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Abstract

In this paper, we propose a hybrid performance improvement solution to Free Space Optical (FSO) communication, a solution,
namely, facing reliability constraint due to atmospheric turbulence and weather variability in 5G/6G an IoT networks. Due
to turbulence, precipitation and pointing errors, traditional FSO channels also have suffered signal degradation, commonly
modeled as e.g. lognormal or gamma-gamma distributions. These methods do not however translate well to real time
circumstances. To mitigate the latter shortcoming, the suggested model combines the F-distribution-based channel modeling of
the signal and a Signal prediction mechanism based on machine learning in the form of Support Vector Machines (SVM).
Intensity Modulation with Direct Detection (IM/DD) is replicated by the hybrid model, applying the use of On-Off Keying
(OOK) and the channel impairments are modeled using the F-distribution, simulating different levels of turbulence. Real-time
attenuation is predicted using SVM regression model trained on synthetic weather data (visibility, humidity, precipitation,
wind speed, and cloud cover), allowing dynamic signal thresholding. The simulation findings reveal that the hybrid system
may considerably reduce Bit Error Rate (BER) under varied weather situations as compared to traditional Channel State
Information (CSI)-based detection. The system is injury resistant to fog, rain, and pointing inaccuracies and has an R* of 0.96
regarding predicting attenuation. This is an easy-to-install and open-source solution, fully operable in Python, and can be
customized to be deployed in the next-generation wire systems. It offers a scalable, data-based substitute for hardware-intensive
techniques for enhancing FSO connection dependability.

Keywords: Free Space Optical Communication, Fdistribution Modeling, Machine Learning (SVM), Atmospheric
Turbulence, 5G/6G and IoT Networks

1. INTRODUCTION:

Free Space Optics (FSO) communication is a very new optical wireless technique that has the ability to provide
very quick line of sight communication employing laser beams moving through air. In contrast to conventional
RF networks, FSO links have a major benefit due to license dependency, bandwidth comparable to fiber, time
in computer installation, and security improvements, which render them more appropriate in situations where
high throughput communications are in need [1], [2]. The possibilities of the FSO systems are particularly visible
in the environment of next-generation networks like 5G and 6G, where extreme data requirements, barely
perceptible delays, and huge numbers of connected devices collide with the area constraints of radio frequency
(RF) infrastructure [3], [4].

The dense network of devices, intelligent edge computing, and ultra-reliable low-latency communication
(URLLQ) in the 5G/6G and Internet of Things (IoT) architectures have enhanced the necessity of finding
alternative wireless solutions that would supplement the current backhaul and fronthaul capacity. The FSO
systems offer an alternate solution some ways above multi-gigabit links when the usage of optical fiber is not
feasible or financially involuntary due to the lack of space, difficulties of the deployment or high costs in such
space [4], [5]. They are small in size, are flexibly deployable in terms of alignment, and are applicable across short-
to-medium supportive sectors; therefore, they can be deployed in urban IoT environments as well as high-altitude
platform integrations [1], [6].

The use of FSO systems in practical settings is, however, hindered by atmospheric impairments that include fog,
haze, rain, snow, turbulence and pointing errors, which all induce a series of devastating effects on signal
strength, coherence and reliability in general [2], [6], [7]. modeled the practical performance of a system is
negatively impacted by atmospheric turbulence, which causes beam wandering and scintillation, traditionally
modeled using log-normal or gamma-gamma or Malaga distributions [7], [8]. Furthermore, pointing errors are
generated by mechanical misalignments and building sway, which adds to further attenuation [9],[10].
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To eliminate this weakness, research has begun to see how to use the Machine Learning (ML) techniques to
enhance the prediction and mitigation capability of the FSO link. The exposure of the nonlinear correlations
between the meteorological features and these parameters of the system including Bit Error Rate (BER), Received
Signal Strength (RSS) or attenuation can be trained with the help of ML models, as Support Vector Machines
(SVMs), Convolutional Neural Networks (CNNs), and Deep Learning frameworks [11], [12]. In contrast to
empirical models, ML-based predictor has the ability to adapt in real-time to varied environmental inputs, as well
as to generalize to complicated atmospheric behavior.

