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Abstract

By dynamically altering the propagation environment, reconfigurable intelligent surfaces (RIS), which are made up of
meta-materials with electromagnetic wave control capabilities, are becoming a key technology in 6G wireless
communication. In order to achieve the maximum path gain(dB) at the two receivers provided by only a single
transmitter through a couple RIS, this investigation addresses gradient-based optimization of RIS configurations. The
phase profiles of the RIS are improved by machine learning approaches, utilizing a training model that employs the
Adam optimizer and gradient descent.

This study identifies the RIS area that delivers the greatest path gain improvement through a comparison of the initial
path gain to the optimized path gain, with a focusing lens for different RIS areas. The effect of various antenna
configurations, such as isotropic, hw_dipole(sionna), dipole and TR 38.901 antennas, on the path gain performance
in RISassisted communication is also examined in this work. Simulation results illustrate iterative improvements in
path gain, indicating the potential of machine learning in setup RIS according to waves with ultimate path gain,
fostering 6G and next-generation wireless Communication applications. All simulations are performed using Sionna
0.19.1 and Python 3.9.
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INTRODUCTION

The sixth generation (6G) of wireless communication technologies is developing quickly and is predicted
to revolutionize connection with previously unknown capabilities [1, 2]. 6G seeks to solve the drawbacks
of its predecessors by utilizing state-of-the-art technologies to provide ultra-reliable low-latency
communication (URLLC), ultra-high data speeds, and seamless global connectivity [3, 4]. But there are
drawbacks to the drive to use ultra-massive MIMO (UM-MIMO) antenna arrays and broaden the
spectrum into terahertz (THz) bands, such as considerable path gain loss, signal obstruction and issues
with energy efficiency [5-7].

One revolutionary method for improving wireless communication performance is the use of RIS [8, 9].
The wireless propagation environment is dynamically reconfigured by RIS, which is made up of passive
components that may change the phase and amplitude of incident electromagnetic waves. By effectively
modifying these parameters in light of real-time data, RIS can further optimize its performance when
integrated with machine learning [10-11].

Because of its versatility, RIS can improve spectrum efficiency, lower energy costs and lessen signal
deterioration in situations when it is in Non-Line-of-Sight (NLoS). RIS has become a key component of
6G research by expanding coverage for high-frequency mmWave and THz bands, so mitigating the
inherent constraints of these bands.

LITERATURE REVIEW

The potential of RIS to improve wireless communication has led to a significant advancement. In order
to overcome difficulties in RIS-assisted OFDM systems, Qing et al. (2021) [12] suggested an Extreme
Learning Machine (ELM)-based channel estimation technique that improves accuracy in spite of hardware
flaws. Elshennawy (2022) [13] did away with the necessity for lengthy measurement campaigns by creating
a machine learning model for path loss prediction in RIS-assisted systems. Li et al. (2022) [14] investigated
how RIS can improve
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network performance in a variety of settings and increase 5G coverage. RIS was used to optimize MIMO
systems by Perovi¢ et al. (2020) [15] in order to improve data speeds and energy efficiency. Zuo et al.
(2022) [16] combined RIS with Non-Orthogonal Multiple Access NOMA) to decrease path loss and boost
spectrum efficiency. Hoydis et al. (2024) [17] presented a gradient-based calibration technique for
maximizing Channel Impulse Response (CIR) in 6G. In order to optimize RIS reflection coefficients and
increase end-to-end data rate in multi-hop networks, Huang et al. (2022) [18] integrated Proximal Policy
Optimization (PPO) with Distributed Cascade Backpropagation Network (DCBN).

Even with RIS's tremendous progress, there are still a number of important research gaps. Given the
difficulties inherent in dynamic situations, more research into gradient-based optimization techniques is
needed to increase path gain accuracy in RIS-assisted systems. While channel prediction has benefited
greatly from the successful application of machine learning, its full promise for dynamically modifying
RIS phase profiles has not yet met.

