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Abstract 
By dynamically altering the propagation environment, reconfigurable intelligent surfaces (RIS), which are made up of 
meta-materials with electromagnetic wave control capabilities, are becoming a key technology in 6G wireless 
communication. In order to achieve the maximum path gain(dB) at the two receivers provided by only a single 
transmitter through a couple RIS, this investigation addresses gradient-based optimization of RIS configurations. The 
phase profiles of the RIS are improved by machine learning approaches, utilizing a training model that employs the 
Adam optimizer and gradient descent. 
This study identifies the RIS area that delivers the greatest path gain improvement through a comparison of the initial 
path gain to the optimized path gain, with a focusing lens for different RIS areas. The effect of various antenna 
configurations, such as isotropic, hw_dipole(sionna), dipole and TR 38.901 antennas, on the path gain performance 
in RIS-assisted communication is also examined in this work. Simulation results illustrate iterative improvements in 
path gain, indicating the potential of machine learning in setup RIS according to waves with ultimate path gain, 
fostering 6G and next-generation wireless Communication applications. All simulations are performed using Sionna 
0.19.1 and Python 3.9. 
Keywords: Reconfigurable Intelligent surface, Ray-Model, Machine Learning, signal optimization,6G
 
INTRODUCTION 
The sixth generation (6G) of wireless communication technologies is developing quickly and is predicted 
to revolutionize connection with previously unknown capabilities [1, 2]. 6G seeks to solve the drawbacks 
of its predecessors by utilizing state-of-the-art technologies to provide ultra-reliable low-latency 
communication (URLLC), ultra-high data speeds, and seamless global connectivity [3, 4]. But there are 
drawbacks to the drive to use ultra-massive MIMO (UM-MIMO) antenna arrays and broaden the 
spectrum into terahertz (THz) bands, such as considerable path gain loss, signal obstruction and issues 
with energy efficiency [5-7]. 
One revolutionary method for improving wireless communication performance is the use of RIS [8, 9]. 
The wireless propagation environment is dynamically reconfigured by RIS, which is made up of passive 
components that may change the phase and amplitude of incident electromagnetic waves. By effectively 
modifying these parameters in light of real-time data, RIS can further optimize its performance when 
integrated with machine learning [10-11]. 
Because of its versatility, RIS can improve spectrum efficiency, lower energy costs and lessen signal 
deterioration in situations when it is in Non-Line-of-Sight (NLoS). RIS has become a key component of 
6G research by expanding coverage for high-frequency mmWave and THz bands, so mitigating the 
inherent constraints of these bands. 
 