Besides ML, F-distribution modeling is the recent statistical approach that has been proved capable of modeling
irradiance variations in turbulence variations. It gives better weak-to-strong turbulence analytical tractability and
allows a better fit to experimental data, particularly where pointing errors are involved [9]. The use of ML
combined with F-distribution modeling therefore providing a new frontier in terms of solutions to adaptive,
resilient, and performance focused FSO systems.

The research study has provided a proposal of hybrid framework structure that intends to improve the
performance of the FSO communication systems in unfavourable weather condition. This model is put forward
to merge both SVM classification and weather attributes like visibility, precipitation, humidity, wind speed, and
cloud cover and channels modeling characterized to the F-distribution. The system is based on the Intensity
Modulation technique Direct Detection (IM/DD) and suggests on-Off Keying (OOK) when contrasted with the
older channel state information (CSI) based detection schemes made use of the cures of ML improvement. To
compare BER, and SNR at varying weather profiles, simulations are conducted inside MATLAB and python.
The process will elevate the capacity of FSO links as well as allow the high-capacity wireless networks to scale in
5G/6G and IoT networks in network implementation.

2. LITERATURE REVIEW

2.1 Traditional FSO Models and Modulation Techniques

Due to their affordability and ease of use, Free Space Optical (FSO) systems have historically been built using
Intensity Modulation with Direct Detection (IM/DD) methods, namely On-Off Keying (OOK). Although these
modulation methods are effective when the atmosphere is clear, they are very poor in turbulent and weather-
induced attenuation [6], [10]. Spatial diversity and adaptive thresholding were proposed as mitigation methods,
and they are not effective in harsh fading conditions [10].

Channel modeling has been of great importance in predicting the behavior of the system. Classic models that
have been widely utilized to characterize light to high turbulence include the log-normal, gamma-gamma, and
Malaga distributions [2], [6]. Despite the ability of these models to capture the statistical variations in irradiance,
they are usually unable to respond to the real-time environmental changes. Recent studies have suggested the F-
distribution as a potential alternative to the description of the irradiance behavior in the conditions of
generalized turbulence, particularly in the presence of pointing errors [9].

2.2 Machine Learning Applications in FSO Systems

Machine Learning (ML) has received significant interest in terms of integration into FSO communication
because of the learning capability of nonlinear dependencies in complex environments. Kaur et al. [9] used
supervised learning to predict the performance of Radio-over-FSO links and demonstrated that ML models can
be used to successfully predict attenuation and system degradation because of weather conditions. Kavitha et al.
[8] have shown how deep learning modules might boost the accuracy of BER prediction by modeling the
turbulence channel estimate, reducing the inaccuracy of log-normal fading.

To estimate Bit Error Rate (BER), various research has applied machine learning models such as Support Vector
Machines (SVM), Random Forests, and Artificial Neural Networks (ANN),

categorize weather-induced degradations and optimize modulation thresholds [13], [14]. The methods are
superior to traditional statistical models because they adjust to environmental data such as humidity, wind speed,
and visibility in real-time.