By creating a gradient-based optimization methodology to improve the path gain of received signal in RIS-
assisted 6G wireless communication systems, this study seeks to address these issues. The phase
characteristics of RIS are dynamically adjusted using machine learning approaches to guarantee optimal
performance in a variety of settings. This work's main contributions are as follows:

Develop and execute a gradient descent optimization technique: To modify the reflection coefficients
of the RIS, aiming to enhance received signal intensity and overall system performance [19-21].

RIS Size and Path Gain Analysis: A thorough examination of the connection between RIS size and path
gain that shows how some RIS designs enhance signal transmission.

Path Gain Comparison: To compare the path gain (without optimization) and the optimized path gain
via RIS gradient descent optimization, assessing enhancements in the received signal.

Impact of Antenna Types on Path Gain Performance: To compare the path gain (without optimization)
and the optimized path gain for each antenna type in order to examine the effects of various antenna
configurations, such as isotropic, hw_dipole(sionna), dipole and TR 38.901 antennas,on the path gain
performance in RIS-assisted communication.

Python 3.9 is used to run simulations, proving the effectiveness of the suggested strategy.

This paper's remaining sections are arranged as follows: The suggested system architecture and
communication situation are explained. After that Signal propagation in the system design is presented.
Next the Gradient-Based RIS Optimization framework is explained in more detail. In next Section
discusses the findings and analysis. Further concludes with conclusions and suggestions for further
research.

System Architecture And Communication Scenario

In order to recreate surroundings, the suggested communication situation is represented inside a wedge

geometry [22-24]. The radio material used to make the wedge is composed of metal [25,26], which is an
ideal

reflector of electromagnetic waves with a field strength of 1 v/m [27]. The relative permittivity is 1 and
the conductivity is 10" S/m for the metallic radio

substance [28].

Tx

RIS ) RIS2

Rxi Rx>

Fig.1: Two RIS Facilitated Transmission with a Wedge and Two Receivers.

In order to highlight the crucial role that RIS plays in signal reradiation, the transmitter and receivers are
positioned so that there is no direct line-of-sight (LoS). The two RIS Facilitated Transmission with a wedge
and two Receivers is depicted in Figure 1[29,30].
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Antenna Transmission

An antenna is used to transmit electromagnetic waves that radiated power requires a comprehension of
these fields, which propagate in free space [31-35].

Electric Field of the Electromagnetic Wave:

At a distance r from the antenna, the transmitted wave's electric field is represented as follows:

E(r,t) = (%)fcos(wt — kr) 1

Where E is the initial amplitude of the electric field, T is the unit vector in the direction of wave
propagation,  is the angular frequency of the wave, k=w/c is the wave number, in which c is the speed
of light, t is the time.

Magnetic Field of the Electromagnetic Wave:

The direction of electromagnetic wave propagation of magnetic field B(r, t) which is perpendicular to
both the electric field and the electromagnetic wave propagation direction is given by:

Bo\ ~
B(r,t) = (TO) @ cos(wt — kr) 2
By is the initial amplitude of the magnetic field, @ is the unit vector in the direction perpendicular to
both the electric field and the EM wave propagation direction.

Transmitted Power from Antenna and Total Radiated Power:
The transmitted power S(r, t) [36] from an antenna:

S(r,t) = (ui) E(r,t) X B(r,t) 3

Where [, is the permeability of free space (uo=4m=10-"H/m). The total radiated power P which is
represented by:

P=¢S-da=(3)n/QlEdQ 4

Where 1 is the intrinsic impedance of free space (N1=377 Q), Q represents the solid angle over which the
radiation is distributed.

Analysis Of Signal Propagation In System Architecture

Two carefully positioned Reconfigurable Intelligent Surfaces (RIS1 and RIS2), situated between the
antenna and the receivers, receive the broadcast power from the antenna. Depending on the setup and
intended signal processing [37], the RISs can modify the broadcast signal by changing their surface
characteristics, such as phase profile, amplitude profile [38]. The RIS's reflection coefficients( I't, T'?)
impact the received power of signal at RIS1 and RIS2. The received power is Pgrigy = T''P, Pgisp = T'?P,
where P is the total transmitted power from the antenna.