LITERATURE REVIEW 
The potential of RIS to improve wireless communication has led to a significant advancement. In order 
to overcome difficulties in RIS-assisted OFDM systems, Qing et al. (2021) [12] suggested an Extreme 
Learning Machine (ELM)-based channel estimation technique that improves accuracy in spite of hardware 
flaws. Elshennawy (2022) [13] did away with the necessity for lengthy measurement campaigns by creating 
a machine learning model for path loss prediction in RIS-assisted systems. Li et al. (2022) [14] investigated 
how RIS can improve 
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network performance in a variety of settings and increase 5G coverage. RIS was used to optimize MIMO 
systems by Perović et al. (2020) [15] in order to improve data speeds and energy efficiency. Zuo et al. 
(2022) [16] combined RIS with Non-Orthogonal Multiple Access (NOMA) to decrease path loss and boost 
spectrum efficiency. Hoydis et al. (2024) [17] presented a gradient-based calibration technique for 
maximizing Channel Impulse Response (CIR) in 6G. In order to optimize RIS reflection coefficients and 
increase end-to-end data rate in multi-hop networks, Huang et al. (2022) [18] integrated Proximal Policy 
Optimization (PPO) with Distributed Cascade Backpropagation Network (DCBN). 
Even with RIS's tremendous progress, there are still a number of important research gaps. Given the 
difficulties inherent in dynamic situations, more research into gradient-based optimization techniques is 
needed to increase path gain accuracy in RIS-assisted systems. While channel prediction has benefited 
greatly from the successful application of machine learning, its full promise for dynamically modifying 
RIS phase profiles has not yet met.  
By creating a gradient-based optimization methodology to improve the path gain of received signal in RIS-
assisted 6G wireless communication systems, this study seeks to address these issues. The phase 
characteristics of RIS are dynamically adjusted using machine learning approaches to guarantee optimal 
performance in a variety of settings. This work's main contributions are as follows: 
Develop and execute a gradient descent optimization technique: To modify the reflection coefficients 
of the RIS, aiming to enhance received signal intensity and overall system performance [19-21]. 
RIS Size and Path Gain Analysis: A thorough examination of the connection between RIS size and path 
gain that shows how some RIS designs enhance signal transmission. 
Path Gain Comparison: To compare the path gain (without optimization) and the optimized path gain 
via RIS gradient descent optimization, assessing enhancements in the received signal. 
Impact of Antenna Types on Path Gain Performance: To compare the path gain (without optimization) 
and the optimized path gain for each antenna type in order to examine the effects of various antenna 
configurations, such as isotropic, hw_dipole(sionna), dipole and TR 38.901 antennas,on the path gain 
performance in RIS-assisted communication. 
Python 3.9 is used to run simulations, proving the effectiveness of the suggested strategy. 
This paper's remaining sections are arranged as follows: The suggested system architecture and 
communication situation are explained. After that Signal propagation in the system design is presented. 
Next the Gradient-Based RIS Optimization framework is explained in more detail. In next Section 
discusses the findings and analysis. Further concludes with conclusions and suggestions for further 
research. 
System Architecture And Communication Scenario 
In order to recreate surroundings, the suggested communication situation is represented inside a wedge  
geometry [22-24]. The radio material used to make the wedge is composed of metal [25,26], which is an 
ideal  
reflector of electromagnetic waves with a field strength of 1 v/m [27]. The relative permittivity is 1 and 
the conductivity is 107 S/m for the metallic radio  
substance [28].                             

Fig.1: Two RIS Facilitated Transmission with a Wedge and Two Receivers. 
In order to highlight the crucial role that RIS plays in signal reradiation, the transmitter and receivers are 
positioned so that there is no direct line-of-sight (LoS). The two RIS Facilitated Transmission with a wedge 
and two Receivers is depicted in Figure 1[29,30]. 
 
 

TX 
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RIS1 RIS2 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 20s, 2025 
https://theaspd.com/index.php 

120 

Antenna Transmission 
An antenna is used to transmit electromagnetic waves that radiated power requires a comprehension of 
these fields, which propagate in free space [31-35]. 
Electric Field of the Electromagnetic Wave: 
At a distance r from the antenna, the transmitted wave's electric field is represented as follows: 

E(r, t) = (
E0

r
) r̂ cos(ωt −  kr)        1 

Where E0 is the initial amplitude of the electric field, r̂ is the unit vector in the direction of wave 
propagation, ω is the angular frequency of the wave, k=ω/c is the wave number, in which c is the speed 
of light, t is the time. 
Magnetic Field of the Electromagnetic Wave: 
The direction of electromagnetic wave propagation of magnetic field B(r, t) which is perpendicular to 
both the electric field and the electromagnetic wave propagation direction is given by:  

B(r, t) = (
B0

r
) φ̂ cos(ωt −  kr)       2 

B0 is the initial amplitude of the magnetic field, φ̂ is the unit vector in the direction perpendicular to 
both the electric field and the EM wave propagation direction. 
Transmitted Power from Antenna and Total Radiated Power: 
The transmitted power S(r, t) [36] from an antenna: 

S(r, t) =  (
1

μ0
) E(r, t) ×  B(r, t)     3 

Where μ0 is the permeability of free space (μ0=4π×10−7 H/m). The total radiated power P which is 
represented by:  

