
model achieved a mean Dice Similarity Coefficient (DSC) of 0.93 for aortic root segmentation and mean 
surface distances (MSD) of 1.10 mm for the root, 0.68 mm for the annulus, and 0.70 mm for the 
sinotubular junction [14]. These results are comparable to expert manual annotations, and the system 
completed measurements in under 45 seconds, significantly outperforming semi-automated commercial 
tools in speed and consistency. Similarly, other works applied advanced U-Net variants, such as AG-
UCNet and two-stage 3D U-Nets, achieving DSC values above 91% for aorta segmentation [16]. These 
tools are not only fast but also robust across various CT image qualities and patient anatomies. 
The incorporation of AI-powered segmentation platforms, such as 4TAVR, has facilitated the 
standardization of annular and aortic root measurements. These platforms produce consistent results 
with high agreement (87-88%) with instruction-for-use (IFU) sizing guidelines and expert measurements 
[15]. Automated segmentation also contributes to a reduction in intra- and interobserver variability, an 
important factor in improving reproducibility and reliability in TAVI planning. 
These AI-based segmentation tools show much improved reproducibility, less operator dependence, and 
the capacity to quickly analyze massive datasets hence cutting planning time and minimizing human error 
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when compared to conventional techniques. Furthermore objective is added by artificial intelligence since 
it produces constant, guideline-compliant results that reduce interobserver variance. 
3.2.2. Valve Sizing and Selection 
Accurate prosthesis sizing is essential for preventing complications such as paravalvular leak, coronary 
obstruction, and annular rupture. AI techniques have been employed to enhance prosthetic valve 
selection based on anatomical measurements derived from imaging data. Predictive models use CT-based 
features, statistical shape models, and patient-specific morphological data to simulate optimal device 
placement and sizing. 
In one study, machine learning models trained on a synthetic cohort of 100 virtual TAVI patients 
demonstrated effective prediction of device size and peak pressure gradients. The models used statistical 
shape modeling (SSM) techniques to identify anatomical features associated with valve selection [20]. 
Another study utilized deep learning to support valve sizing by integrating features from CT and 
echocardiography, offering algorithmic suggestions that aligned with expert decisions in over 85% of cases 
[17]. 
The introduction of virtual deployment simulations, enhanced by fluid-structure interaction (FSI) models 
and AI-driven mesh generation algorithms such as DeepCarve and C-MAC, has allowed clinicians to 
visualize the impact of different valve sizes on patient-specific geometries. These models generate patient-
adapted 3D representations in under 2 seconds, supporting real-time clinical decision-making [22]. Figure 
2 presents the pivotal roles that these AI models would take in valve-sizing workflows by integrating 
patient-specific anatomical data, statistical shape modeling, and virtual simulation tools such as 
DeepCarve and C-MAC. 
AI-enabled solutions offer real-time input, lower interobserver variability, and help decision-making 
precision by quickly recognizing complex relationships between anatomy and equipment selection, 
therefore enhancing conventional valve sizing methods. Compared to conventional mesh production 
pipelines, technologies like DeepCarve can reduce computational time up to 100 times, therefore 
providing major workflow benefits. 
3.2.3. Risk Prediction and Patient Stratification 
In addition to functional assessment, AI will be used more to assess clinical risk stratification to predict 
negative outcomes following TAVI. The models take as inputs multimodal data including ECG, TTE, 
CT imaging, and clinical variables. 
A Support Vector Machine (SVM)-based model achieved an area under the ROC curve of 92.1%, an F1 
score of 71.8%, and an accuracy of 87.9% in predicting the need for pacemaker implantation within 28 
days post-TAVI [19]. This model integrated 22 features from imaging and clinical data, and an online 
tool was developed to facilitate clinical use. Figure 2 therefore serves as a visual demonstration of how 
risk prediction frameworks parse multimodal input data and predictive algorithms like SVMs to stratify 
patients into likely experience of specific complications, such as the need for pacemaker placement, or 
bleeding. 
Other AI models have also demonstrated effectiveness in predicting post-procedural complications such 
as heart failure admission, reduced leaflet motion, bleeding risk, and long-term mortality [17]. AI-driven 
FFR (fractional flow reserve) prediction models from CT angiography data have been developed to 
evaluate the functional severity of intermediate coronary lesions, reducing the need for invasive coronary 
angiography in TAVI candidates. These models help in assessing the overall risk profile and improving 
patient selection [17]. 
Compared to rule-based or manual stratification protocols, AI risk prediction models demonstrate 
superior pattern recognition capabilities, capturing nonlinear and latent associations among anatomical 
and clinical variables. These models are more accurate than traditional methods in selecting patients and 
in preventing complication scenarios, thereby allowing for earlier intervention. 
3.2.4. Automation of Workflow and Decision Support 
Integration of AI into clinical workflows has been a major focus in recent years. Tools like 4TAVR and 
other AI-based planning software are being designed not only to automate measurements but also to 
provide comprehensive decision support. These tools integrate anatomical measurements, risk scores, and 
device recommendations into a single platform [15]. 
AI models have also been employed to streamline CT processing pipelines, enabling automated valve 
sizing, access route analysis, and IFU compliance checks [17]. These models can offer preliminary 
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interpretations for radiologists and interventional cardiologists, significantly improving planning 
efficiency. 
Dual-layer spectral CT combined with virtual monoenergetic imaging (VMI) and AI-guided protocols have 
also been tested to minimize contrast media use without compromising image quality, benefiting patients 
with renal impairment [23]. The total impact of such AI innovations across the workflow-scope-from CT 
processing to decision support-is pictured in Figure 2 and is overall exhaustive regarding automation 
transforming. 
In contrast to the fragmented manual workflow, AI-based platforms provide end-to-end automation of 
the imaging, analysis, and decision-making processes: an integrated and streamlined setup. The availability 
of real-time support improves adherence to clinical guidelines while reducing operator dependence. This 
is demonstrated in Figure 3, which shows how AI has sped up, standardized, and made safer the planning 
for TAVI. 