After reflection, the signals go to RX1 and RX2, the receivers, where the received strength is influenced
by a number of variables, including distance, propagation circumstances and RIS settings. Prx; = a'T'P,
Prxz = a?T'2P can be used to express the received power at each receiver. The path loss factors, a and
a?, take into consideration environmental effects such as fading and shadowing that affect the signal
propagation from RIS1 to Ry, and RIS2 to Ry,, respectively [39].

Thus, Prx; = TP and Pgy, = a?T'2P, which takes into account both the reflection coefficients and
the path loss factors, provide the total power reaching Ry; and Ry;.

For Ry, the path gain is:

1r1l
Path Gaingy, (dB) = 10 loglo% 5
transmitte
Similarly, for Ry, the path gain is:
2r2
Path Gaingy,(dB) = 10 log!® —( <P} 6

Ptransmitted
Additionally, the Free Space Path Loss (FSPL) is a crucial consideration when assessing signal propagation,

the following is the FSPL arithmetic
4
LrspL) = 20 * logyo(r) + 20 * logyo(f) + 20 * logy (_ﬂ) 7

C
Where r is the distance between the RIS and the Ry (in meters), f is the frequency (in Hz).

Combining these components allows us to fully comprehend how RISs affect communication systems'
signal strength and route loss, providing important information for improving network performance and
design in RIS-assisted settings.

RIS Setup and Positioning

The environment is equipped with two RIS units, each of which consists of a collection of passive
components that may be configured to alter the amplitude and phase of reflected signals. The RIS's cell
count is established via

120



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

, 2
Number of cells = (int (‘gl:t;)) 8

where A is the signal's wavelength. The distance between the transmitter (Ty), receiver (Ryx;, Rxy), RIS,
and RIS2 and their corresponding coordinates in X, Y, and Z are mentioned in Table 1.
Table 1: Coordinates and Distance

S.No. Description Coordinates Distance(m)

1 Distance between Tx | Tx = [-10, 10, O], Ry, = | 47.17
and Ry (30, -15, O]

2 Distance between Tx | Tx = [-10, 10, O], Ry, = | 47.17
and Ry [15,-30, O]

3 Distance between Tx | Tx = [-10, 10, 0], RIS1 = | 50.00
and RIS1 (40,10, O]

4 Distance between Tx | Tx = [-10, 10, 0], RIS2 = | 50.00
and RIS2 [-10, -40, O]

5 Distance between RIS1 | RIS1 = [40, 10, 0], Ry; = | 26.93
and R, (30, -15, Q]

6 Distance between RIS2 | RIS2 = [-10, -40, O], Ry, | 26.93
and R, = [15, -30, 0]

Framework For Gradient-Based Ris Optimization

An efficient method for setting up RIS to improve signal strength in wireless communication systems is
gradient-based optimization [40,41]. One transmitter, two receivers (Rx; and Ry;), and two RISs (RIS1
and RIS2) make up the system [42]. The signal yy that is received at receiver k may be written as follows:
yk = hildGx + ny 9

Where the channel vector from the RIS to receiver k is represented by hy € CMXL the RIS phase-shift
matrix is represented by @ = diag(ejd’l, ez ejd’M), the channel matrix from the transmitter to the
RIS is represented by G € CMXN | the transmitted signal is represented by X, and additive white Gaussian
noise is indicated by n, ~ CNV (0, 62) .

