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Abstract  
In this paper, we propose a hybrid performance improvement solution to Free Space Optical (FSO) communication, a solution, 
namely, facing reliability constraint due to atmospheric turbulence and weather variability in 5G/6G an IoT networks. Due 
to turbulence, precipitation and pointing errors, traditional FSO channels also have suffered signal degradation, commonly 
modeled as e.g. log-normal or gamma-gamma distributions. These methods do not however translate well to real time 
circumstances. To mitigate the latter shortcoming, the suggested model combines the F-distribution-based channel modeling of 
the signal and a Signal prediction mechanism based on machine learning in the form of Support Vector Machines (SVM). 
Intensity Modulation with Direct Detection (IM/DD) is replicated by the hybrid model, applying the use of On-Off Keying 
(OOK) and the channel impairments are modeled using the F-distribution, simulating different levels of turbulence. Real-time 
attenuation is predicted using SVM regression model trained on synthetic weather data (visibility, humidity, precipitation, 
wind speed, and cloud cover), allowing dynamic signal thresholding. The simulation findings reveal that the hybrid system 
may considerably reduce Bit Error Rate (BER) under varied weather situations as compared to traditional Channel State 
Information (CSI)-based detection. The system is injury resistant to fog, rain, and pointing inaccuracies and has an R2 of 0.96 
regarding predicting attenuation. This is an easy-to-install and open-source solution, fully operable in Python, and can be 
customized to be deployed in the next-generation wire systems. It offers a scalable, data-based substitute for hardware-intensive 
techniques for enhancing FSO connection dependability. 
Keywords: Free Space Optical Communication, F-distribution Modeling, Machine Learning (SVM), Atmospheric 
Turbulence, 5G/6G and IoT Networks 
 
1. INTRODUCTION: 
Free Space Optics (FSO) communication is a very new optical wireless technique that has the ability to provide 
very quick line of sight communication employing laser beams moving through air. In contrast to conventional 
RF networks, FSO links have a major benefit due to license dependency, bandwidth comparable to fiber, time 
in computer installation, and security improvements, which render them more appropriate in situations where 
high throughput communications are in need [1], [2]. The possibilities of the FSO systems are particularly visible 
in the environment of next-generation networks like 5G and 6G, where extreme data requirements, barely 
perceptible delays, and huge numbers of connected devices collide with the area constraints of radio frequency 
(RF) infrastructure [3], [4]. 
The dense network of devices, intelligent edge computing, and ultra-reliable low-latency communication 
(URLLC) in the 5G/6G and Internet of Things (IoT) architectures have enhanced the necessity of finding 
alternative wireless solutions that would supplement the current backhaul and fronthaul capacity. The FSO 
systems offer an alternate solution some ways above multi-gigabit links when the usage of optical fiber is not 
feasible or financially involuntary due to the lack of space, difficulties of the deployment or high costs in such 
space [4], [5]. They are small in size, are flexibly deployable in terms of alignment, and are applicable across short-
to-medium supportive sectors; therefore, they can be deployed in urban IoT environments as well as high-altitude 
platform integrations [1], [6]. 
The use of FSO systems in practical settings is, however, hindered by atmospheric impairments that include fog, 
haze, rain, snow, turbulence and pointing errors, which all induce a series of devastating effects on signal 
strength, coherence and reliability in general [2], [6], [7]. modeled the practical performance of a system is 
negatively impacted by atmospheric turbulence, which causes beam wandering and scintillation, traditionally 
modeled using log-normal or gamma-gamma or Malaga distributions [7], [8]. Furthermore, pointing errors are 
generated by mechanical misalignments and building sway, which adds to further attenuation [9],[10]. 
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To eliminate this weakness, research has begun to see how to use the Machine Learning (ML) techniques to 
enhance the prediction and mitigation capability of the FSO link. The exposure of the nonlinear correlations 
between the meteorological features and these parameters of the system including Bit Error Rate (BER), Received 
Signal Strength (RSS) or attenuation can be trained with the help of ML models, as Support Vector Machines 
(SVMs), Convolutional Neural Networks (CNNs), and Deep Learning frameworks [11], [12]. In contrast to 
empirical models, ML-based predictor has the ability to adapt in real-time to varied environmental inputs, as well 
as to generalize to complicated atmospheric behavior. 
Besides ML, F-distribution modeling is the recent statistical approach that has been proved capable of modeling 
irradiance variations in turbulence variations. It gives better weak-to-strong turbulence analytical tractability and 
allows a better fit to experimental data, particularly where pointing errors are involved [9]. The use of ML 
combined with F-distribution modeling therefore providing a new frontier in terms of solutions to adaptive, 
resilient, and performance focused FSO systems. 
The research study has provided a proposal of hybrid framework structure that intends to improve the 
performance of the FSO communication systems in unfavourable weather condition. This model is put forward 
to merge both SVM classification and weather attributes like visibility, precipitation, humidity, wind speed, and 
cloud cover and channels modeling characterized to the F-distribution. The system is based on the Intensity 
Modulation technique Direct Detection (IM/DD) and suggests on-Off Keying (OOK) when contrasted with the 
older channel state information (CSI) based detection schemes made use of the cures of ML improvement. To 
compare BER, and SNR at varying weather profiles, simulations are conducted inside MATLAB and python. 
The process will elevate the capacity of FSO links as well as allow the high-capacity wireless networks to scale in 
5G/6G and IoT networks in network implementation. 
 
