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Abstract

Background/Objectives: Transcatheter aortic valve implantation (TAVI) has grown to be a lifechanging, little
invasive therapy for individuals with significant aortic stenosis at high or impractical surgical risk. To reduce technical
problems, guide device selection, and maximize clinical results, excellent pre-procedural preparation is necessary. This
systematic review aims to dassess the present function of artificial intelligence (Al) in improving several elements of
TAVI planning, including anatomical segmentation, valve sizing, risk stratification, and outcome prediction.
Methods: Peer reviewed papers published between 2023 and 2025 were found in PubMed, Scopus, and IEEE
Xplore using a thorough literature search. Studies using artificial intelligence including ML or DL to aid TAVI
planning operations like image-based anatomical assessment, computational modeling, or clinical outcome prediction
were included. Ten high-quality studies were chosen based on predetermined inclusion criteria and PRISMA criteria.
Results: Most often used artificial intelligence techniques were convolutional neural networks (CNNs), UNet
architectures, and Support Vector Machines (SVMs). While predictive models for post TAVI complications recorded
AUCROC wvalues ranging from 0.85 to 0.95, segmentation models achieved Dice Similarity Coefficients >0.90 and
mean surface distances <I mm. Numerous tools, DeepCarve included, showed clinically relevant processing rates and
high agreement with expert assessments. Consistently reducing interobserver variance and increasing planning
efficiency, Al systems.

Conclusions: Faster, more accurate, and repeatable decision support that Al provides is quickly enhancing TAVI
preprocedural planning. However, broader clinical translation calls for prospective validation, regulatory clarity, and
better model interpretation. With ongoing interdisciplinary cooperation, artificial intelligence has the potential to
considerably improve precision and safety in TAVI planning.

Keywords: Artificial Intelligence; Transcatheter Aortic Valve Implantation; Pre-procedural Planning; Deep
Learning; Medical Imaging; Risk Prediction; Machine Learning; Image Segmentation; Clinical Decision Support;
Explainable Al

1. INTRODUCTION

Among the most frequent and life-threatening valvular heart issues, aortic stenosis (AS) especially afflicts
elderly people. AS is distinguished by progressive calcification and narrowing of the aortic valve, which
lowers cardiac output and results in dyspnea, angina, and syncope. Without prompt intervention, severe
symptomatic AS has a one-year mortality rate close to 50%, stressing the need for precise diagnosis and
efficient treatment approaches [1], [2].

Given rising life expectancy everywhere, the load of AS is projected to soar. Around 4.6% of people 75
years old and older are afflicted; globally, about 3.4 million have severe symptomatic forms of illness. This
population change (see Table 1) puts increasing strain on healthcare systems to provide scalable, safe, and
cost-efficient treatments for elderly and comorbid patients. Particularly in high and medium-risk
populations [3], [4], Transcatheter Aortic Valve Implantation (TAVI) has arisen in response as a
transformative, less invasive option to SAVR.
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Table 1. Aortic Stenosis and TAVI Global Trends Utilization.
Parameter Value/Estimate Source/Notes
Population-based

"4.6% echocardiographic studies
(2023)

Global prevalence of AS in
individuals >75 years

Symptomatic severe AS (275 “3.4 . million  individuals Estimated by 2024 registry data
years) worldwide

ESC/EACTS Valvular Heart
Disease Guidelines (2023)

Exponential  growth  from

Untreated mortality rate (1 year) ~50%

Annual TAVI  procedures

> ~

globally (2025 est.) 300,000 180,000 in 2020
, , Increased guideline-based
TAVE - adoption —in 5 g0 (e by region) expansion (ACC/AHA 2024
intermediate/low-risk patients
updates)

TAVlIrelated mortality at 30 Depending on center experience

2.5-4.0% . . .
days and patient risk profile
Average hospital stays (TAVI vs. 3.1vs. 6.7 days Multicenter cohort study (2024)

SAVR)

From its first inhumane use in 2002, TAVI has grown from a backup choice for inoperable patients to a
guideline-endorsed treatment appropriate for a wide range of risk classes [5]. By 2025, yearly worldwide
TAVI surgeries are expected to reach 300,000, with increasing indications including low-risk patients as
well (Table 1). In terms of mortality, functional recovery, and length of hospital stay [6], clinical trials and
registry data have proven that TAVI offers results equal or, in some cohorts, better than SAVR.

Because intraoperative flexibility is limited compared to open surgery, the minimal invasiveness of TAVI
requires exact preprocedural preparation. Good outcomes and prevention of problems including
paravalvular leak, annular rupture, and coronary obstruction depend on exact assessment of the aortic
annulus and surrounding anatomy, choice of prosthesis type and size, identification of appropriate
vascular access routes, and postprocedural risk prediction [7], [8].

To satisfy these demanding challenges, artificial intelligence (Al) has grown increasingly prominent in
structural cardiac procedures. With Deep Learning (DL) and Machine Learning (ML) algorithms, artificial
intelligence systems may automatically segment images, measure anatomical characteristics, forecast bad
results, and support real-time decision-making. Especially in cardiovascular imaging, artificial intelligence
models have proven very promising to reduce operator variance, enhance reproducibility, and shorten
time-consuming diagnostic tests [9], [10].