For receiver k, the path gain gy is determined by:

2
gk = [hi oG] 10
and maximizing the average path gain across all receivers is the optimization goal:
1y2
max T2, g 1

Phase shifts ¢,, € [0,21], amplitude profiles a,, € [0,1] and mode powers are examples of trainable
variables. A gradient-based method is used to adjust these values repeatedly. Using the update rule, the
optimization procedure makes use of the Adam optimizer:

Prr1 =Pt —n-VpL 12

where 1 is the learning rate and p; is the parameter at iteration t, £ is the loss function, which is the
objective's negative:

1
L=-3 Yh=18Kk 13
The combined CIR for the m™ RIS element and k™ receiver is:
htotal = Z%=1 N Bk e_jznfctk,m 14

where f is the carrier frequency, Ty, is the propagation delay and By is the route loss factor.

The Adam optimizer is used to update trainable variables by computing loss gradients until stabilization
or a predetermined number of iterations, after initializing them with feasible values [43].

Then, by concentrating energy at certain spots, this optimized RIS, configured as focusing lenses,
improves signal strength and performs better than the hand-set RIS profile [44-46].

RESULTS AND DISCUSSIONS

The effectiveness of the suggested gradient-based optimization framework for RIS in enhancing wireless
communication is assessed. The simulation parameters are represented in Table 2.

Table 2: Simulation Parameters

‘Parameter ‘ ‘Value ‘

Carrier Frequency H3 GHz ‘
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‘Parameter ‘ ‘Value ‘
ITransmitter Power H44 dBm ‘
‘RIS Orientation H[O, -P1/2, 0] ‘
RIS Area(m?) 4, 25, 64, 144, 225 |
INumber of Modes (RIS) HZ ‘

The ensuing subsections examine how RIS optimization affects path gain and how RIS configuration,
size and proximity affect system performance.

Effect Of Path Gain On Gradient-Based Ris Optimization

The results presented highlight the impact of gradient-based RIS optimization on path gain performance
for three cases. (1) Signal received to Ry; from transmitter (Tx) without RIS, (2) Signal received by (Rx;)
via RIS1 and (3) Signal received by Rx; via RIS2. Due to the symmetry of the Ry with respect to the RIS
and Ty of the system model, the results of the path gain for the second receiver (Rx;) are similar to that
of Rx;. Therefore, in order to keep things brief and prevent duplication, the results for RX2 are not

included.
Path Gains

=0 -

S0

— o -

—8ao

Pth gain 48]

—ao -

—100

Fig.2: Gradient-Based RIS Optimization Impact on Path Gain(dB) across Ry;, Rx-RIS-1, and Ry;-RIS-2
Over Iterations

In figure 2 the graph shown by symbol “|” exhibits the greatest improvement in path gain, steeply
increasing from -90 dB to stabilize around -50 dB after probably a number of 60 iterations in Ry-RIS-1.
This superior performance is attributed to the greater closeness of RIS-1 to R;.

In contrast, Rx-RIS2 graph is represented by symbol “-.” shown an initial improvement, peaks at around
-56 dB and then progressively diminishes, stabilizing at -70 dB. The greater distance between Rx; and
RIS2 as depicted from figure 1 causes more path loss, restricting the improvement in the attainable path.
The symbol “” further highlights the benefit of RIS optimization in which signal received at Ry; without
RIS is shown. RX1 without RIS stabilizes at about -50 dB, indicating that although the direct connection
offers a moderate path gain, its performance is not as good as that of the optimized RIS-1. The
performance of RIS-assisted wireless communication systems can be greatly improved by gradient-based
optimization in conjunction with careful RIS implementation.
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Fig.3: Path Gain(dB) after RIS1, RIS2 act as Focussing Lens

The path gains after learned RIS1 and learned RIS2 act as focusing lenses, with an RIS size of 64 m? is
illustrated in Fig.3. The path gain for Ry; to RIS1 is around -54.4 dB, while for Ry, to RIS2 is around -
58.2 dB. The smaller path gain(dB) for Rx;-RIS2 is due to the longer distance between Ry, and RIS2,
compared to the greater closeness of Rx; to RIS1.