 
Figure 2. Overview of AI Applications in TAVI Pre-Procedural Planning, highlighting four domains: 
image segmentation, valve sizing, risk prediction, and workflow automation. Each domain uses specialized 
AI models and platforms (e.g., CNN, SSM, DeepCarve, 4TAVR) to improve accuracy, consistency, and 
efficiency throughout the planning process. 

 
Figure 3. Comparison of AI-Based Planning vs. Traditional Methods in TAVI Pre-Procedural Assessment 
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3.3. Performance Metrics 
The usual evaluation methods of AI models for the field of activity are some combination of segmentation 
accuracy, classification performance, and predictive reliability. Some tabulated results often include values 
for the Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD), AUC-ROC, sensitivity, 
specificity, precision, F1-score, and time taken. 
In general, for image segmentation tasks, Dice coefficients greater than 0.90 have been reported, thus 
indicating a high spatial overlap with expert annotations [14], [16]. MSD values of below 1 mm for 
relevant regions such as the annulus and sinotubular junction have been recorded. Predictive models for 
valve sizing and complication risks often show AUC-ROC somewhere within the 0.85-0.95 range, with 
accuracy rates about 85-90% [19], [20].  
Validation strategies differed from study to study, including k-fold cross-validation, hold-out validation, 
and prospective clinical validation in pilot cohorts. Studies with better quality control of ground truth 
annotations and diverse training datasets had better generalizability [15], [20]. A summary of these 
performance indicators and validation approaches is provided in Table 4. 
Table 4. Performance Metrics of AI Models in TAVI Pre-Procedural Planning 

Task Metric Typical Value 

Image Segmentation 
Dice Similarity Coefficient 
(DSC) 

> 0.90 

 
Mean Surface Distance 
(MSD) 

< 1 mm 

Risk Prediction / 
Classification 

Area Under ROC Curve 
(AUC-ROC) 