Al applications for segmenting the aortic valve complex from CT and echocardiographic data, simulating
hemodynamics using computational models, forecasting postTAVI complications, and automatically
prosthesis sizing by means of statistical shape modeling have been investigated in the context of TAVI.
Furthermore, Al-generated synthetic patient cohorts are being employed to improve training datasets and
support model validation, hence tackling the challenge of sparse annotated data in cardiovascular imaging
(11], [12].

Though the field is moving quickly, some obstacles still exist. Though often lacking focus on recent
technical developments or real-world validation, past reviews have highlighted Al in TAVI imaging and
planning's promise. Heterogeneity in model kinds, clinical datasets, and outcome measures has also made
it challenging to compare results throughout trials or reach agreement for clinical inclusion [13].
Focusing on publications from 2023 to 2025, this systematic review so seeks to critically assess the state-
of-the-art uses of artificial intelligence in pre-procedural planning for TAVI. It tries to address the
following:

o Which artificial intelligence models are being applied in TAVI planning?

o What are their clinical responsibilities and performance indicators?

e How are these models validated, and what obstacles restrict their adoption?

This review offers a thorough basis for researchers, clinicians, and policymakers considering the future of
Al-assisted structural heart procedures by combining data from image analysis, predictive modeling,
simulation, and clinical decision support across several Al disciplines.

149



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

2. METHODS

To guarantee methodological rigor and openness, this methodical study was carried out following the
PRISMA rules. The choice procedure comprised four major phases: Identification, Screening, Eligibility,
and Inclusion. Figure 1 shows the step-by-step flow of the literary selection process.

2.1. Identification Stage

A thorough literature search across PubMed, Scopus, and IEEE Xplore, three top academic databases,
was undertaken to find pertinent studies on artificial intelligence applications in pre-procedural planning
for TAVL. Given the interdisciplinary character of the review, these platforms were chosen for their
combined indexing of high-quality biomedical (PubMed), multidisciplinary (Scopus), engineering and
computational (IEEE Xplore) publications. Though other databases including Embase or Web of Science
might also contain relevant studies, they were omitted to prevent repetition and restricted access. This is
admitted to be a possible drawback in the debate.

To catch the most recent and clinically relevant applications of artificial intelligence in TAVI, the search
covered 2023 to 2025. A Boolean logic-based keyword strategy was employed using the following search
string:

("TAVI" OR "TAVR") or "transcatheter aortic valve implantation"

and ("Artificial Intelligence" or "Machine Learning" or "Deep Learning")

AND ("Valve Sizing" OR "Computed Tomography" OR "Risk Prediction" or "Preprocedural Planning")
Seventy-two articles from PubMed, forty-nine from Scopus, and forty-three from IEEE Xplore resulted
from this search totaling 164 papers. After removing 8 duplicates, a total of 156 unique records remained
for screening.

2.2. Screening Stage

The 156 records were screened based on title and abstract using predefined inclusion and exclusion
criteria (summarized in Table 2). At this stage, studies were included if they:

e Employed Artificial Intelligence (Al) techniques including Machine Learning (ML) or Deep Learning
(DL);

e Concentrating on pre-procedural planning activities for TAVI, including anatomic segmentation,
valve sizing, risk estimation, or simulation modeling;

o Were peer-reviewed, full-text English published papers available.

Studies were excluded if they:

e Concentrating on cardiovascular procedures other than TAVI, or on post-TAVI complications only;
e Did not use methodologies based on Al/ML/DL techniques;

e Whether conference abstracts, editorials, or failed full-text access.

Thirty-four studies were eliminated depending on these criteria: twenty owing to subject irrelevance and
fourteen due to non-peer-reviewed status or access problems. This resulted in 122 publications needing
full-text inspection.

2.3. Eligibility Stage

The 122 full-text articles were reviewed in detail to assess technical depth and relevance. Studies were
excluded if they:

e Lacked a well-defined Al strategy including unstated algorithms, datasets, or evaluation metrics;

e Concentrated solely on intra- or post-procedural results, including valve durability, hemodynamics
after TAVI;

o Was missing quantitative model performance indicators like accuracy, AUC, sensitivity, specificity, or
Dice coefficient.

For clarity, “adequate methodological detail” was defined as the presence of:

e A clearly described Al model architecture (e.g., CNN, U-Net, SVM);

e Input data type and source (e.g., CT, Echo, clinical variables);

e Training/validation strategy (e.g., cross-validation, external testing);

e At least one quantitative evaluation metric.

As a result, 41 studies were excluded 23 for lacking methodological depth and 18 for focusing on
outcomes unrelated to pre-procedural planning. This left 81 studies for inclusion assessment.

2.4. Inclusion Stage

The remaining 81 full-text studies were then reviewed for final inclusion. Studies were selected if they:

e Utilized AI/ML/DL algorithms in pre-procedural TAVI planning;
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o Addressed one or more core domains: image segmentation, prosthetic valve sizing, anatomical
modeling, risk prediction, or workflow automation;

e Reported quantitative performance outcomes using standard metrics;

e Presented a validation approach including hold-out, k-fold, or prospective pilot studies;

o English writer, peer-reviewed full-text.