RIS Size's Effect on Path Gain

For small RIS area 4 m?, the path gain before optimization is -98.34 dB, increasing to -77.17 dB after
optimization, demonstrating a path gain improvement of -21.17 dB. In a similar vein, RIS areas 25,
64,144 & 225 m’ exhibit path gain improvements of approximately -36.34 dB, -41.66 dB, -40.33 dB and
-37.44 dB respectively, with Optimized path gain with Focussing lens of -60.50 dB, -52.23 dB, -45.31dB
& -40.27 dB. The biggest improvement is seen in the 64 m* RIS area, in which path gain improvement
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i
]
!
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by -41.66 dB with optimized path gain of -52.23 dB. Higher initial path gains and Optimized Path Gain
with Focusing lens are generally associated with larger RIS sizes. Table 3 looks at how the link between
RIS size and path gain (dB) affects both initial and optimized performance.

Table 3: Comparison of Initial, Optimized & Improved Path Gain for different RIS area(m?).

S.No. RIS Size | Initial Path | Optimized Path Gain(dB)
(m?) Gain (dB) | Path Gain(dB) | Improvement

with with Focusing
Focussing lens
lens

1 2*2 -98.34 17.17 -21.17

2 5*5 96.84 -60.50 -36.34

3 8*8 93.89 -52.23 -41.66

4 12*12 -85.64 45.31 -40.33

5 15*15 -77.71 -40.27 -37.44

The link between RIS area and initial path gain (dB) as well as the optimized path gain (dB) appears to
be plotted in figure 4.
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Fig. 4: A comparison of initial path gain, Optimized path Gain for different RIS Area.

The initial path gain often rises in proportion to the RIS area. This implies that improved signal reception
may result from a wider RIS region.

Additionally, the optimum path gain rises with the RIS area. Interestingly, the optimized path gain is
constantly more than the initial path gain, suggesting that signal reception can be greatly enhanced by
adjusting the RIS setup. The improvement in path gain with varying RIS area (m?) is shown in Figure 5.
The improvement in path gain, as indicated by these bars, is -41.66 dB, which is typically higher for RIS
areas of 64 m’ than for RIS area of 4, 25, 144, and 225 m?, which yield path gains of -21.17 dB, -36.34
dB, -40.33 dB, and -37.44 dB, respectively.

Path Gain lmprovement with RIS Area
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Fig.5: Path Gain improvement with different RIS Area

Additionally, the study shows that, especially under NLoS conditions, 64 m* RIS area arrays allow for
more efficient compensation for path loss.

The path gain(dB) values for various antenna types are shown in the table 4 both before and after
optimization. After optimization, the isotropic antenna's path gain improves to -41.74 dB from its lowest
unoptimized value of -77.71 dB. Sionna's hw_dipole performs better at -73.39 dB and then improves to
-37.61 dB. Similar improvements are seen with the dipole and TR 38.901 antennas, which have optimal
gains of -38.34 dB and -40.48 dB, respectively.
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Table 4: Comparison of Path gain with/without optimization for different Antenna at Carrier Frequency

of 3 GHz.

S.No. Antenna Type Path Gain | Optimized Improved
(without Path Gain(dB) | Path
optimization) (dB) Gain(dB)

1 Isotropical -17.71 41.74 -35.97

2 hw_dipole(Sionna) -13.39 -37.61 -35.78

3 Dipole -714.19 -38.34 -35.85

4 TR 38.901 -712.28 -40.48 -31.80

CONCLUSION AND FUTURE WORK

This study shows how effective a gradient-based RIS optimization method is at enhancing wireless
communication, especially in NLoS situations.

According to the results, RIS greatly increases path gain and bigger RIS sizes offer better path loss
compensation. If the RIS is properly positioned for best performance, the suggested optimization
framework's quick convergence makes it ideal for real-time applications.
In order to enable dynamic, real-time responses to changing conditions, future research could concentrate
on optimizing path gain through the integration of optimal gradient-based RIS with 5G/6G networks.
The hw_dipole (Sionna) shows the greatest boost in path gain, however optimization significantly
improves other antenna types. This implies that wireless communication performance can be effectively
improved by optimization based on machine learning.
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