0.85 – 0.95 

 Accuracy 85% – 90% 
 
3.4. Clinical Integration and Validation Status 
Even though AI models show promise tackling TAVI planning, integration into clinical practice is still at 
preliminary stages. There are only a few prospective or randomized trials confirming clinical utility, as 
most studies are still in the retrospective or validation phases. Nonetheless, several preliminary studies 
have shown feasibility along with efficiency gains in real-world contexts. 
The 4TAVR software has undergone clinical evaluation and shown high agreement with expert 
measurements in real patient cohorts [15]. Similarly, SVM-based risk prediction tools have been 
embedded in web-based interfaces for clinical use, enabling easy data entry and risk assessment [19]. Tools 
like DeepCarve and C-MAC have facilitated rapid patient-specific mesh generation, offering potential for 
intraoperative simulation and education [22]. 
Regulatory approvals, the absence of a standard across imaging protocols, and data privacy issues all pose 
significant hurdles for clinical AI adoption. Clinicians also face significant hurdles surrounding trust in 
outputs and the interpretability of AI algorithms. 
Notwithstanding these challenges, a stronger body of evidence shows that artificial intelligence improves 
the accuracy of TAVI planning as well as aids in minimizing errors and optimizing outcomes. The next 
step in further clinical translation will require continued teamwork among the engineers, the clinicians, 
and the regulators. 
3.5. Ethical, Regulatory, and Trustworthiness Considerations in Clinical Use 
Although technology has matured, clinical use of AI systems is difficult. Much research underlined the 
requirement of open reporting and explainability of artificial intelligence systems in order to increase 
clinical trust and regulatory clearance [15], [20]. To stop erroneous device choice or missed complications, 
problems with algorithmic prejudice, generalizability, and reproducibility must be solved. Moreover, often 
following technological developments, regulatory structures are changing slowly. For clinicians to 
confidently include AI-generated results into demanding procedural processes, they need intuitive 
interfaces and decision traceability [26]. 
The "black box" quality of many deep learning systems presents one of the main ethical conundrums. 
Clinicians may be wary of using automated recommendations, especially in high-risk situations like valve 
sizing or access planning, without understandable outcomes. Should there be unfavorable results, this 
lack of interpretability might cause responsibility issues [27]. Furthermore, AI trained on small or 
homogeneous datasets may encode biases that limit their legitimacy over varied populations or imaging 
methods, hence endangering health inequities. Legally speaking, it's still unclear who is responsible for 
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clinicians, developers, or institutions if an AI-assisted choice results in damage [28]. Developing 
Explainable Artificial Intelligence (XAI) frameworks that provide interpretable insights (e.g., saliency 
maps or feature attribution scores) and audit trails meant to be reviewed alongside finally recommended 
data governance and accountability, there is growing interest. Regulators such the FDA and EMA are also 
creating adaptive regulatory paths for AI/MLbased Software as a Medical Device (SaMD), but the speed 
is slow relative to innovation. Ethical deployment will thus need technical openness, strong validation, 
clinician education, and clear policy on data governance and responsibility. 
Table 5. Ethical, Regulatory, and Trustworthiness Issues in AI for TAVI Pre-Procedural Planning 
4. Challenges 
4.1. Data Availability and Quality 
A critical obstacle in using AI in TAVI pre-procedural planning due to the insufficient number of large, 
high-quality datasets is the foundational challenge. The diversity and representativeness of training data 
is restricted because most of the studies reviewed relied on retrospective datasets, often from single 
institutions. Furthermore, the anatomic structure such as aortic annulus and sinotubular junction 
labelling comes with interobserver variability which influences how models are trained and evaluated due 
to the varying ways experts do it. These hurdles add to the difficulties with training algorithms that can 
generalize effectively across real-world scenarios, because differences in imaging centers, including CT 
scan protocols, contrast material, and reconstruction parameters, add variability. The reproducibility of 
the models is hindered as there is a lack of standardization in the imaging protocols and the labelling of 
the datasets, which increases the challenge of AI models applicable to wider clinical settings [29], [30]. 

4.2. Model Generalizability and Overfitting 
The broad applicability of trained models remains a critical challenge for AI integration. While many 
models possess a high accuracy rate confined to the dataset they were trained on, there is a marked drop-
off in performance when assessed on external datasets or in different clinical environments. Variations 

Domain Challenge Explanation / Impact 

Transparency Lack of explainability in AI models 

“Black-box” nature of DL makes it 
difficult for clinicians to trust AI 
generated recommendations, 
especially in high-stakes decisions 
like valve sizing. 

Bias and Generalizability 
Algorithmic bias and poor 
generalization across populations and 
imaging setups 

AI models trained on limited 
datasets may encode systemic biases, 
leading to unequal performance 
across diverse patient populations. 

Legal Responsibility 
Ambiguity around accountability in 
case of AI errors 

Unclear liability between clinicians, 
developers, and institutions if an 
AI-based recommendation causes 
harm. 