Ten high-quality research satisfying all criteria were included in this systematic review after using these
demanding criteria. These form the evidence base for subsequent synthesis in the Research Findings
section. Figure 1 outlines the full selection process.

2.5. Reviewer Workflow and Disagreement Resolution

Two reviewers with cardiology and biomedical Al knowledge performed separately every title/abstract
review, full-text assessment, and data extraction step. Through conversation, a consensus was reached in
instances of disagreement. Should disagreement continue, a third judge guaranteed objectivity in the
ruling. This multi-reviewer approach complements PRISMA guidelines and strengthens the scientific
accuracy of the review process.

2.6. Risk of Bias and Quality Assessment

No official risk of bias evaluation tool (e. g. QUADAS-2 for imaging studies or PROBAST for predictive
models) was used due to the heterogeneity in research design and reporting methods among the included
investigations. Every study was rigorously reviewed for methodological soundness, Al model transparency,
validating techniques, and clinical relevance. This absence of consistent bias assessment is seen as a flaw
and directs toward upcoming development in evidence synthesis for Al-driven medical research.

= Records Identified through Records Identified through Records Identified through |IEEE
'{g Scopus, h =49 PubMed, n=72 Xplore, n =43
(]
[}
= Records Identified through Scopus, PubMed, and IEEE Xplore, n = 164
= Records after removing Records excluded, n=8
g duplicates, n = 156 Invalid database, language not English
I
O Records excluded, n = 34
(%] =
FEEEES SEEEnE DS T2 Papers screened by titles and abstract
=
z Records assessed
o n=_81
i
3
= Full-text articles included
] n=10
c

Figure 1. Step-by-step screening and inclusion process for the systematic review.
Table 2. Inclusion and Exclusion Criteria for Selected Studies.

Inclusion Criteria Exclusion Criteria

Studies  that  employed artificial
intelligence (Al), machine learning

(ML), or deep learning (DL) techniques Studies that did not specifically address

TAVI or did not include pre-procedural Al

for  preprocedural planning in o

Transcatheter Aortic Valve applications

Implantation (TAVI)

Research that targeted anatomical Articles focused solely on post-procedural
segmentation, prosthetic valve sizing, outcomes, intraoperative techniques, or
patientspecific risk prediction, or used only traditional (non-Al-based)
simulation modeling before TAVI planning methods

Peer-reviewed journal articles that were Non-English  publications,  conference
available in full text and written in abstracts, editorials, commentaries, or

English

opinion pieces without an accessible full text
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Research that did describe Al
methodology in sufficient detail (e.g., lacked
explanation of model type, input data,
evaluation metrics, or validation approach)

Studies that utilized clinical imaging data not
(e.g., CT, echocardiography) or patient
clinical variables to train or validate Al

models

3. Research Findings

This section may be divided by subheadings. It should provide a concise and precise description of the
experimental results, their interpretation, as well as the experimental conclusions that can be drawn.
3.1. Overview of Included Studies

Ten peerreviewed publications published between 2023 and 2025 examining the use of Al in pre-
procedural preparation for TAVI are included in this systematic review. Deep learning, machine learning,
imaging-based artificial intelligence segmentation, risk prediction models, and computational
hemodynamic simulations are all used in the studies, therefore reflecting a varied and multidisciplinary
set of approaches that improves procedural planning and results in TAVI. Of these 10 studies:

e Five studies focused on CT-based or echocardiography-based anatomical segmentation and
measurement tools, including DL architectures such as U-Net and proprietary software platforms like
4TAVR, which demonstrated high Dice Similarity Coefficients (up to 0.93) and mean surface distance
metrics compatible with expert assessments [14], [15], [16], [17], [18]. These tools offered significant time
savings over traditional semi-automated methods, with some generating complete outputs in under 45
seconds [14];

e Using multimodal data sources including CT imaging, electrocardiograms (ECGs), transthoracic
echocardiography (TTE), and clinical variables, three studies created predictive machine learning models
to estimate post-TAVI outcomes like pacemaker implantation, mortality, and certain complications [17],
[19], [20]. Predicting pacemaker needs among them, an SVM-based model attained an AUC-ROC of 92.
1% and accuracy of 87.9% [19]. These predictive models aim to enhance pre-procedural patient
stratification and device decision-making;

o Two studies investigated computational and fluid-structure interaction (FSI) models for patient-
specific simulation of hemodynamics during and after TAVI [21], [22]. These models outperformed
conventional methods in both speed and accuracy (e.g., constructing meshes in about 2 seconds) [22] by
using Al-enhanced geometry reconstruction algorithms such DeepCarve and C-MAC. The simulations
gave information on crucial variables for procedural planning in high-risk cohorts: wall shear stress,
transvalvular pressure gradients, and thrombotic risk;

e Additional innovations include the use of dual-layer spectral CT with virtual monoenergetic imaging
(VMI) to reduce contrast burden in patients with renal insufficiency while maintaining adequate image
quality [23], and the generation of synthetic virtual patient cohorts using statistical shape modeling and
ML techniques to assist in valve sizing and pressure gradient prediction [20].