2. LITERATURE REVIEW 
2.1 Traditional FSO Models and Modulation Techniques 
Due to their affordability and ease of use, Free Space Optical (FSO) systems have historically been built using 
Intensity Modulation with Direct Detection (IM/DD) methods, namely On-Off Keying (OOK). Although these 
modulation methods are effective when the atmosphere is clear, they are very poor in turbulent and weather-
induced attenuation [6], [10]. Spatial diversity and adaptive thresholding were proposed as mitigation methods, 
and they are not effective in harsh fading conditions [10]. 
Channel modeling has been of great importance in predicting the behavior of the system. Classic models that 
have been widely utilized to characterize light to high turbulence include the log-normal, gamma-gamma, and 
Malaga distributions [2], [6]. Despite the ability of these models to capture the statistical variations in irradiance, 
they are usually unable to respond to the real-time environmental changes. Recent studies have suggested the F-
distribution as a potential alternative to the description of the irradiance behavior in the conditions of 
generalized turbulence, particularly in the presence of pointing errors [9]. 
2.2 Machine Learning Applications in FSO Systems 
Machine Learning (ML) has received significant interest in terms of integration into FSO communication 
because of the learning capability of nonlinear dependencies in complex environments. Kaur et al. [9] used 
supervised learning to predict the performance of Radio-over-FSO links and demonstrated that ML models can 
be used to successfully predict attenuation and system degradation because of weather conditions. Kavitha et al. 
[8] have shown how deep learning modules might boost the accuracy of BER prediction by modeling the 
turbulence channel estimate, reducing the inaccuracy of log-normal fading. 
To estimate Bit Error Rate (BER), various research has applied machine learning models such as Support Vector 
Machines (SVM), Random Forests, and Artificial Neural Networks (ANN), 
categorize weather-induced degradations and optimize modulation thresholds [13], [14]. The methods are 
superior to traditional statistical models because they adjust to environmental data such as humidity, wind speed, 
and visibility in real-time. 
2.3 F-Distribution and Atmospheric Channel Modeling 
It is necessary to model the variations of irradiance in the presence of atmospheric turbulence to design FSO 
systems correctly. The F-distribution has recently been found to be a flexible model that can be used to model 
both weak and strong turbulence regimes [9]. It is more suitable to fit experimental data than legacy models and 
is analytically tractable. It has proven to be powerful when simulating fading channels when turbulence and 
misalignment (pointing error) effects coexist [9], [15]. Outage probabilities have also been estimated with the 
model and power allocation strategies optimized in different weather conditions. 
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2.4 Role of SVM and Advanced ML in Signal Detection 
SVMs are especially useful in binary classification problems and thus they are suitable in the detection of either 
a 1 or 0 signal in IM/DD OOK systems in noisy or degraded environments. Kaur et al. [9] were able to train 
SVM models with several atmospheric parameters and demonstrated an increase in classification accuracy 
compared to fixed-threshold detectors. In addition, hybrid methods based on F-distribution modeling and ML 
classifiers have been useful in modeling the combined effect of turbulence and weather [13], [16]. 
SVM and ensemble learning techniques are highly reliable in the estimation of signal state in a multi-feature 
space based on meteorological data (visibility, humidity, precipitation). These results indicate that ML can be 
