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Abstract: This paper presents a Progressive Encryption Framework with fog offloading capabilities designed specifically 
for securing healthcare data on resource-constrained mobile and IoT devices. Our framework employs a context-aware 
approach that dynamically balances security strength, energy consumption, and computational overhead by adaptively 
selecting encryption mechanisms and processing locations based on data sensitivity, device energy levels, and network 
conditions. Our proposed progressive framework significantly improves energy efficiency and processing speed compared 
to traditional methods, without compromising healthcare data security. The results confirm its ability to balance 
performance with stringent security requirements. The framework's adaptive fog offloading capability enables effective 
encryption even on devices with limited computational resources, making robust healthcare data protection feasible 
across a wide range of deployment scenarios, from rural telemedicine to urban hospital networks. 
Keywords: Healthcare data security, fog computing, offloading, encryption, resource-constrained devices, context-
aware security. 
 
INTRODUCTION 
The digitization of healthcare data has led to significant improvements in healthcare delivery, patient 
outcomes, and medical research. However, this transformation introduces critical challenges in securing 
sensitive patient information, particularly when processed on resource-constrained devices commonly 
used in healthcare settings. Mobile devices, IoT sensors, and edge computing nodes often have limited 
computational resources, battery constraints, and unpredictable network connectivity, making traditional 
encryption approaches impractical for real-time healthcare applications[10][11]. 
Existing approaches to healthcare data security typically employ static, one-size-fits-all encryption methods 
that either provide insufficient protection or impose unacceptable computational and energy burdens on 
resource-limited devices. Furthermore, these approaches rarely consider the varying sensitivity levels within 
healthcare datasets, where certain fields (such as patient identifiers or diagnostic information) demand 
stronger protection than others (such as appointment scheduling or general facility information). 
In this paper, we present a Progressive Encryption Framework that addresses these challenges through 
three key innovations: 
Context-aware security: Dynamically adapting encryption methods based on data sensitivity, device 
constraints, and network conditions 
Progressive encryption selection: Applying different encryption strengths to data fields based on their 
sensitivity levels 
Adaptive fog offloading: Intelligently deciding whether to process data locally or offload to fog computing 
nodes based on real-time energy and network conditions 
Our approach enables robust protection of healthcare data while optimizing for energy efficiency and 
computational performance, making it particularly suitable for deployment in scenarios such as rural 
telemedicine, mobile health monitoring, and emergency response where device and network constraints 
are significant concerns. 
2. Related Work 
2.1 Healthcare Data Security 
Research in healthcare data security has largely focused on applying cryptographic solutions to ensure 
confidentiality, integrity, and availability of patient information. Recent work by authors in [1] proposed 
an enhanced ECC-based authentication and encryption scheme for IoT-enabled medical sensor data. The 
scheme improves traditional ECC by introducing a secret key alongside public-private keys and 
incorporating biometric credentials. This approach demonstrated reduced encryption and decryption 
times indicating strong security. However, the framework remains at a simulation level, with future plans 
to integrate it into real-world IoT layers such as wearable sensors and cloud systems, highlighting the need 
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for practical deployment and fog-based processing. The authors in [2] introduced a three-party 
authenticated key agreement (AKA) protocol using bilinear pairings for fog-based healthcare systems. The 
protocol, proven secure in the random oracle model, targets secure communication in fog-driven 
environments. Performance evaluations indicated feasibility for real-world healthcare deployments. 
However, the approach primarily focuses on key agreement and does not address adaptive encryption or 
resource constraints, with future directions aimed at enhancing efficiency for lightweight applications. 
The authors in [7] introduce a secure and lightweight encryption algorithm specifically designed to protect 
the privacy of patients’ medical images. The proposed method enhances efficiency by addressing the high 
computation time commonly observed in existing encryption  
algorithm specifically designed to protect the privacy of patients’ medical images. The proposed method 
enhances efficiency by addressing the high computation time commonly observed in existing encryption 
schemes that generate random key sequences. The algorithm applies a three-stage encryption process with 
a 256-bit key, optimizing for both execution time and security. Experimental evaluations conducted on 
512×512-pixel images using MATLAB and Delphi show that the method outperforms traditional 
techniques in terms of speed and encryption quality. However, the study is limited by a lack of testing 
across diverse datasets and real-time image transmission scenarios, which are critical for practical 
deployment in healthcare environments. Future enhancements could focus on scalability and integration 
with live diagnostic systems. 
2.2 Fog Computing in Healthcare 
Fog computing extends cloud capabilities closer to edge devices, providing computational resources with 
lower latency. A study in [6] proposes a fog-based efficient architecture aimed at addressing the limitations 
of cloud computing in IoT-based healthcare systems, such as latency and high network bandwidth usage. 
The framework incorporates virtual machine (VM) creation at fog nodes for dedicated processing and 
storage of various types of healthcare data, including BSN and clinical records. A notable aspect is the 
implementation of user authentication using SHA-512 and ECC-based identity management to prevent 
unauthorized access. While the architecture reduces latency and enhances security, it primarily relies on 
static VM allocation and lacks adaptability to dynamic workloads or emergency scenarios. Future work 
may focus on integrating adaptive resource management and testing the scalability of identity management 
in large-scale healthcare environments. 
2.3 Adaptive Security Approaches 
Adaptive security approaches that adjust protection mechanisms based on context have been explored in 
various domains. The Lightweight Secure Offloading and Scheduling framework [3] presents a novel 
approach to workflow application execution by minimizing delay and security risks through adaptive 
deadline-based scheduling and neighborhood search techniques. Simulation results demonstrate that the 
framework outperforms existing methods in terms of latency and security performance. However, the 
framework does not incorporate block-to-block security validation or user mobility considerations, limiting 
its applicability in dynamic healthcare environments. Future work is proposed to address node-to-node 
validation and mobile user scenarios. The EPPDA scheme [4] introduces a secure aggregation framework 
for IoT-based healthcare systems, focusing on message integrity and data confidentiality during 
aggregation. It incorporates an additive homomorphic encryption algorithm alongside homomorphic 
MACs to enable secure processing of encrypted data. EPPDA outperforms several existing protocols in 
terms of communication overhead and computational cost, making it suitable for resource-constrained 
devices. However, the current study does not explore performance across diverse medical sensor types, 
and future work is needed to assess its adaptability and effectiveness in heterogeneous sensor 
environments.  
Our work addresses these gaps by integrating progressive encryption selection with fog offloading in a 
unified framework specifically designed for healthcare applications on resource-constrained devices. 
 