Together, these investigations show how increasingly sophisticated artificial intelligence systems are
throughout the TAVI planning spectrum, from automated anatomical assessment and virtual modeling
to customized risk assessment. With better reproducibility, workflow efficiency, and scalability, most Al-
driven solutions exhibited measurement accuracy close to that of expert human annotations. Several
studies highlighted the capacity of these technologies to lower interobserver variance and streamline
procedural planning, therefore improving both procedural results and resource use. An overview of the
included studies is shown in Table 3.

Table 3. Summary of Included Studies on Al Applications in TAVI Pre-Procedural Planning

Author

Key Findings /

Al Technique .
9 Performance Metrics

Application Area Remarks

Saitta et al.

Deep Learning

CT-based aortic root

Dice: 0.93; MSD: 1.10 mm

High accuracy and speed;

(DL) - morphology (aortic root), 0.68 mm . .
(14] . . minor underestimation
Segmentation assessment (annulus); Runtime: <45s
o . TAVI diagnosis, AccgraFe valve s1z1ng, EFR o
Benjamin et Multiple DL & lannin outcome prediction, complication Broad application
al. [17] ML models P , .g, forecasting, EKG screening, TAVI workflow
prediction . o
and mortality prediction
Santalé et ) Valve hydrodynamics; Acceptable Sapien 3 valve Multimodal study;
Deep Learning )
al. [18] DL for planning performance  postTAVI; performance focus

acCross

valve
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DL tools discussed
alongside PCI outcomes

- 0 1
Automated  annular 87-88% agreement with

Toggweiler — Al-powered measurement nd manual sizing; consistent, Validated tool
etal. [15] software IF%IS{)I N dei 0 a unbiased annular standardizing planning
ased stzing measurements
0.
) DL (U-Net, AG- Aorta segmentation; DSC (UP o 912 ,/O’
Tahir e UeN 9. ML PVLand mortality risk regression models predict DL  models  outperform
al. [16] v .a‘ ortality ris wall shear stress and traditional CFD/FEA
regressors prediction o
complications accurately
Quahidi et Pacemakers need AUCROC: 92.1%; Fl: .
al. [19] MES SV prediction after TAVI  71.8%; Accuracy: 87.9% Clinical tool developed
40 keV VMI enhanced
Dual-Layer . . .
Fontana et Spectral CT (Al Low-contrast CT contrast; correlation  Safety for patients with renal
al. [23] Pec a planning for TAVI between BMI and concerns
aided)
enhancement
Matched 4D MRI and CT;
Zingaro et Fluid-Structure  Flow simulation & underestimates some Good alignment with clinical
al. [21] Interaction (FSI)  pressure gradients values; TKE: 15.8 J/m3; imaging
TPG: 13 mmHg
DLbased . Time-resolved mesh in ~ 2s;
Ozturk et et Personalized flow 100x faster than Advanced vireual modelin
al. [22] £e0 netry dion dynamics modeling traditional; suitable for 3D vanced virtuat modelihg
reconstructio printing
N Synthetic patient Afc.curate p.eal.< pressure & N
Scuoppo et Statistical Shape eration f eual  SENE prediction; synthetic Supports model training &
al. [20] Modeling + ML FgreA\e/rIa on for virttal - ohort matched realworld device selection

patient shapes

3.2. Al Applications in TAVI Pre-Procedural Planning

3.2.1. Image Segmentation and 3D Reconstruction

An accurate anatomical assessment of the aortic root along with the annulus and adjoining vascular
structures is a very vital step in preprocedural planning for TAVI. Conventional manual and semi-
automated segmentation methods are labor-intensive and suffer from interobserver variability. In this
respect, DL techniques, particularly CNNs and U-Net architectures, had shown great promise in
implementing automatic methods with very high accuracy. All these developments in image segmentation
have been summed up pictorially in Figure 2, where these models solidly figure as fast and accurate
anatomical reconstruction permitters, being driven by such advanced Al techniques as CNNs and U-Net
architecture.

Multiple studies employed CNN-based architecture for segmentation tasks. For instance, a CT-based DL
model achieved a mean Dice Similarity Coefficient (DSC) of 0.93 for aortic root segmentation and mean
surface distances (MSD) of 1.10 mm for the root, 0.68 mm for the annulus, and 0.70 mm for the
sinotubular junction [14]. These results are comparable to expert manual annotations, and the system
completed measurements in under 45 seconds, significantly outperforming semi-automated commercial
tools in speed and consistency. Similarly, other works applied advanced U-Net variants, such as AG-
UCNet and two-stage 3D U-Nets, achieving DSC values above 91% for aorta segmentation [16]. These
tools are not only fast but also robust across various CT image qualities and patient anatomies.

The incorporation of Alpowered segmentation platforms, such as 4TAVR, has facilitated the
standardization of annular and aortic root measurements. These platforms produce consistent results
with high agreement (87-88%) with instruction-for-use (IFU) sizing guidelines and expert measurements
[15]. Automated segmentation also contributes to a reduction in intra- and interobserver variability, an
important factor in improving reproducibility and reliability in TAVI planning.