used as a not only a prediction engine but also a real-time link adaptation mechanism of dynamic FSO networks. 
2.5 Limitations in Current Methods 
Although ML-enhanced FSO systems are promising, they do not lack limitations. To begin with, most of the 
models are based on static or simulated data, which is unlikely to be generalized to the fast-changing atmospheric 
conditions [11], [13]. Second, the computational complexity and interpretability of the model is still an issue of 
concern to be deployed in low-powered IoT settings. Third, the majority of the studies have been based on classic 
classification or regression models; little is known about reinforcement learning or real-time adaptation in 
unstable urban environments. Also, there is no real-life deployment and comparison with ground-truth weather 
measurements [14]. 
Compared to the studies reporting such limitations, this study overcomes such limitations by integrating SVM-
based classification of signals and F-distribution modeling of channels, trained on a multi-modal array of 
simulated weather-annotated data. The method provides a new direction to the implementation of adaptive, 
high-reliability FSO systems in 5G/6G and IoT applications. 
3. Problem Statement and Objectives 
3.1 Problem Statement 
FSO communication systems deliver license-free, high-throughput and fiber-equivalent transmission systems, 
which can be used in future wireless communications 5G/6G, and the Internet of Things (IoT). Nevertheless, 
environmental degradations such as turbulent atmosphere, weather fluctuations and positioning errors, severely 
limit their performance. Such impairments bring on high signal degradation in the form of attenuation, beam 
divergence and scintillation that leads to higher Bit Error Rate (BER) and loss of availability in the link [2], [6], 
[9]. 
Turbulence can be modeled statistically using traditional modeling based on log-normal, gamma-gamma or 
Malaga distributions, however these traditional methods lack responsiveness to time varying environmental 
forces. Likewise, deterministic-based signal detection algorithms that use set thresholds or highly-determinate 
algorithms cannot operate effectively in the presence of uncontrollable weather profiles. The tools are particularly 
insufficient in intelligent and dense communication that is planned in 5G/6G networks where reliability and 
adaptiveness are of primary importance [3], [5]. 
Even though machine learning (ML) has been demonstrated as a promising avenue of enhancing performance 
forecasts in a dynamic scenario, most of the current research techniques either consider unattributable ML 
models isolating the physical channel effect, or cannot generalize adequately across mixed and varied weather 
types. F-distribution, which is flexible in its ability to characterize both weak and strong turbulence, has not been 
integrated fully into ML frameworks to provide robust hybrid FSO solutions [9], [15]. 
Therefore, a method of data-driven and physically based modeling is required that should be able to position 
signal attenuation in real time, optimizing the detection strategies, and increasing the robustness of the FSO 
links in various environmental conditions. 
3.2 Project Aim 
This work aims at designing and experimentation of a hybrid modelling system that aims at enhancing the 
performance and integrity of the FSO communications system in its application of the F-distribution modeling 
channel along with the Python-based machine learning (ML) in the specific form of Support Vector Machines 
(SVM) used to alleviate the effects of weather impairment in the context of the 5G/6G and IoT application 
environment strings. 
3.3 Objectives 
With this in mind, in order to accomplish this purpose, the research is informed with the following objectives: 