Regulatory Lag 
Regulatory bodies are slow to adapt to 
rapid AI innovation 

Regulatory frameworks (e.g., FDA, 
EMA) are evolving but currently lag 
the pace of AI technology, delaying 
clinical approval. 

Interface Usability 
Need for intuitive and auditable AI 
tools 

Clinicians require user-friendly AI 
tools that provide traceable 
decisions and visual explanations 
(e.g., saliency maps, feature 
attributions) for clinical acceptance. 

Data Governance 
Insufficient policy clarity on data 
usage, privacy, and security 

AI models often rely on large 
patient datasets, raising ethical 
concerns about informed consent, 
data sharing, and secure storage. 

Validation and 
Education 

Limited validation in real-world 
settings and lack of clinician training 

Ethical deployment requires 
rigorous clinical validation, user 
education, and integration training 
for healthcare providers. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025 
https://theaspd.com/index.php 
 

158 

 

in imaging equipment, patient age groups, and existing medical conditions from institution to institution 
add to these differences. In deep learning algorithms, overfitting remains a widespread concern, especially 
for models developed from small, homogenous datasets. In the absence of comprehensive external 
validation, it is nearly impossible to establish whether study-reported metrics of performance are due to 
actual clinical usefulness or model overfitting. Inadequate large multicenter databases and the absence of 
federated learning frameworks increase these challenges [31], [32]. 
4.3. Interpretability and Transparency 
An example of a shortcoming associated with modern and advanced AI techniques is deep learning 
models operating as a “black box.” Even though these models perform excellently on predictive AI tasks 
and goals, their internal decision mechanisms tend to be hidden and unclear. Such a lack of 
interpretability hinders clinical adoption; physicians are less likely to act on AI recommendations that 
require extensive trust or explanation. XAI techniques like saliency maps, SHAP (SHapley Additive 
exPlanations), and attention mechanisms are starting to resolve this issue, but in the context of TAVI 
planning, they remain largely unexploited. As with most things in life, until deep learning models offer 
clear and clinically meaningful insights, their integration into the decision-making pathways will likely 
remain restricted [33], [34]. 
4.4. Regulatory and Ethical Barriers 
The route to gaining regulatory approval for AI applications in healthcare is still complicated and uneven. 
Organizations like the FDA and EMA require thorough validation, risk management, and continuous 
post-market evaluation for AI tools. However, most AI tools are not fully validated as they still sit in 
development or pilot phases, lacking sufficient evidence. There are also liability concerns associated with 
the use of AI in clinical practice. It is vague as to who takes the blame when there is an adverse outcome 
from AI recommendations; is it the clinician, the software developer, or the healthcare institution? There 
are also ethical AI use in clinics challenges like data privacy, informed consent, and bias in the algorithms 
used, which adds layers to the clinical use of AI. To facilitate the approval of AI tools and protect patients, 
there is an immediate need for comprehensive data governance policies and cross-border agreements. In 
the absence of such mechanisms, the legal and ethical frameworks relaxed, the clinical use of AI in TAVI 
Planning will be limited [35], [36].  
5. Limitations 
5.1. Limitations of Reviewed Studies 
There are several flaws the body of literature examined in this review must be recognized. Small sample 
sizes were used in a major number of the included studies, therefore reducing the statistical power and 
generalizability of their results. Many of these studies were retrospective in nature, hence introducing 
biases including selection bias, incomplete data capture, and constrained control over confounding 
factors [37].  
Furthermore, noted was a clear absence of big, future clinical studies. Most validation activities were 
confined to single center datasets or internal testing, therefore constraining the capacity to assess model 
robustness across various clinical situations. The lack of Mult institutional cooperation moreover stifles 
the creation of more generalizable and clinically useful artificial intelligence models. Direct comparison 
of studies becomes challenging as well because of variations in evaluation metrics and absence of 
consistent baselines [38], [39]. 
5.2. Limitations of the Review Itself 
This systematic review also has its own collection of constraints. First, studies with positive results are 
more likely to be published than those with negative or ambiguous results, therefore creating a publication 
bias possibility. Consequently, the general view of artificial intelligence efficiency in TAVI preprocedural 
preparation could be biased toward more positive results [40]. 
Second, the evaluation was limited to works released in English, so possibly eliminating pertinent research 
published in other languages. Third, grey literature like as conference abstracts, white papers, and 