These Al-based segmentation tools show much improved reproducibility, less operator dependence, and
the capacity to quickly analyze massive datasets hence cutting planning time and minimizing human error
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when compared to conventional techniques. Furthermore objective is added by artificial intelligence since
it produces constant, guideline-compliant results that reduce interobserver variance.

3.2.2. Valve Sizing and Selection

Accurate prosthesis sizing is essential for preventing complications such as paravalvular leak, coronary
obstruction, and annular rupture. Al techniques have been employed to enhance prosthetic valve
selection based on anatomical measurements derived from imaging data. Predictive models use CT-based
features, statistical shape models, and patient-specific morphological data to simulate optimal device
placement and sizing.

In one study, machine learning models trained on a synthetic cohort of 100 virtual TAVI patients
demonstrated effective prediction of device size and peak pressure gradients. The models used statistical
shape modeling (SSM) techniques to identify anatomical features associated with valve selection [20].
Another study utilized deep learning to support valve sizing by integrating features from CT and
echocardiography, offering algorithmic suggestions that aligned with expert decisions in over 85% of cases
[17].

The introduction of virtual deployment simulations, enhanced by fluid-structure interaction (FSI) models
and Aldriven mesh generation algorithms such as DeepCarve and C-MAC, has allowed clinicians to
visualize the impact of different valve sizes on patientspecific geometries. These models generate patient-
adapted 3D representations in under 2 seconds, supporting real-time clinical decision-making [22]. Figure
2 presents the pivotal roles that these Al models would take in valve-sizing workflows by integrating
patient-specific anatomical data, statistical shape modeling, and virtual simulation tools such as
DeepCarve and CMAC.

Al-enabled solutions offer real-time input, lower interobserver variability, and help decision-making
precision by quickly recognizing complex relationships between anatomy and equipment selection,
therefore enhancing conventional valve sizing methods. Compared to conventional mesh production
pipelines, technologies like DeepCarve can reduce computational time up to 100 times, therefore
providing major workflow benefits.

3.2.3. Risk Prediction and Patient Stratification

In addition to functional assessment, Al will be used more to assess clinical risk stratification to predict
negative outcomes following TAVI. The models take as inputs multimodal data including ECG, TTE,
CT imaging, and clinical variables.

A Support Vector Machine (SVM)-based model achieved an area under the ROC curve of 92.1%, an F1
score of 71.8%, and an accuracy of 87.9% in predicting the need for pacemaker implantation within 28
days post-TAVI [19]. This model integrated 22 features from imaging and clinical data, and an online
tool was developed to facilitate clinical use. Figure 2 therefore serves as a visual demonstration of how
risk prediction frameworks parse multimodal input data and predictive algorithms like SVMs to stratify
patients into likely experience of specific complications, such as the need for pacemaker placement, or
bleeding.

Other Al models have also demonstrated effectiveness in predicting post-procedural complications such
as heart failure admission, reduced leaflet motion, bleeding risk, and long-term mortality [17]. Al-driven
FFR (fractional flow reserve) prediction models from CT angiography data have been developed to
evaluate the functional severity of intermediate coronary lesions, reducing the need for invasive coronary
angiography in TAVI candidates. These models help in assessing the overall risk profile and improving
patient selection [17].

Compared to rule-based or manual stratification protocols, Al risk prediction models demonstrate
superior pattern recognition capabilities, capturing nonlinear and latent associations among anatomical
and clinical variables. These models are more accurate than traditional methods in selecting patients and
in preventing complication scenarios, thereby allowing for earlier intervention.

3.2.4. Automation of Workflow and Decision Support

Integration of Al into clinical workflows has been a major focus in recent years. Tools like 4TAVR and
other Al-based planning software are being designed not only to automate measurements but also to
provide comprehensive decision support. These tools integrate anatomical measurements, risk scores, and
device recommendations into a single platform [15].

Al models have also been employed to streamline CT processing pipelines, enabling automated valve
sizing, access route analysis, and IFU compliance checks [17]. These models can offer preliminary
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interpretations for radiologists and interventional cardiologists, significantly improving planning
efficiency.

Dual-layer spectral CT combined with virtual monoenergetic imaging (VMI) and Al-guided protocols have
also been tested to minimize contrast media use without compromising image quality, benefiting patients
with renal impairment [23]. The total impact of such Al innovations across the workflow-scope-from CT
processing to decision support-is pictured in Figure 2 and is overall exhaustive regarding automation
transforming.