P = ∮ S ⋅ dA = (
1

2
) η ∫ Ω |E|2dΩ    4 

Where η is the intrinsic impedance of free space (η=377 Ω), Ω represents the solid angle over which the 
radiation is distributed.  
Analysis Of Signal Propagation In System Architecture 
Two carefully positioned Reconfigurable Intelligent Surfaces (RIS1 and RIS2), situated between the 
antenna and the receivers, receive the broadcast power from the  antenna. Depending on the setup and 
intended signal processing [37], the RISs can modify the broadcast signal by changing their surface 
characteristics, such as phase profile, amplitude profile [38]. The RIS's reflection coefficients( Γ1, Γ2)  
impact the received power of signal at RIS1 and RIS2. The received power is  PRIS1 =  Γ1P, PRIS2 =  Γ2P, 
where P is the total transmitted power from the  antenna.  
After reflection, the signals go to RX1 and RX2, the receivers, where the received strength is influenced 
by a number of variables, including distance, propagation circumstances and RIS settings. PRX1 =  α1Γ1P, 
PRX2 =  α2Γ2P can be used to express the received power at each receiver. The path loss factors, α1 and 
α2, take into consideration environmental effects such as fading and shadowing that affect the signal 
propagation from RIS1 to RX1 and RIS2 to RX2, respectively [39]. 
Thus, PRX1 =  α1Γ1P and PRX2 =  α2Γ2P, which takes into account both the reflection coefficients and 
the path loss factors, provide the total power reaching RX1 and RX2.  
For RX1, the path gain is: 

Path GainRX1(dB) =  10 log10 (α1Γ1P)

Ptransmitted
  5 

Similarly, for RX2, the path gain is: 

Path GainRX2(dB) =  10 log10 (α2Γ2P)

Ptransmitted
  6 

Additionally, the Free Space Path Loss (FSPL) is a crucial consideration when assessing signal propagation, 
the following is the FSPL arithmetic 

LFSPL(r) =  20 ∗  log10(r) +  20 ∗  log10(f) +  20 ∗  log10 (
4π

c
)       7 

Where r is the distance between the RIS and the RX (in meters), f is the frequency (in Hz).  
Combining these components allows us to fully comprehend how RISs affect communication systems' 
signal strength and route loss, providing important information for improving network performance and 
design in RIS-assisted settings. 
RIS Setup and Positioning 
The environment is equipped with two RIS units, each of which consists of a collection of passive 
components that may be configured to alter the amplitude and phase of reflected signals. The RIS's cell 
count is established via  
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Number of cells = (int (
width

0.5⋅λ
))

2

     8 

where λ is the signal's wavelength. The distance between the transmitter (TX), receiver (RX1, RX2), RIS1, 
and RIS2 and their corresponding coordinates in X, Y, and Z are mentioned in Table 1. 
Table 1: Coordinates and Distance 

S.No.  Description Coordinates Distance(m) 
1  Distance between Tx 

and Rx1 
TX = [-10, 10, 0], RX1 = 
[30, -15, 0] 

47.17 

2  Distance between Tx 
and Rx2 

TX = [-10, 10, 0], RX2 = 
[15, -30, 0] 

47.17 

3  Distance between Tx 
and RIS1 

TX = [-10, 10, 0], RIS1 = 
[40,10, 0] 

50.00 

4  Distance between Tx 
and RIS2 

TX = [-10, 10, 0], RIS2 = 
[-10, -40, 0] 

50.00 

5  Distance between RIS1 
and Rx1 

RIS1 = [40, 10, 0], RX1 = 
[30, -15, 0] 

26.93 

6  Distance between RIS2 
and Rx2 

RIS2 = [-10, -40, 0], RX2 
= [15, -30, 0] 

26.93 

Framework For Gradient-Based Ris Optimization 
An efficient method for setting up RIS to improve signal strength in wireless communication systems is 
gradient-based optimization [40,41]. One transmitter, two receivers (RX1 and RX2), and two RISs (RIS1 
and RIS2) make up the system [42]. The signal yk that is received at receiver k may be written as follows: 
yk = hk

HΦGx + nk          9 
Where the channel vector from the RIS to receiver k is represented by hk ∈ CM×𝟙, the RIS phase-shift 
matrix is represented by Φ = diag(ejϕ1 , ejϕ2 , … , ejϕM), the channel matrix from the transmitter to the 
RIS is represented by G ∈ CM×N, the transmitted signal is represented by x, and additive white Gaussian 
noise is indicated by nk ∼ 𝒞𝒩(0, σ2)  . 
For receiver k, the path gain gk is determined by: 

gk = |hk
HΦG|

2
        10 

and maximizing the average path gain across all receivers is the optimization goal: 

max
Φ

1

2
∑ gk

2
k=1         11 

Phase shifts ϕm ∈ [0,2π], amplitude profiles am ∈ [0,1] and mode powers are examples of trainable 
variables. A gradient-based method is used to adjust these values repeatedly. Using the update rule, the 
optimization procedure makes use of the Adam optimizer: 
pt+1 = pt − η ⋅ ∇pℒ      12 
where η is the learning rate and pt is the parameter at iteration t, ℒ is the loss function, which is the 
objective's negative:  