2.3 F-Distribution and Atmospheric Channel Modeling

It is necessary to model the variations of irradiance in the presence of atmospheric turbulence to design FSO
systems correctly. The F-distribution has recently been found to be a flexible model that can be used to model
both weak and strong turbulence regimes [9]. It is more suitable to fit experimental data than legacy models and
is analytically tractable. It has proven to be powerful when simulating fading channels when turbulence and
misalignment (pointing error) effects coexist [9], [15]. Outage probabilities have also been estimated with the
model and power allocation strategies optimized in different weather conditions.
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2.4 Role of SVM and Advanced ML in Signal Detection
SVMs are especially useful in binary classification problems and thus they are suitable in the detection of either
a 1 or O signal in IM/DD OOK systems in noisy or degraded environments. Kaur et al. [9] were able to train
SVM models with several atmospheric parameters and demonstrated an increase in classification accuracy
compared to fixed-threshold detectors. In addition, hybrid methods based on F-distribution modeling and ML
classifiers have been useful in modeling the combined effect of turbulence and weather [13], [16].
SVM and ensemble learning techniques are highly reliable in the estimation of signal state in a multi-feature
space based on meteorological data (visibility, humidity, precipitation). These results indicate that ML can be
used as a not only a prediction engine but also a real-time link adaptation mechanism of dynamic FSO networks.
2.5 Limitations in Current Methods
Although ML-enhanced FSO systems are promising, they do not lack limitations. To begin with, most of the
models are based on static or simulated data, which is unlikely to be generalized to the fast-changing atmospheric
conditions [11], [13]. Second, the computational complexity and interpretability of the model is still an issue of
concern to be deployed in low-powered [oT settings. Third, the majority of the studies have been based on classic
classification or regression models; little is known about reinforcement learning or real-time adaptation in
unstable urban environments. Also, there is no real-life deployment and comparison with ground-truth weather
measurements [14].
Compared to the studies reporting such limitations, this study overcomes such limitations by integrating SVM-
based classification of signals and F-distribution modeling of channels, trained on a multi-modal array of
simulated weather-annotated data. The method provides a new direction to the implementation of adaptive,
high-reliability FSO systems in 5G/6G and loT applications.
3. Problem Statement and Objectives
3.1 Problem Statement
FSO communication systems deliver license-free, high-throughput and fiber-equivalent transmission systems,
which can be used in future wireless communications 5G/6G, and the Internet of Things (IoT). Nevertheless,
environmental degradations such as turbulent atmosphere, weather fluctuations and positioning errors, severely
limit their performance. Such impairments bring on high signal degradation in the form of attenuation, beam
divergence and scintillation that leads to higher Bit Error Rate (BER) and loss of availability in the link [2], [6],
(9].
Turbulence can be modeled statistically using traditional modeling based on log-normal, gamma-gamma or
Malaga distributions, however these traditional methods lack responsiveness to time varying environmental
forces. Likewise, deterministic-based signal detection algorithms that use set thresholds or highly-determinate
algorithms cannot operate effectively in the presence of uncontrollable weather profiles. The tools are particularly
insufficient in intelligent and dense communication that is planned in 5G/6G networks where reliability and
adaptiveness are of primary importance [3], [5].
Even though machine learning (ML) has been demonstrated as a promising avenue of enhancing performance
forecasts in a dynamic scenario, most of the current research techniques either consider unattributable ML
models isolating the physical channel effect, or cannot generalize adequately across mixed and varied weather
types. F-distribution, which is flexible in its ability to characterize both weak and strong turbulence, has not been
integrated fully into ML frameworks to provide robust hybrid FSO solutions [9], [15].
Therefore, a method of data-driven and physically based modeling is required that should be able to position
signal attenuation in real time, optimizing the detection strategies, and increasing the robustness of the FSO
links in various environmental conditions.
3.2 Project Aim
This work aims at designing and experimentation of a hybrid modelling system that aims at enhancing the
performance and integrity of the FSO communications system in its application of the F-distribution modeling
channel along with the Python-based machine learning (ML) in the specific form of Support Vector Machines
(SVM) used to alleviate the effects of weather impairment in the context of the 5G/6G and loT application
environment strings.
3.3 Objectives
With this in mind, in order to accomplish this purpose, the research is informed with the following objectives:
e O1: The Edistribution can be used to model atmospheric turbulence and simulate turbulence intensities
at different values, with the ability to add the influence of pointing error and weather-based attenuation
effects.