In contrast to the fragmented manual workflow, Al-based platforms provide end-to-end automation of
the imaging, analysis, and decision-making processes: an integrated and streamlined setup. The availability
of real-time support improves adherence to clinical guidelines while reducing operator dependence. This
is demonstrated in Figure 3, which shows how Al has sped up, standardized, and made safer the planning

for TAVL

Image Segmentation Valve Sizing & Selection
& 3D Reconstruction = 85% match with expert decisions
= DSC:0.83 * 2s simulation time

e Speed: <45s
= CNN: U-Net

= Autornated,
root/annulus
segmentation

e 4TAVR platform

= CT-based model '! !'
Shape modeling
Al sizing suggestion

SSM, DeepCarve
FSI| simulation

/

Al in TAVI
Workflow Planning Risk Prediction
Automation & ,Ké@ o & Stratification
Decision Support AUC: 92.1%
o ATAVR ':] é’ Accuracy, 87.9‘1
e CT input Automated N = vV
sizing & access S ' - CT, ECG, Clinical data

IFU compliance
= Dual-layer CT + VMI
e Speed: Reduced variability
< Renal-friendly imaging

= SVM, ML Model

= Pacemaker, bleeding

= Leaflet motion

e Online prediction tools

Figure 2. Overview of Al Applications in TAVI Pre-Procedural Planning, highlighting four domains:
image segmentation, valve sizing, risk prediction, and workflow automation. Each domain uses specialized
Al models and platforms (e.g., CNN, SSM, DeepCarve, 4TAVR) to improve accuracy, consistency, and
efficiency throughout the planning process.

Al-Based Traditional

Characteristic Planning Methods

g‘@\ Reproducibility Lower
H:H Operator Dependence Less
E{g Data Integration Multimodal Limited

<& Objectivity

Vulnerable

=

Limited

L " |
LQ_I Pattern Recognition
Figure 3. Comparison of Al-Based Planning vs. Traditional Methods in TAVI Pre-Procedural Assessment
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3.3. Performance Metrics

The usual evaluation methods of Al models for the field of activity are some combination of segmentation
accuracy, classification performance, and predictive reliability. Some tabulated results often include values
for the Dice Similarity Coefficient (DSC), Mean Surface Distance (MSD), AUC-ROC, sensitivity,
specificity, precision, Fl-score, and time taken.

In general, for image segmentation tasks, Dice coefficients greater than 0.90 have been reported, thus
indicating a high spatial overlap with expert annotations [14], [16]. MSD values of below 1 mm for
relevant regions such as the annulus and sinotubular junction have been recorded. Predictive models for
valve sizing and complication risks often show AUC-ROC somewhere within the 0.85-0.95 range, with
accuracy rates about 85-90% [19], [20].

Validation strategies differed from study to study, including k-fold cross-validation, hold-out validation,
and prospective clinical validation in pilot cohorts. Studies with better quality control of ground truth
annotations and diverse training datasets had better generalizability [15], [20]. A summary of these

performance indicators and validation approaches is provided in Table 4.
Table 4. Performance Metrics of Al Models in TAVI Pre-Procedural Planning

Task Metric Typical Value
Image Segmentation %gec)s imilarity Coefficient >0.90
Mean Surface Distance <1mm
(MSD)
Risk Prediction / Area Under ROC Curve 0.85 - 0.95
Classification (AUC-ROC) ’ ’
Accuracy 85% - 90%

3.4. Clinical Integration and Validation Status

Even though Al models show promise tackling TAVI planning, integration into clinical practice is still at
preliminary stages. There are only a few prospective or randomized trials confirming clinical utility, as
most studies are still in the retrospective or validation phases. Nonetheless, several preliminary studies
have shown feasibility along with efficiency gains in real-world contexts.

The 4TAVR software has undergone clinical evaluation and shown high agreement with expert
measurements in real patient cohorts [15]. Similarly, SVM-based risk prediction tools have been
embedded in web-based interfaces for clinical use, enabling easy data entry and risk assessment [19]. Tools
like DeepCarve and CMAC have facilitated rapid patient-specific mesh generation, offering potential for
intraoperative simulation and education [22].

Regulatory approvals, the absence of a standard across imaging protocols, and data privacy issues all pose
significant hurdles for clinical Al adoption. Clinicians also face significant hurdles surrounding trust in
outputs and the interpretability of Al algorithms.

Notwithstanding these challenges, a stronger body of evidence shows that artificial intelligence improves
the accuracy of TAVI planning as well as aids in minimizing errors and optimizing outcomes. The next
step in further clinical translation will require continued teamwork among the engineers, the clinicians,
and the regulators.

3.5. Ethical, Regulatory, and Trustworthiness Considerations in Clinical Use

Although technology has matured, clinical use of Al systems is difficult. Much research underlined the
requirement of open reporting and explainability of artificial intelligence systems in order to increase
clinical trust and regulatory clearance [15], [20]. To stop erroneous device choice or missed complications,
problems with algorithmic prejudice, generalizability, and reproducibility must be solved. Moreover, often
following technological developments, regulatory structures are changing slowly. For clinicians to
confidently include Al-generated results into demanding procedural processes, they need intuitive
interfaces and decision traceability [26].

The "black box" quality of many deep learning systems presents one of the main ethical conundrums.
Clinicians may be wary of using automated recommendations, especially in high-risk situations like valve
sizing or access planning, without understandable outcomes. Should there be unfavorable results, this
lack of interpretability might cause responsibility issues [27]. Furthermore, Al trained on small or
homogeneous datasets may encode biases that limit their legitimacy over varied populations or imaging
methods, hence endangering health inequities. Legally speaking, it's still unclear who is responsible for
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clinicians, developers, or institutions if an Al-assisted choice results in damage [28]. Developing
Explainable Artificial Intelligence (XAI) frameworks that provide interpretable insights (e.g., saliency
maps or feature attribution scores) and audit trails meant to be reviewed alongside finally recommended
data governance and accountability, there is growing interest. Regulators such the FDA and EMA are also
creating adaptive regulatory paths for Al/MLbased Software as a Medical Device (SaMD), but the speed
is slow relative to innovation. Ethical deployment will thus need technical openness, strong validation,
clinician education, and clear policy on data governance and responsibility.