ℒ = −
1

2
∑ gk

2
k=1      13 

The combined CIR for the mth RIS element and kth receiver is: 
htotal = ∑ √βk

M
m=1 e−j2πfcτk,m    14 

where fc is the carrier frequency, τk,m is the propagation delay and βk is the route loss factor. 
The Adam optimizer is used to update trainable variables by computing loss gradients until stabilization 
or a predetermined number of iterations, after initializing them with feasible values [43]. 
Then, by concentrating energy at certain spots, this optimized RIS, configured as focusing lenses, 
improves signal strength and performs better than the hand-set RIS profile [44-46]. 
 
RESULTS AND DISCUSSIONS 
The effectiveness of the suggested gradient-based optimization framework for RIS in enhancing wireless 
communication is assessed.The simulation parameters are represented in Table 2. 
Table 2: Simulation Parameters 

Parameter Value 

Carrier Frequency 3 GHz  
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Parameter Value 

Transmitter Power 44 dBm 

RIS Orientation [0, -PI/2, 0] 

RIS Area(m2) 4, 25, 64, 144, 225 

Number of Modes (RIS) 2 

The ensuing subsections examine how RIS optimization affects path gain and how RIS configuration, 
size and proximity affect system performance. 
Effect Of Path Gain On Gradient-Based Ris Optimization 
The results presented highlight the impact of gradient-based RIS optimization on path gain performance 
for three cases. (1) Signal received to RX1 from transmitter (TX) without RIS, (2) Signal received by (RX1) 
via RIS1 and (3) Signal received by RX1 via RIS2. Due to the symmetry of the RX with respect to the RIS 
and TX of the system model, the results of the path gain for the second receiver (RX2) are similar to that 
of RX1. Therefore, in order to keep things brief and prevent duplication, the results for RX2 are not 
included.  
 
 
 
 
 
 
 
 
 
Fig.2: Gradient-Based RIS Optimization Impact on Path Gain(dB) across RX1, RX1-RIS-1, and RX1-RIS-2 
Over Iterations  
In figure 2 the graph shown by symbol “|” exhibits the greatest improvement in path gain, steeply 
increasing from -90 dB to stabilize around -50 dB after probably a number of 60 iterations in RX1-RIS-1. 
This superior performance is attributed to the greater closeness of RIS-1 to RX1.  
In contrast, RX1-RIS2 graph is represented by symbol “-.” shown an initial improvement, peaks at around 
-56 dB and then progressively diminishes, stabilizing at -70 dB. The greater distance between RX1 and 
RIS2 as depicted from figure 1 causes more path loss, restricting the improvement in the attainable path. 
The symbol “-” further highlights the benefit of RIS optimization in which signal received at RX1 without 
RIS is shown. RX1 without RIS stabilizes at about -50 dB, indicating that although the direct connection 
offers a moderate path gain, its performance is not as good as that of the optimized RIS-1. The 
performance of RIS-assisted wireless communication systems can be greatly improved by gradient-based 
optimization in conjunction with careful RIS implementation. 
 
 
 
 
 
 
 