25



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

e 02: Construct an SVM-based machine learning model (e.g. visibility, precipitation, humidity, wind
speed) pre-trained on synthetic weather data and use the model to predict attenuation and categorize
channel conditions.

e 3: Combine the SVM-estimated attenuation with the physical signal transmission simulations of signal
propagation (OOK modulation) to analyze and test the values of BER and SNR under the actual settings
of a FSO link.

e 04: Compare the hybrid ML biodistribution model with existing CSI-based detection mechanisms and
also measure the enhancement in the accuracy of prediction, signal identification and robustness of
links.

3.4 Technical Scope

The research makes use of Python as the simulation and modeling language, composed of open-source scientific
and ML libraries:

e  NumPy and pandas data processing

e SciPy. stats. f for F -distribution sampling

e scikit-learn in training and testing of the SVM model

e The visualization and result analysis tools are matplotlib and seaborn

Python is used in all simulations, such as modulation, fading, the addition of noise, and the decoding of signals.
No custom environments such as MATLAB or Mathematica need to be used, and it is reproducible and openly
accessible.

3.5 Limitations

1. The data structure applied is simulated rather than captured in real-time field experiments of FSO or
weather stations.

2. The use of ML models doesn't require online retraining or feedback on live sensors.

3. ML-based classification consists of SVM only, and does not encompass more advanced models, like deep
neural networks or reinforcement learning agents.

4. It should be noted that the implementation and deployment of FSO transceivers in real-world
applications, as well as hardware implementation, are out of scope of the current study and proposed as
a future study.

4. METHODOLOGY
4.1 System Model Overview
The proposed system simulates a Free Space Optical (FSO) communication channel that is intended to operate
under different atmospheric conditions. The connection has On-Off Keying (OOK) as its modulation technique
on Intensity Modulation with Direct Detection (IM/DD). The performance under dissimilar weather conditions
is measured using Bit Error rate (BER) and Signal to noise ratio (SNR).
The system has two main components that model the system:
1. Atmospheric channel modeling based on the F-distribution, which models fading caused by turbulence;
2. Using machine learning to anticipate signal attenuation, such as a Support Vector Machine (SVM)
trained on meteorological data.

4.2 Atmospheric Channel Modeling Using F-Distribution
To mimic the impact of air turbulence on the received signal, the F-distribution is used as the statistical model
of irradiance variations. The probability density function (PDF) for the -F-distribution is provided by:

r (mT-I-n) msm/2 x(m/2)-1
60 = s (<) x>0
T Y e

where m and n represent the degrees of freedom and can be tuned to model different turbulence conditions.
Python's scipy.stats.f library is used to generate irradiance samples based on different turbulence regimes. These
values are further scaled to represent signal fading under low, medium, and high atmospheric distortion.
4.3 Modulation Scheme: IM/DD with OOK
The modulation scheme used is On-Off Keying, which is a type of binary amplitude shift keying in which:

e Logical 1 is sent as a pulse (e.g. a laser flash),

e The absence of a signal is coded as logical 0.
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In Python, a synthetic binary message stream is created with NumPy and modulated with a simple logical
mapping. The channel propagation effect is multiplicative with the signal amplitude by the outcome of
turbulence (F-distribution).
The signal received is represented by:
R(t) = S(t) - h(t) + n(t)

where:

e S(t) : Transmitted signal (OOK)

e h(t) : Channel fading coefficient (from F-distribution)

o n(t) : Additive white Gaussian noise (modeled using NumPy random generator)
4.4 Implementation of SVM for Detection
Feature Extraction
The data is based on 150 records, and each of them includes meteorological characteristics:

o Visibility (km)

e Precipitation (mm)

o  Humidity (%)

e  Wind Speed (m/s)

e Cloud Cover (%)
The label of the output is Estimated Attenuation (dB) which is a regression target or classification bucket during
SVM training.
Model Training and Testing
SVM regression model (SVR) is constructed with the help of the scikit-learn library. These are the steps:

1. Data Preprocessing: Standardize input feature: use StandardScaler.

2. Model Training: Train the SVM model over 80 % of the dataset.

3. Model Testing: Test on the remaining 20% with the help of RMSE and R* measures.

4. Prediction: The model can be used to predict attenuation given unforeseen weather profiles.
The model allows estimation of optical losses in real-time and allows dynamic control over system parameters
like transmission power and modulation index.
4.5 Simulation Setup (Python Tools and Parameters)
The simulation has been done in Python, and various specialized libraries have been used to represent various
parts of the system. The scipy.stats.f module was used to sample F-distribution to model atmospheric turbulence
and the module enabled the generation of different channel conditions that could be used to represent weak,
moderate, and strong turbulence. The numerical calculations were performed using NumPy and plotting and
graphical analysis were performed using matplotlib. The classification problem in machine learning, namely
Support Vector Machine (SVM) modeling, was performed with the help of the scikitlearn library. Also, the
pandas library was used to manipulate and organize the dataset effectively. The performance of the models was
evaluated by the mean_squared_error and R”score measures, which were imported as sklearn.metrics.
In order to represent the actual conditions of a free-sspace optical (FSO) communication system, the key
simulation parameters were set. The optical wavelength was set to 1550 nm, and the transmitter power was set
to 10 mW. The connection link was one kilometer away. To make the test more realistic, the system was tested
with additive white Gaussian noise (AWGN) and a signal-to-noise ratio (SNR) of 0-30 dB. Because On-Off Keying
(OOK ) is easy to use and compatible with optical systems, it was used in modulation. To represent a variety of
atmospheric turbulence, F-distribution variants were used to vary the channel conditions in weak, moderate, and
strong turbulence.
4.6 Comparative Analysis with CSI-Based Detection
To rigorously evaluate the performance of the proposed hybrid machine learning-physical model, a comparison
with a traditional benchmark system was conducted. The baseline configuration used classical detection methods
that made use of fixed channel state information (CSI), without an adaptive compensation to dynamic weather
conditions. On the other hand, the suggested system included an Attenuation estimation module that was
improved with a Support Vector Machine (SVM) to direct the signal decoding procedure and adjust in real-time
to environmental changes.
The same simulation parameters were used in both detection systems to simulate fairness of evaluation.
Performance indicators of interest were the Bit Error Rate (BER) with respect to the Signal-to-Noise Ratio (SNR)
and the latter was plotted against each scenario in order to compare visually the resilience between the two
scenarios. The benefit of the hybrid model was also quantified by the error of prediction of the atmospheric
attenuation with the help of Root Mean Square Error (RMSE) and signal misclassification rate during decoding.
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Additionally, by calculating the percentage of link availability in each of the three air turbulence environments—
weak, moderate, and strong—the communication connection's strength was ascertained.

The resulting comparison made it clear that the SVM-enhanced system was always better than the classical CSI-
based detection scheme, especially in moderate to solid turbulence conditions. The results confirm the
effectiveness of using machine learning methods with the knowledge of the physical layer to increase the
reliability and flexibility of free-space optical (FSO) communication networks.

5. Experimental Setup and Simulation

In this section, the experimental setup, the nature of the data, the assumption of the parameters, and the flow
of simulation will be provided in order to test the proposed hybrid FSO communication system. The simulation
structure was fully written in Python, which uses physical modeling of the atmosphere turbulence through F-
distribution and machine learning-based estimation of attenuation with Support Vector Machines (SVM).

5.1 Simulation Environment and Tools

All experiments were conducted in a local Python 3.10 environment using the following open-source libraries:
Table 1. Python libraries and their roles in FSO simulation and modeling

Tool/Library Purpose

NumPy Bitstream generation, numerical operations
pandas Dataset loading, preprocessing

matplotlib, seaborn | Data visualization and correlation analysis
SciPy. Stats F-distribution sampling and statistical modeling
scikit-learn SVM training, testing, and evaluation
warnings, joblib Model tuning and persistence

Simulations were executed on a workstation with 16 GB RAM and an 8-core processor to ensure fast
computation and reproducibility. Table 1 depicts the simulation pipeline that incorporates Python-based
scientific data processing libraries, including NumPy, pandas, and SciPy, in statistical modeling and processing
of data, whereas scikit-learn is used to classify and evaluate models to track the BER.