Table 5. Ethical, Regulatory, and Trustworthiness Issues in Al for TAVI Pre-Procedural Planning

4. Challenges

4.1. Data Availability and Quality

A critical obstacle in using Al in TAVI pre-procedural planning due to the insufficient number of large,
high-quality datasets is the foundational challenge. The diversity and representativeness of training data
is restricted because most of the studies reviewed relied on retrospective datasets, often from single
institutions. Furthermore, the anatomic structure such as aortic annulus and sinotubular junction
labelling comes with interobserver variability which influences how models are trained and evaluated due
to the varying ways experts do it. These hurdles add to the difficulties with training algorithms that can
generalize effectively across real-world scenarios, because differences in imaging centers, including CT
scan protocols, contrast material, and reconstruction parameters, add variability. The reproducibility of
the models is hindered as there is a lack of standardization in the imaging protocols and the labelling of
the datasets, which increases the challenge of Al models applicable to wider clinical settings [29], [30].

Domain Challenge Explanation / Impact

“Black-box” nature of DL makes it
difficult for clinicians to trust Al

Transparency Lack of explainability in AI models generated recommendations,
especially in high-stakes decisions
like valve sizing.

Algorithmic bias and poor Al models trained on limited

Bias and Generalizability ~ generalization across populations and
imaging setups

datasets may encode systemic biases,
leading to unequal performance
across diverse patient populations.
Unclear liability between clinicians,
o Ambiguity around accountability in developers, and institutions if an
Legal Responsibility case ongtIYerrors N AI—baseI:)d recommendation causes

harm.

Regulatory frameworks (e.g., FDA,
Regulatory bodies are slow to adapt to  EMA) are evolving but currently lag
rapid Al innovation the pace of Al technology, delaying
clinical approval.
Clinicians require user-friendly Al
tools that provide traceable
decisions and visual explanations

Regulatory Lag

Need for intuitive and auditable Al

Interface Usability tools

(e.g., saliency maps, feature
attributions) for clinical acceptance.
Al models often rely on large
Insufficient policy clarity on data patient datasets, raising ethical
usage, privacy, and security concerns about informed consent,
data sharing, and secure storage.
Ethical ~ deployment  requires
Validation and Limited validation in realworld rigorous clinical validation, user
Education settings and lack of clinician training  education, and integration training
for healthcare providers.

Data Governance

4.2. Model Generalizability and Overfitting

The broad applicability of trained models remains a critical challenge for Al integration. While many
models possess a high accuracy rate confined to the dataset they were trained on, there is a marked drop-
off in performance when assessed on external datasets or in different clinical environments. Variations
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in imaging equipment, patient age groups, and existing medical conditions from institution to institution
add to these differences. In deep learning algorithms, overfitting remains a widespread concern, especially
for models developed from small, homogenous datasets. In the absence of comprehensive external
validation, it is nearly impossible to establish whether study-reported metrics of performance are due to
actual clinical usefulness or model overfitting. Inadequate large multicenter databases and the absence of
federated learning frameworks increase these challenges [31], [32].

4.3, Interpretability and Transparency

An example of a shortcoming associated with modern and advanced Al techniques is deep learning
models operating as a “black box.” Even though these models perform excellently on predictive Al tasks
and goals, their internal decision mechanisms tend to be hidden and unclear. Such a lack of
interpretability hinders clinical adoption; physicians are less likely to act on Al recommendations that
require extensive trust or explanation. XAl techniques like saliency maps, SHAP (SHapley Additive
exPlanations), and attention mechanisms are starting to resolve this issue, but in the context of TAVI
planning, they remain largely unexploited. As with most things in life, until deep learning models offer
clear and clinically meaningful insights, their integration into the decision-making pathways will likely
remain restricted [33], [34].

4.4. Regulatory and Ethical Barriers

The route to gaining regulatory approval for Al applications in healthcare is still complicated and uneven.
Organizations like the FDA and EMA require thorough validation, risk management, and continuous
post-market evaluation for Al tools. However, most Al tools are not fully validated as they still sit in
development or pilot phases, lacking sufficient evidence. There are also liability concerns associated with
the use of Al in clinical practice. It is vague as to who takes the blame when there is an adverse outcome
from Al recommendations; is it the clinician, the software developer, or the healthcare institution? There
are also ethical Al use in clinics challenges like data privacy, informed consent, and bias in the algorithms
used, which adds layers to the clinical use of Al To facilitate the approval of Al tools and protect patients,
there is an immediate need for comprehensive data governance policies and cross-border agreements. In
the absence of such mechanisms, the legal and ethical frameworks relaxed, the clinical use of Al in TAVI
Planning will be limited [35], [36].