• O1: The F-distribution can be used to model atmospheric turbulence and simulate turbulence intensities 
at different values, with the ability to add the influence of pointing error and weather-based attenuation 
effects. 
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• O2: Construct an SVM-based machine learning model (e.g. visibility, precipitation, humidity, wind 
speed) pre-trained on synthetic weather data and use the model to predict attenuation and categorize 
channel conditions. 

• O3: Combine the SVM-estimated attenuation with the physical signal transmission simulations of signal 
propagation (OOK modulation) to analyze and test the values of BER and SNR under the actual settings 
of a FSO link. 

• O4: Compare the hybrid ML biodistribution model with existing CSI-based detection mechanisms and 
also measure the enhancement in the accuracy of prediction, signal identification and robustness of 
links. 

3.4 Technical Scope 
The research makes use of Python as the simulation and modeling language, composed of open-source scientific 
and ML libraries: 
• NumPy and pandas data processing 
• SciPy. stats. f for F -distribution sampling 
• scikit-learn in training and testing of the SVM model 
• The visualization and result analysis tools are matplotlib and seaborn 
Python is used in all simulations, such as modulation, fading, the addition of noise, and the decoding of signals. 
No custom environments such as MATLAB or Mathematica need to be used, and it is reproducible and openly 
accessible. 
3.5 Limitations 

1. The data structure applied is simulated rather than captured in real-time field experiments of FSO or 
weather stations. 

2. The use of ML models doesn't require online retraining or feedback on live sensors. 
3. ML-based classification consists of SVM only, and does not encompass more advanced models, like deep 

neural networks or reinforcement learning agents. 
4. It should be noted that the implementation and deployment of FSO transceivers in real-world 

applications, as well as hardware implementation, are out of scope of the current study and proposed as 
a future study. 
 

4. METHODOLOGY 
4.1 System Model Overview 
The proposed system simulates a Free Space Optical (FSO) communication channel that is intended to operate 
under different atmospheric conditions. The connection has On-Off Keying (OOK) as its modulation technique 
on Intensity Modulation with Direct Detection (IM/DD). The performance under dissimilar weather conditions 
is measured using Bit Error rate (BER) and Signal to noise ratio (SNR). 
The system has two main components that model the system: 

1. Atmospheric channel modeling based on the F-distribution, which models fading caused by turbulence; 
2. Using machine learning to anticipate signal attenuation, such as a Support Vector Machine (SVM) 

trained on meteorological data. 
 
4.2 Atmospheric Channel Modeling Using F-Distribution 
To mimic the impact of air turbulence on the received signal, the F-distribution is used as the statistical model 
of irradiance variations. The probability density function (PDF) for the -F-distribution is provided by: 

f(x) =
Γ (

m + n
2 )

Γ (
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2)Γ (

n
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⋅ (
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n
)
m/2

⋅
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where m and n represent the degrees of freedom and can be tuned to model different turbulence conditions. 
Python's scipy.stats.f library is used to generate irradiance samples based on different turbulence regimes. These 
values are further scaled to represent signal fading under low, medium, and high atmospheric distortion. 
4.3 Modulation Scheme: IM/DD with OOK 
The modulation scheme used is On-Off Keying, which is a type of binary amplitude shift keying in which: 

• Logical 1 is sent as a pulse (e.g. a laser flash), 
• The absence of a signal is coded as logical 0. 
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In Python, a synthetic binary message stream is created with NumPy and modulated with a simple logical 
mapping. The channel propagation effect is multiplicative with the signal amplitude by the outcome of 
turbulence (F-distribution). 
The signal received is represented by: 

R(t) = S(t) ⋅ h(t) + n(t) 
where: 

• S(t) : Transmitted signal (OOK) 
• h(t) : Channel fading coefficient (from F-distribution) 
• n(t) : Additive white Gaussian noise (modeled using NumPy random generator) 

4.4 Implementation of SVM for Detection 
Feature Extraction 
The data is based on 150 records, and each of them includes meteorological characteristics: 

• Visibility (km) 
• Precipitation (mm) 
• Humidity (%) 
• Wind Speed (m/s) 
• Cloud Cover (%) 

The label of the output is Estimated Attenuation (dB) which is a regression target or classification bucket during 
SVM training. 
Model Training and Testing 
SVM regression model (SVR) is constructed with the help of the scikit-learn library. These are the steps: 

1. Data Preprocessing: Standardize input feature: use StandardScaler. 
2. Model Training: Train the SVM model over 80 % of the dataset. 
3. Model Testing: Test on the remaining 20% with the help of RMSE and R2 measures. 
4. Prediction: The model can be used to predict attenuation given unforeseen weather profiles. 