5.2 Dataset Generation and Assumptions

A synthetic dataset with 150 different records, each of which related to a unique case of a weather scenario that
impacts the performance of the FSO communication, was used to support the simulation and machine learning
model development. Each of the records contains a mixture of meteorological and environmental characteristics
as follows: visibility (km), precipitation (mm), humidity (per cent), cloud cover (per cent), wind speed (m/s), and
a categorical description of the weather condition (e.g. Clear, Fog, Rain, Snow). The estimated attenuation in
decibels (dB) is the target variable of the dataset, and it defines the loss of signal in each environmental condition.
In order to obtain the attenuation values, empirical correlations were used according to the recommendation of
the ITU-R P.1814, complemented by the results of the modern experiments in optical communications. The
man-made quality of the data set guarantees constrained diversity, with weather parameters presumed to be freely
and arbitrarily dispersed in sensible, limited ranges that are reflective of customary outdoor atmospheric
conditions. Moreover, pointing errors, which are the key element of FSO link reliability, have also been
introduced by introducing random perturbation in the divergence angles and hence affecting the fading
characteristics during the data simulation process.

The entry of each dataset consists of a time-synchronized snapshot of the FSO channel state, which guarantees
the contextual integrity to supervised learning tasks. To develop the model, it was divided into two subsets: 80%
of the records were used to train the machine learning model, and the rest 20% were used to test the prediction
accuracy and the generalization ability of the model.

5.3 Parameters Used in Simulation

The FSO link simulation is set with the key parameters as follows, which is in line with the deployment of a
realistic system:

Table 2. Simulation parameters for FSO communication system under fading and non-fading scenarios

Parameter Value / Description

Link Distance 1000 meters (1 km)

Optical Wavelength 1550 nm (eye-safe, low-absorption)
Modulation Scheme IM/DD with on-Off Keying (OOK)
Beam Divergence Angle 2 milliradians

Receiver Aperture Diameter 5cm
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Transmitter Power 10 mW

Atmospheric Turbulence Levels | Weak, Moderate, Strong (via F-distribution)
Pointing Error Model Gaussian-distributed beam misalignment
SNR Range 0-30dB

Channel Fading Modeled via F-distribution (m=5, n=10)
Noise Model AWGN (o = 0.3-0.8 depending on scenario)

The simulation model will take into consideration a realistic FSO environment considering fading, pointing
error, and noise addition as a model of the simulation framework with the addition of turbulence modeled by
F-distribution to assess the BER performance at different SNRs as summarized in Table 2.
5.4 Simulation Execution Workflow
The simulation will move as follows in a structured way:
Step 1: Ingestion of Weather Data
The weather data is imported in pandas. StandardScaler is applied to normalize the features, and highly
correlated inputs are kept on the basis of the Pearson correlation heatmaps.
Step 2: Training the SVM Model
The pre-processed data is utilized to train an SVR (Support Vector Regressor) that has an RBF kernel. The
hyperparameters C and gamma are set to be optimized through a 5-fold cross-validation grid search. Persistence
of the trained model is done through joblib.
Step 3: OOK transmission and transmission
OOK modulates synthetic binary messages. The signal is formed into discrete time pulses with the help of
NumPy.
Step 4: Attenuation and Channel Effects
The trained SVM model forecasts real-time attenuation of the present weather characteristics. This estimated
loss is used on every modulated pulse. At the same time, turbulence-induced signal distortion is simulated by
random fading samples, which are distributed according to the F-distribution. Beam divergence includes pointing
error as a Gaussian jitter.
Step 5: Addition and Reception of Noise
The received signal is covered by Additive White Gaussian Noise (AWGN). The OOK signal is decoded with
the help of a dynamic threshold detection technique in noisy conditions.
Step 6: Analysis and Logging
Repeat until the end of the simulations:

e BER is calculated by comparing the transmitted bits and detected bits.

e SNR is determined using signal power and variance of noise.

e SVM predictions of MAE, RMSE are logged.