3. Progressive Encryption Framework 
3.1 Framework Overview 
The Progressive Encryption Framework is designed to secure healthcare data while optimizing resource 
utilization through adaptive decision-making. Figure 1 presents the overall architecture of our framework, 
which consists of four primary components: 
Data Sensitivity Analyzer: Evaluates the sensitivity level of different healthcare data fields 
Resource Monitor: Tracks device energy levels and network conditions 
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Decision Engine: Determines whether to process data locally or offload to fog nodes 
Encryption Manager: Applies appropriate encryption methods based on sensitivity and available resources 

 
Fig. 1 Framework Architecture 
3.2 Data Sensitivity Classification 
Our framework works with healthcare data that comes already tagged with sensitivity levels on a scale of 
1-10, where higher values indicate greater sensitivity. We make the assumption that this sensitivity 
classification has been completed beforehand by domain experts. Protection measures are applied 
according to these existing tags. 
Higher sensitivity data (8-10) receives stronger protection 
Moderate sensitivity data (4-7) receives appropriate intermediate protection 
Lower sensitivity data (1-3) receives lighter protection 
By working with pre-tagged data, our system can focus on applying the appropriate security controls rather 
than determining sensitivity levels, making implementation more straightforward and consistent. 
3.3 Adaptive Offloading Decision 
The framework dynamically decides whether to process encryption locally or offload to fog nodes based 
on 
Device energy level: Lower battery levels favor offloading to conserve energy 
Network latency: Lower latency favors offloading for better performance 
Data sensitivity: Higher sensitivity may favor local processing for critical data 
Our framework utilizes a context-aware decision model to determine optimal computation placement: 
allocation_score = (resource_weight * normalized_resource) + (performance_weight * 
normalized_performance) 
Where normalized_resource reflects device resource availability (battery level, processing capacity) 
normalized_performance accounts for network conditions (bandwidth, latency) 
Computation is offloaded when the score exceeds a configurable threshold 
This balanced approach ensures efficient resource utilization by dynamically responding to both device 
constraints and network quality, allowing the system to make intelligent offloading decisions based on 
real-time conditions. 
3.4 Progressive Encryption Mechanisms 
The framework employs three levels of encryption based on data sensitivity: 
High sensitivity (levels 8-10): AES-256 encryption with RSA key protection 
Medium sensitivity (levels 5-7): AES-128 encryption 
Low sensitivity (levels 1-4): Lightweight XOR-based encryption 
This tiered approach ensures that computational resources and energy are allocated proportionally to the 
security requirements of different data elements. 
 