The model allows estimation of optical losses in real-time and allows dynamic control over system parameters 
like transmission power and modulation index. 
4.5 Simulation Setup (Python Tools and Parameters) 
The simulation has been done in Python, and various specialized libraries have been used to represent various 
parts of the system. The scipy.stats.f module was used to sample F-distribution to model atmospheric turbulence 
and the module enabled the generation of different channel conditions that could be used to represent weak, 
moderate, and strong turbulence. The numerical calculations were performed using NumPy and plotting and 
graphical analysis were performed using matplotlib. The classification problem in machine learning, namely 
Support Vector Machine (SVM) modeling, was performed with the help of the scikit-learn library. Also, the 
pandas library was used to manipulate and organize the dataset effectively. The performance of the models was 
evaluated by the mean_squared_error and R2 score measures, which were imported as sklearn.metrics. 
In order to represent the actual conditions of a free-space optical (FSO) communication system, the key 
simulation parameters were set. The optical wavelength was set to 1550 nm, and the transmitter power was set 
to 10 mW. The connection link was one kilometer away. To make the test more realistic, the system was tested 
with additive white Gaussian noise (AWGN) and a signal-to-noise ratio (SNR) of 0-30 dB. Because On-Off Keying 
(OOK) is easy to use and compatible with optical systems, it was used in modulation. To represent a variety of 
atmospheric turbulence, F-distribution variants were used to vary the channel conditions in weak, moderate, and 
strong turbulence. 
4.6 Comparative Analysis with CSI-Based Detection 
To rigorously evaluate the performance of the proposed hybrid machine learning-physical model, a comparison 
with a traditional benchmark system was conducted. The baseline configuration used classical detection methods 
that made use of fixed channel state information (CSI), without an adaptive compensation to dynamic weather 
conditions. On the other hand, the suggested system included an Attenuation estimation module that was 
improved with a Support Vector Machine (SVM) to direct the signal decoding procedure and adjust in real-time 
to environmental changes. 
The same simulation parameters were used in both detection systems to simulate fairness of evaluation. 
Performance indicators of interest were the Bit Error Rate (BER) with respect to the Signal-to-Noise Ratio (SNR) 
and the latter was plotted against each scenario in order to compare visually the resilience between the two 
scenarios. The benefit of the hybrid model was also quantified by the error of prediction of the atmospheric 
attenuation with the help of Root Mean Square Error (RMSE) and signal misclassification rate during decoding. 
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Additionally, by calculating the percentage of link availability in each of the three air turbulence environments—
weak, moderate, and strong—the communication connection's strength was ascertained. 
The resulting comparison made it clear that the SVM-enhanced system was always better than the classical CSI-
based detection scheme, especially in moderate to solid turbulence conditions. The results confirm the 
effectiveness of using machine learning methods with the knowledge of the physical layer to increase the 
reliability and flexibility of free-space optical (FSO) communication networks. 
5. Experimental Setup and Simulation 
In this section, the experimental setup, the nature of the data, the assumption of the parameters, and the flow 
of simulation will be provided in order to test the proposed hybrid FSO communication system. The simulation 
structure was fully written in Python, which uses physical modeling of the atmosphere turbulence through F-
distribution and machine learning-based estimation of attenuation with Support Vector Machines (SVM). 
5.1 Simulation Environment and Tools 
All experiments were conducted in a local Python 3.10 environment using the following open-source libraries: 
Table 1. Python libraries and their roles in FSO simulation and modeling 

Tool/Library Purpose 
NumPy Bitstream generation, numerical operations 
pandas Dataset loading, preprocessing 
matplotlib, seaborn Data visualization and correlation analysis 
SciPy. Stats F-distribution sampling and statistical modeling 
scikit-learn SVM training, testing, and evaluation 
warnings, joblib Model tuning and persistence 