5. Limitations

5.1. Limitations of Reviewed Studies

There are several flaws the body of literature examined in this review must be recognized. Small sample
sizes were used in a major number of the included studies, therefore reducing the statistical power and
generalizability of their results. Many of these studies were retrospective in nature, hence introducing
biases including selection bias, incomplete data capture, and constrained control over confounding
factors [37].

Furthermore, noted was a clear absence of big, future clinical studies. Most validation activities were
confined to single center datasets or internal testing, therefore constraining the capacity to assess model
robustness across various clinical situations. The lack of Mult institutional cooperation moreover stifles
the creation of more generalizable and clinically useful artificial intelligence models. Direct comparison
of studies becomes challenging as well because of variations in evaluation metrics and absence of
consistent baselines [38], [39].

5.2. Limitations of the Review Itself

This systematic review also has its own collection of constraints. First, studies with positive results are
more likely to be published than those with negative or ambiguous results, therefore creating a publication
bias possibility. Consequently, the general view of artificial intelligence efficiency in TAVI preprocedural
preparation could be biased toward more positive results [40].

Second, the evaluation was limited to works released in English, so possibly eliminating pertinent research
published in other languages. Third, grey literature like as conference abstracts, white papers, and
preprints were not included, possibly missing out on developing but unedited ideas. Although attempts
were made to guarantee thorough search, the changing dynamic and fast-paced nature of Al research
means that newer studies may have been missed or are still to be cataloged in the databases chosen [41].

Still, this review offers a prompt and thorough synthesis of existing knowledge, therefore aiding in the
discovery of possible paths for more study and use of Al in the TAVI preparation field.
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6. Future Directions

Developing large-scale, multicenter datasets is among the most urgent requirements in the advancement
of artificial intelligence for TAVI preprocedural planning. To enable strong training and external
validation of artificial intelligence models, these datasets should include a range of patient groups, several
imaging techniques, and thorough clinical results [42]. To gather and standardize such datasets,
collaborative projects including hospitals, educational institutions, and business participants are critical.
These resources would support transparency and reproducibility while helping to reduce the risk of
overfitting and enable the training of more generalizable models [43].

Interpretability should be given top priority by the next generation of TAVI artificial intelligence
algorithms if one wants to win clinician trust and improve medical judgment. Investing in explainable
artificial intelligence (XAI) approaches such as attention mechanisms, class activation mapping, and
decision trees can help unpack the internal workings of complex models and provide rationale for model
predictions. Promoting clinical acceptance and enabling regulatory approval will be greatly helped by
including user-friendly visual aids that may intuitively show doctors Al insights [44], [45].

Future developments ought to enable perfect integration of artificial intelligence systems into
interventional cardiology procedures and catheterization labs. Tools powered by artificial intelligence that
can conduct real-time image segmentation, instrument sizing, and complication risk analysis could
provide actionable insights during pre-procedural planning or even intraoperatively. Achieving real time,
point-of-care support depends on creating artificial intelligence systems that fit with current Cath lab
imaging techniques and surgical planning tools [46], [47]. Although there is an increasing body of
historical studies, prospective clinical trials are necessary to assess the effectiveness, safety, and effect of
Al-assisted planning solutions in TAVI. These trials ought to evaluate mortality, valve function, and
quality of life, that is, both short term and longterm clinical results. Understanding the general
consequences of Al application in regular care will also depend on the inclusion of patient-reported
outcomes and health economic evaluations. Longitudinal follow-up will enable evaluation of the real-
world value and durability of Al driven decision making [48], [49].

Strong multidisciplinary cooperation is essential for the effective use of artificial intelligence in TAVI
planning. Engineers and data scientists have to collaborate closely with cardiologists and radiologists to
make sure that userfriendly, understandable, and clinically relevant artificial intelligence tools are
available. Early involvement of regulatory authorities also enables development processes to be
coordinated with approval demands and fosters confidence in artificial intelligence technologies.
Accelerating innovation while protecting patient rights will call for the creation of ethical guidelines, data
sharing policies, and legal systems targeted to artificial intelligence in cardiovascular care [50], [51].
These combined future paths help to provide a path toward the secure, effective, and widespread
acceptance of artificial intelligence systems in TAVI preoperative preparation. Translating artificial
intelligence developments from laboratory to bedside will be aided by interdisciplinary collaboration,
clinical tests, and strategic investments in research infrastructure.

7. CONCLUSION

Recent interest in the role of Als in pre-procedural planning for transcatheter aortic valve implantation
(TAVI) has been underlined by the systematic review. Al tools, especially deep learning segmentation and
machine-learning risk prediction, have shown metrics close to expert competence. They allow for rapid
data analysis so that reproducibility and support for decision-making aid in the improvement of some
clinical outcomes in any TAVI procedure. Good clinical results aside, widespread uptake has still been
hampered. These barriers need to be lifted through the standard validation of a wide range of populations,
along with clarified regulatory requirements and increased model explainability. Moving forward, strong
multicenter studies, prospective validation trials, and clinician-centered design will remain key to moving
Al out of research and into the real-world setting. Given those provisions, Al can turn the TAVI planning
standard of care on its head: increasing precision, safety, and efficiency in the day-to-day operation of
structural heart interventions.
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