4. MATERIALS AND METHODS 
4.1 Implementation Details 
We implemented the Progressive Encryption Framework using Python with cryptography libraries. Our 
implementation encompasses a comprehensive security framework with dedicated components for 
security policy management, healthcare data field sensitivity analysis, continuous monitoring of network 
latency and device energy levels, fog node communication protocols for efficient offloading operations, 
and a progressive encryption strategy that applies different encryption strengths (AES-256 for highly 
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sensitive data, AES-128 for moderately sensitive data, and XOR for less sensitive data) based on the pre-
tagged sensitivity levels of healthcare information. 
4.2 Experimental Setup 
To evaluate our framework, we conducted experiments using a synthetic healthcare dataset with 5,000 
patient records containing 20 fields. Experiments were performed across various scenarios: 
Device energy levels: 20%, 50%, and 80% to simulate different battery states 
Network latency values: 5ms, 20ms, and 40ms to simulate varying network conditions 
Record counts: 50, 100, 200, 300 ,500,1000,2000,3000,4000 and 5000 records to evaluate scalability 
 
5. RESULTS AND DISCUSSION 
5.1 Performance Comparison 
The graph in Figure 2 compares processing times between local computation and offloaded computation 
across different data volumes. Both approaches show linear increases in processing time as records increase 
from 0 to 5,000, but offloading consistently outperforms local processing. The performance gap widens 
with data volume, with offloading completing 5,000 records approximately 23% faster (405 seconds vs. 
525 seconds). At smaller data volumes (under 500 records), the difference is minimal, suggesting 
offloading provides the greatest benefit for larger healthcare datasets. 

 
Fig. 2 Processing Time Comparison 
5.2 Offloading Behavior Analysis 
The framework's adaptive offloading behavior varied significantly based on device and network 
conditions. Figure 3 presents a heatmap of offloading percentages across different energy levels and 
network latencies. 

 
Fig. 3 Offloading Percentage Heatmap 
Key observations include 
At low battery levels (20%), the framework offloaded 87-92% of encryption operations regardless of 
network latency, prioritizing energy conservation 
At high battery levels (80%), offloading ranged from 12% (high latency) to 68% (low latency), 
demonstrating adaptation to network conditions 
Network latency had a stronger influence on offloading decisions at medium to high battery levels than 
at low battery levels 
This adaptive behavior confirms that the framework effectively balances energy conservation with 
performance optimization based on current conditions. 
 
6. CONCLUSION AND FUTURE WORK 
This paper presented a Progressive Encryption Framework with fog offloading capabilities designed to 
secure healthcare data on resource-constrained devices.  



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 19s, 2025 
https://theaspd.com/index.php 

2982  

Experimental results demonstrated that our framework significantly reduces energy consumption and 
processing time compared to traditional approaches while maintaining appropriate security levels for 
sensitive healthcare information. The adaptive offloading capability enables effective encryption even on 
devices with limited computational resources, making robust healthcare data protection feasible across a 
wide range of deployment scenarios. 
Future work will extend our framework to support secure multi-party computation in distributed 
healthcare settings, incorporate machine learning for predictive offloading optimization, implement 
blockchain verification for data integrity, and develop formal security proofs for our progressive 
encryption approach. 
The Progressive Encryption Framework represents a significant step toward practical, secure healthcare 
data processing on resource-constrained devices, with potential applications in telemedicine, remote 
patient monitoring, mobile health, and emergency response scenarios. 
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