 
Simulations were executed on a workstation with 16 GB RAM and an 8-core processor to ensure fast 
computation and reproducibility. Table 1 depicts the simulation pipeline that incorporates Python-based 
scientific data processing libraries, including NumPy, pandas, and SciPy, in statistical modeling and processing 
of data, whereas scikit-learn is used to classify and evaluate models to track the BER. 
5.2 Dataset Generation and Assumptions 
A synthetic dataset with 150 different records, each of which related to a unique case of a weather scenario that 
impacts the performance of the FSO communication, was used to support the simulation and machine learning 
model development. Each of the records contains a mixture of meteorological and environmental characteristics 
as follows: visibility (km), precipitation (mm), humidity (per cent), cloud cover (per cent), wind speed (m/s), and 
a categorical description of the weather condition (e.g. Clear, Fog, Rain, Snow). The estimated attenuation in 
decibels (dB) is the target variable of the dataset, and it defines the loss of signal in each environmental condition. 
In order to obtain the attenuation values, empirical correlations were used according to the recommendation of 
the ITU-R P.1814, complemented by the results of the modern experiments in optical communications. The 
man-made quality of the data set guarantees constrained diversity, with weather parameters presumed to be freely 
and arbitrarily dispersed in sensible, limited ranges that are reflective of customary outdoor atmospheric 
conditions. Moreover, pointing errors, which are the key element of FSO link reliability, have also been 
introduced by introducing random perturbation in the divergence angles and hence affecting the fading 
characteristics during the data simulation process. 
The entry of each dataset consists of a time-synchronized snapshot of the FSO channel state, which guarantees 
the contextual integrity to supervised learning tasks. To develop the model, it was divided into two subsets: 80% 
of the records were used to train the machine learning model, and the rest 20% were used to test the prediction 
accuracy and the generalization ability of the model. 
5.3 Parameters Used in Simulation 
The FSO link simulation is set with the key parameters as follows, which is in line with the deployment of a 
realistic system: 
Table 2. Simulation parameters for FSO communication system under fading and non-fading scenarios 

Parameter Value / Description 
Link Distance 1000 meters (1 km) 
Optical Wavelength 1550 nm (eye-safe, low-absorption) 
Modulation Scheme IM/DD with on–Off Keying (OOK) 
Beam Divergence Angle 2 milliradians 
Receiver Aperture Diameter 5 cm 
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Transmitter Power 10 mW 
Atmospheric Turbulence Levels Weak, Moderate, Strong (via F-distribution) 
Pointing Error Model Gaussian-distributed beam misalignment 
SNR Range 0–30 dB 
Channel Fading Modeled via F-distribution (m=5, n=10) 
Noise Model AWGN (σ = 0.3–0.8 depending on scenario) 

The simulation model will take into consideration a realistic FSO environment considering fading, pointing 
error, and noise addition as a model of the simulation framework with the addition of turbulence modeled by 
F-distribution to assess the BER performance at different SNRs as summarized in Table 2. 
5.4 Simulation Execution Workflow 
The simulation will move as follows in a structured way: 
Step 1: Ingestion of Weather Data 
The weather data is imported in pandas. StandardScaler is applied to normalize the features, and highly 
correlated inputs are kept on the basis of the Pearson correlation heatmaps. 
Step 2: Training the SVM Model 
The pre-processed data is utilized to train an SVR (Support Vector Regressor) that has an RBF kernel. The 
hyperparameters C and gamma are set to be optimized through a 5-fold cross-validation grid search. Persistence 
of the trained model is done through joblib. 
Step 3: OOK transmission and transmission 
OOK modulates synthetic binary messages. The signal is formed into discrete time pulses with the help of 
NumPy. 
Step 4: Attenuation and Channel Effects 
The trained SVM model forecasts real-time attenuation of the present weather characteristics. This estimated 
loss is used on every modulated pulse. At the same time, turbulence-induced signal distortion is simulated by 
random fading samples, which are distributed according to the F-distribution. Beam divergence includes pointing 
error as a Gaussian jitter. 
Step 5: Addition and Reception of Noise 
The received signal is covered by Additive White Gaussian Noise (AWGN). The OOK signal is decoded with 
the help of a dynamic threshold detection technique in noisy conditions. 
Step 6: Analysis and Logging 
Repeat until the end of the simulations: 

• BER is calculated by comparing the transmitted bits and detected bits. 
• SNR is determined using signal power and variance of noise. 
• SVM predictions of MAE, RMSE are logged. 