Fig.3: Path Gain(dB) after RIS1, RIS2 act as Focussing Lens 
The path gains after learned RIS1 and learned RIS2 act as focusing lenses, with an RIS size of 64 m2 is 
illustrated in Fig.3. The path gain for RX1 to RIS1 is around -54.4 dB, while for RX1 to RIS2 is around -
58.2 dB. The smaller path gain(dB) for RX1-RIS2 is due to the longer distance between RX1 and RIS2, 
compared to the greater closeness of RX1 to RIS1.  
RIS Size's Effect on Path Gain 
For small RIS area 4 m2, the path gain before optimization is -98.34 dB, increasing to -77.17 dB after 
optimization, demonstrating a path gain improvement of -21.17 dB. In a similar vein, RIS areas 25, 
64,144 & 225 m2 exhibit path gain improvements of approximately -36.34 dB, -41.66 dB, -40.33 dB and 
-37.44 dB respectively, with Optimized path gain with Focussing lens of -60.50 dB, -52.23 dB, -45.31dB 
& -40.27 dB. The biggest improvement is seen in the 64 m2 RIS area, in which path gain improvement 
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by -41.66 dB with optimized path gain of -52.23 dB. Higher initial path gains and Optimized Path Gain 
with Focusing lens are generally associated with larger RIS sizes. Table 3 looks at how the link between 
RIS size and path gain (dB) affects both initial and optimized performance. 
Table 3: Comparison of Initial, Optimized & Improved Path Gain for different RIS area(m2). 

S.No. RIS Size 
(𝐦𝟐) 

Initial Path 
Gain (dB) 
with 
Focussing 
lens 

Optimized 
Path Gain(dB) 
with Focusing 
lens 

Path Gain(dB) 
Improvement 

1 2*2 -98.34 -77.17 -21.17 
2 5*5 -96.84 -60.50 -36.34 
3 8*8 -93.89 -52.23 -41.66 
4 12*12 -85.64 -45.31 -40.33 
5 15*15 -77.71 -40.27 -37.44 

The link between RIS area and initial path gain (dB) as well as the optimized path gain (dB) appears to 
be plotted in figure 4.  

 
Fig. 4: A comparison of initial path gain, Optimized path Gain for different RIS Area. 
The initial path gain often rises in proportion to the RIS area. This implies that improved signal reception 
may result from a wider RIS region. 
Additionally, the optimum path gain rises with the RIS area. Interestingly, the optimized path gain is 
constantly more than the initial path gain, suggesting that signal reception can be greatly enhanced by 
adjusting the RIS setup. The improvement in path gain with varying RIS area (m2) is shown in Figure 5. 
The improvement in path gain, as indicated by these bars, is -41.66 dB, which is typically higher for RIS 
areas of 64 m2 than for RIS area of 4, 25, 144, and 225 m2, which yield path gains of -21.17 dB, -36.34 
dB, -40.33 dB, and -37.44 dB, respectively. 

 
Fig.5: Path Gain improvement with different RIS Area 
Additionally, the study shows that, especially under NLoS conditions, 64 m2 RIS area arrays allow for 
more efficient compensation for path loss. 
The path gain(dB) values for various antenna types are shown in the table 4 both before and after 
optimization. After optimization, the isotropic antenna's path gain improves to -41.74 dB from its lowest 
unoptimized value of -77.71 dB. Sionna's hw_dipole performs better at  -73.39 dB and then improves to 
-37.61 dB. Similar improvements are seen with the dipole and TR 38.901 antennas, which have optimal 
gains of -38.34 dB and -40.48 dB, respectively. 
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Table 4:  Comparison of Path gain with/without optimization for different Antenna at Carrier Frequency 
of 3 GHz. 

S.No. Antenna Type Path Gain 
(without 
optimization) (dB) 

Optimized 
Path Gain(dB) 

Improved 
Path 
Gain(dB) 

1 Isotropical -77.71 -41.74 -35.97 
2 hw_dipole(Sionna) -73.39 -37.61 -35.78 
3 Dipole -74.19 -38.34 -35.85 
4 TR 38.901 -72.28 -40.48 -31.80 

 
CONCLUSION AND FUTURE WORK 
This study shows how effective a gradient-based RIS optimization method is at enhancing wireless 
communication, especially in NLoS situations. 
According to the results, RIS greatly increases path gain and bigger RIS sizes offer better path loss 
compensation. If the RIS is properly positioned for best performance, the suggested optimization 
framework's quick convergence makes it ideal for real-time applications.  
In order to enable dynamic, real-time responses to changing conditions, future research could concentrate 
on optimizing path gain through the integration of optimal gradient-based RIS with 5G/6G networks. 
The hw_dipole (Sionna) shows the greatest boost in path gain, however optimization significantly 
improves other antenna types. This implies that wireless communication performance can be effectively 
improved by optimization based on machine learning. 
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