preprints were not included, possibly missing out on developing but unedited ideas. Although attempts 
were made to guarantee thorough search, the changing dynamic and fast-paced nature of AI research 
means that newer studies may have been missed or are still to be cataloged in the databases chosen [41]. 
Still, this review offers a prompt and thorough synthesis of existing knowledge, therefore aiding in the 
discovery of possible paths for more study and use of AI in the TAVI preparation field. 
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6. Future Directions 
Developing large-scale, multicenter datasets is among the most urgent requirements in the advancement 
of artificial intelligence for TAVI preprocedural planning. To enable strong training and external 
validation of artificial intelligence models, these datasets should include a range of patient groups, several 
imaging techniques, and thorough clinical results [42]. To gather and standardize such datasets, 
collaborative projects including hospitals, educational institutions, and business participants are critical. 
These resources would support transparency and reproducibility while helping to reduce the risk of 
overfitting and enable the training of more generalizable models [43]. 
Interpretability should be given top priority by the next generation of TAVI artificial intelligence 
algorithms if one wants to win clinician trust and improve medical judgment. Investing in explainable 
artificial intelligence (XAI) approaches such as attention mechanisms, class activation mapping, and 
decision trees can help unpack the internal workings of complex models and provide rationale for model 
predictions. Promoting clinical acceptance and enabling regulatory approval will be greatly helped by 
including user-friendly visual aids that may intuitively show doctors AI insights [44], [45]. 
Future developments ought to enable perfect integration of artificial intelligence systems into 
interventional cardiology procedures and catheterization labs. Tools powered by artificial intelligence that 
can conduct real-time image segmentation, instrument sizing, and complication risk analysis could 
provide actionable insights during pre-procedural planning or even intraoperatively. Achieving real time, 
point-of-care support depends on creating artificial intelligence systems that fit with current Cath lab 
imaging techniques and surgical planning tools [46], [47]. Although there is an increasing body of 
historical studies, prospective clinical trials are necessary to assess the effectiveness, safety, and effect of 
AI-assisted planning solutions in TAVI. These trials ought to evaluate mortality, valve function, and 
quality of life, that is, both short term and long-term clinical results. Understanding the general 
consequences of AI application in regular care will also depend on the inclusion of patient-reported 
outcomes and health economic evaluations. Longitudinal follow-up will enable evaluation of the real-
world value and durability of AI driven decision making [48], [49]. 
Strong multidisciplinary cooperation is essential for the effective use of artificial intelligence in TAVI 
planning. Engineers and data scientists have to collaborate closely with cardiologists and radiologists to 
make sure that user-friendly, understandable, and clinically relevant artificial intelligence tools are 
available. Early involvement of regulatory authorities also enables development processes to be 
coordinated with approval demands and fosters confidence in artificial intelligence technologies. 
Accelerating innovation while protecting patient rights will call for the creation of ethical guidelines, data 
sharing policies, and legal systems targeted to artificial intelligence in cardiovascular care [50], [51]. 
These combined future paths help to provide a path toward the secure, effective, and widespread 
acceptance of artificial intelligence systems in TAVI preoperative preparation. Translating artificial 
intelligence developments from laboratory to bedside will be aided by interdisciplinary collaboration, 
clinical tests, and strategic investments in research infrastructure. 
 
7. CONCLUSION 
Recent interest in the role of AIs in pre-procedural planning for transcatheter aortic valve implantation 
(TAVI) has been underlined by the systematic review. AI tools, especially deep learning segmentation and 
machine-learning risk prediction, have shown metrics close to expert competence. They allow for rapid 
data analysis so that reproducibility and support for decision-making aid in the improvement of some 
clinical outcomes in any TAVI procedure. Good clinical results aside, widespread uptake has still been 
hampered. These barriers need to be lifted through the standard validation of a wide range of populations, 
along with clarified regulatory requirements and increased model explainability. Moving forward, strong 
multicenter studies, prospective validation trials, and clinician-centered design will remain key to moving 
AI out of research and into the real-world setting. Given those provisions, AI can turn the TAVI planning 
standard of care on its head: increasing precision, safety, and efficiency in the day-to-day operation of 
structural heart interventions.            
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