To estimate average metrics, each of the simulation scenarios (fog, rain, clear, snow, haze) is repeated 100 times. 
 
6. RESULTS AND DISCUSSION 
This section gives the detailed analysis of the suggested hybrid Free Space Optical (FSO) communication system 
that combines F-distribution modeling of atmospheric turbulence with machine learning (ML) prediction of 
attenuation through Support Vector Machines (SVM). The assessment of the performance is done in Bit Error 
Rate (BER), Signal-to-Noise Ratio (SNR) and its resilience to environmental degradations, and is compared with 
the conventional Channel State Information (CSI)-based detection schemes and the literature. 
6.1 BER vs. SNR Performance Curves 
BER performance was tested with various SNR values (0-30 dB) in different atmospheric conditions such as 
clear, foggy, rainy, snowy and hazy environments with a proposed hybrid receiver and a classical CSI-based 
receiver. 
 
Key Observations: 
• When the sky is clear, both systems function similarly; however, the suggested model attains a goal BER of 

10(-5) at 3 dB lower SNR. 
• Under fog, which is a primary cause of optical attenuation, the hybrid model consistently maintains lower 

BER. The average BER reduction was 32% compared to the CSI approach. 
• Under rain and snow, the SVM model dynamically adjusts detection thresholds based on predicted 

attenuation, yielding 15-20% BER improvements. 
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Fig. 1:BER vs. SNR under clear, fog, rain, snow, and haze scenarios. 
As illustrated in fig.1 the study by Navidpour et al. [10] demonstrated that spatial diversity may compensate the 
degradation of BER. Nonetheless, they have to replicate the hardware. We provide an alternative to this 
hardware-based solution that is scalable and cost efficient, in that our method provides comparable gains through 
intelligent signal prediction and channel adaptation. 
6.2 Atmospheric Turbulence Effects and F-Distribution Validation 
The F-distribution was utilized with parameters (m, n) to represent weak, moderate, and high turbulence in order 
to describe the irradiance fluctuation caused by turbulence. The findings show: 

• F-distribution is good at modeling the irradiance spread, particularly at moderate to strong turbulence 
compared to legacy modes, such as log-normal and gamma-gamma. 

• Power variance variations in simulated powerful turbulence (m = 3, n = 5) rose by ~48%, which 
confirmed the sensitivity to the variable atmospheric states. 

 
Fig. 2:Histogram fit of F-distributed irradiance under different turbulence intensities. 
As illustrated in fig.2, There are advantages in the use of F-distribution (Fischer-Snedecor) models rather than 
Malga models, as indicated by Peppas et al. [15]. Our results coincide with [15] and expand its coverage with the 
use of the same robustness in the statistical modeling and the ML-based forecast to create a parallel product that 
adapts both and combines. 
6.3 Pointing Error Impact Analysis 
They introduced pointing errors in terms of simulated Gaussian jitter in beam alignment. As per in fig.3 the 
analysis employed indicated the following: 

• There was a 24 percent BER increase due to moderate pointing error with CSI-based detection. 
• Features such as wind speed, visibility, among others enabled the proposed SVM model to lower this 

increment to less than 10 per cent. 
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Fig. 3: BER increases with pointing error—comparison between CSI and ML-F model. 
Although Ansari et al. [3] and Badarneh et al. [5], analytically analyzed the pointing error in FSO links, they were 
unable to include a data-oriented correction approach. In the indirect learning of our ML-enhanced model, point 
disturbances learn their statistical effect and provide real time compensation. 
6.4 Machine Learning vs. CSI-Based Signal Detection 
The SVM was trained on 150 synthetic weather samples and tested on unseen data. Key regression outcomes 
were: 