To estimate average metrics, each of the simulation scenarios (fog, rain, clear, snow, haze) is repeated 100 times.

6. RESULTS AND DISCUSSION

This section gives the detailed analysis of the suggested hybrid Free Space Optical (FSO) communication system
that combines F-distribution modeling of atmospheric turbulence with machine learning (ML) prediction of
attenuation through Support Vector Machines (SVM). The assessment of the performance is done in Bit Error
Rate (BER), Signal-to-Noise Ratio (SNR) and its resilience to environmental degradations, and is compared with
the conventional Channel State Information (CSI)-based detection schemes and the literature.

6.1 BER vs. SNR Performance Curves

BER performance was tested with various SNR values (0-30 dB) in different atmospheric conditions such as
clear, foggy, rainy, snowy and hazy environments with a proposed hybrid receiver and a classical CSI-based
receiver.

Key Observations:

o  When the sky is clear, both systems function similarly; however, the suggested model attains a goal BER of
10” at 3 dB lower SNR.

e  Under fog, which is a primary cause of optical attenuation, the hybrid model consistently maintains lower
BER. The average BER reduction was 32% compared to the CSI approach.

e Under rain and snow, the SVM model dynamically adjusts detection thresholds based on predicted
attenuation, yielding 15-20% BER improvements.
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Fig. 1:BER vs. SNR under clear, fog, rain, snow, and haze scenarios.
As illustrated in fig.1 the study by Navidpour et al. [10] demonstrated that spatial diversity may compensate the
degradation of BER. Nonetheless, they have to replicate the hardware. We provide an alternative to this
hardware-based solution that is scalable and cost efficient, in that our method provides comparable gains through
intelligent signal prediction and channel adaptation.
6.2 Atmospheric Turbulence Effects and F-Distribution Validation
The F-distribution was utilized with parameters (m, n) to represent weak, moderate, and high turbulence in order
to describe the irradiance fluctuation caused by turbulence. The findings show:
e Fdistribution is good at modeling the irradiance spread, particularly at moderate to strong turbulence
compared to legacy modes, such as log-normal and gamma-gamma.
e DPower variance variations in simulated powerful turbulence (m = 3, n = 5) rose by ~48%, which
confirmed the sensitivity to the variable atmospheric states.

Count

.
) /

w

v T T T T v
—2.5 —2.0 —1.5 —1.0 —0.5 .0 0.5 1.0 1.5
Prediction Error {dB)

Fig. 2:Histogram fit of F-distributed irradiance under different turbulence intensities.
As illustrated in fig.2, There are advantages in the use of F-distribution (Fischer-Snedecor) models rather than
Malga models, as indicated by Peppas et al. [15]. Our results coincide with [15] and expand its coverage with the
use of the same robustness in the statistical modeling and the ML-based forecast to create a parallel product that
adapts both and combines.
6.3 Pointing Error Impact Analysis
They introduced pointing errors in terms of simulated Gaussian jitter in beam alignment. As per in fig.3 the
analysis employed indicated the following:

e There was a 24 percent BER increase due to moderate pointing error with CSIl-based detection.

e Features such as wind speed, visibility, among others enabled the proposed SVM model to lower this

increment to less than 10 per cent.

30



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 20s, 2025
https://theaspd.com/index.php

wisibility km
Precipitation_mim
Humidity_%
Cloud_Cover_%
wind_Speed_mps

Estimated_attenuation_dB

Visibilty km

Precipitation mm

~

Humidity % -

Cloud Cover % -

Wind_Speed mps -

o
=
=
=]
=
=
=
g
=
1
]
=
i)

Fig. 3: BER increases with pointing error—comparison between CSI and ML-F model.

Although Ansari et al. [3] and Badarneh et al. [5], analytically analyzed the pointing error in FSO links, they were
unable to include a data-oriented correction approach. In the indirect learning of our ML-enhanced model, point
disturbances learn their statistical effect and provide real time compensation.