Metric Value 
RMSE 0.6907 
MAE 0.4230 
R² Score 0.9624 
Prediction Speed <10 ms 

 
Fig. 4: SVM prediction of attenuation vs. actual values. 
Kaur et al. [9] utilized ML in the prediction of Ro-FSO, although they could not perform classifications. We can 
perform continuous-value regression-based ML when predicting the attenuation (as per in fig.4), and this is quite 
close to what is needed in edge-based optical systems when doing link control in real-time. 
6.5 Discussion and Practical Implications 
The offered hybrid approach that combines the F-distribution turbulence modeling with the SVM-based real-
time prediction of the attenuation offers several technical and practical benefits: 

• Better Accuracy: BER benefit in all the weather categories, especially with low-SNR. 
• Resource Efficiency: This removes hardware diversity in the use of software-based singular prediction 

models. 
• Real-time Adaptability: Allows low-latency readjustment of decoding thresholds according to SVM 

outputs, and is especially suitable to 5G+ backhaul networks [1] and the urban optical mesh networks 
[7]. 

• IoT-Readiness: It can fit into low-power, embedded platforms, and it is fast with a lightweight 
architecture. 
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Literature Comparison Summary: 
Reference Technique Limitation This Work – Advantage 
[3], [5] Analytical pointing error 

modeling 
No real-time correction Predictive and adaptive 

[9] ML classification of Ro-FSO No regression or physical 
modeling 

Unified ML + physical 
modeling 

[10] Spatial diversity for BER Hardware-dependent Software-driven 
improvement 

[15] F-distribution channel 
modeling 

No ML integration ML-enhanced hybrid 
adaptation 

 
In the overall findings hypothesis that statistical and machine learning models can be combined and induce 
significant improvement in the robustness of FSO links in the real-world setting was proved to be correct by the 
simulation results. In particular, the model proposed: 

• Professes better statistically, the BER performance in turbulence/ low-visibility conditions. 
• Is fidelity in prediction, with an R2 of more than 0.94 in attenuation. 
• Offers a vendor-neutral route to implementing self-governing FSO systems with intelligence of inclement 

weather to 5G/6G and IoT networks. 
 

CONCLUSION AND FUTURE WORK 
In this paper we have provided the formulation of the hybrid modeling system to enhance the performance of 
Free Space Optical (FSO) communication based on various and demanding atmospheric circumstances. The 
proposed method that combines the F-distribution based turbulence modelling and machine learning based 
attenuation prediction based on support vectors machine (SVM) helps in enhancing the adaptability and 
reliability of FSO links in practice. All the simulations have been carried out in Python thus proving the feasibility 
of the fully open-source, scalable and efficient implementation. 
The simulation results indicated that the hybrid strategy is fairly superior than the conventional CSI-based 
detection strategies, especially during weather compromised scenarios like rose, rains and snows. The model had 
reduced Bit Error Rates (BER) over a large SNR and it was still robust even when beam misaligned because of 
pointing errors. The SVM approach was able to model real time attenuation based on meteorological 
information, by which the receiver implemented its detection threshold dynamically, which enhanced stability 
and quality of the link. 
Although the results prove the success of the hybrid model, some limitations still apply. The dataset was artificial, 
and it has to be validated against real-world data. Also, it is possible to implement more profound and more 
convoluted models; there is only SVM as the learning algorithm. The simulations were conducted on a no 
dynamic environment that had no live data streams or feedback system. 
It will be of interest to combine real-time datasets of the atmosphere and further design more complicated 
machine learning models such as deep learning or reinforcement learning in the future. It is also envisaged that 
the system will be extended to operate in dynamic, multi-hop FSO networks and this model will also be 
implemented in actual hardware environments, e.g., in drone-based communication systems. This study forms 
the basis of effective, intelligent, and dynamic FSO platforms that can be used in wireless infrastructures in the 
next generation that call on high degrees of reliability and scalability 
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