6.4 Machine Learning vs. CSI-Based Signal Detection

The SVM was trained on 150 synthetic weather samples and tested on unseen data. Key regression outcomes
were:

Metric Value
RMSE 0.6907
MAE 0.4230
R? Score 0.9624
Prediction Speed <10 ms
-
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Fig. 4: SVM prediction of attenuation vs. actual values.
Kaur et al. [9] utilized ML in the prediction of Ro-FSO, although they could not perform classifications. We can
perform continuous-value regression-based ML when predicting the attenuation (as per in fig.4), and this is quite
close to what is needed in edge-based optical systems when doing link control in real-time.
6.5 Discussion and Practical Implications
The offered hybrid approach that combines the F-distribution turbulence modeling with the SVM-based real-
time prediction of the attenuation offers several technical and practical benefits:
e Better Accuracy: BER benefit in all the weather categories, especially with low-SNR.
e Resource Efficiency: This removes hardware diversity in the use of software-based singular prediction
models.
e Realtime Adaptability: Allows low-latency readjustment of decoding thresholds according to SVM
outputs, and is especially suitable to 5G+ backhaul networks [1] and the urban optical mesh networks
(7].
e JoT-Readiness: It can fit into low-power, embedded platforms, and it is fast with a lightweight
architecture.
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Literature Comparison Summary:

Reference | Technique Limitation This Work - Advantage

(3], [5] Analytical ~ pointing  error | No real-time correction Predictive and adaptive
modeling

9] ML classification of Ro-FSO No regression or physical | Unified ML + physical

modeling modeling
[10] Spatial diversity for BER Hardware-dependent Software-driven
improvement

[15] FE-distribution channel | No ML integration ML-enhanced hybrid

modeling adaptation

In the overall findings hypothesis that statistical and machine learning models can be combined and induce
significant improvement in the robustness of FSO links in the real-world setting was proved to be correct by the
simulation results. In particular, the model proposed:

e Drofesses better statistically, the BER performance in turbulence/ low-visibility conditions.

e s fidelity in prediction, with an R* of more than 0.94 in attenuation.

e  Offers a vendor-neutral route to implementing self-governing FSO systems with intelligence of inclement
weather to 5G/6G and [oT networks.

CONCLUSION AND FUTURE WORK

In this paper we have provided the formulation of the hybrid modeling system to enhance the performance of
Free Space Optical (FSO) communication based on various and demanding atmospheric circumstances. The
proposed method that combines the F-distribution based turbulence modelling and machine learning based
attenuation prediction based on support vectors machine (SVM) helps in enhancing the adaptability and
reliability of FSO links in practice. All the simulations have been carried out in Python thus proving the feasibility
of the fully open-source, scalable and efficient implementation.

The simulation results indicated that the hybrid strategy is fairly superior than the conventional CSl-based
detection strategies, especially during weather compromised scenarios like rose, rains and snows. The model had
reduced Bit Error Rates (BER) over a large SNR and it was still robust even when beam misaligned because of
pointing errors. The SVM approach was able to model real time attenuation based on meteorological
information, by which the receiver implemented its detection threshold dynamically, which enhanced stability
and quality of the link.

Although the results prove the success of the hybrid model, some limitations still apply. The dataset was artificial,
and it has to be validated against real-world data. Also, it is possible to implement more profound and more
convoluted models; there is only SVM as the learning algorithm. The simulations were conducted on a no
dynamic environment that had no live data streams or feedback system.

It will be of interest to combine real-time datasets of the atmosphere and further design more complicated
machine learning models such as deep learning or reinforcement learning in the future. It is also envisaged that
the system will be extended to operate in dynamic, multi-hop FSO networks and this model will also be
implemented in actual hardware environments, e.g., in drone-based communication systems. This study forms
the basis of effective, intelligent, and dynamic FSO platforms that can be used in wireless infrastructures in the
next generation that call on high degrees of reliability and scalability
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