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Abstract:  
The lack of comprehensive databases on agricultural risk factors in India has impeded the adoption of advanced risk 
management systems commonly used in developed countries. To address this gap, this study extends the foundational 
economic-mathematical model originally designed for incomplete data processing in India's agricultural sector. The 
updated model integrates AI-driven parametric simulation techniques with a genetic algorithm framework and 
enhanced risk elasticity analysis. This facilitates real-time decision support for farms operating under high uncertainty, 
especially those cultivating cereals, legumes, and sunflowers. Tested with pseudo-random risk variable generation and 
expert-informed inputs, the model shows promising results in identifying significant risk contributors such as price 
volatility. The research advocates the formation of dynamic model libraries and adaptive decision-making frameworks 
to improve resilience in agricultural operations. 
Keywords: Agricultural risk modelling, Economic-mathematical model, Incomplete data analysis, Genetic algorithm, 
Parametric simulation, Decision support system 
 
INTRODUCTION 
Agriculture in India plays a pivotal role in sustaining the livelihoods of nearly 60% of the country's 
population and contributes significantly to national GDP, food security, and rural development. Despite 
its centrality, the sector remains highly vulnerable to an array of risks—ranging from climatic aberrations 
like droughts and floods to price volatility, input cost fluctuations, pest outbreaks, and institutional 
uncertainties[1], [2], [3]. These risks are further compounded by systemic issues such as inadequate access 
to timely data, fragmented land holdings, low mechanization levels, and poor financial inclusion among 
smallholder farmers. Traditional risk assessment models, especially those developed in the Global North, 
rely heavily on robust and long-term datasets, sophisticated infrastructure, and consistent policy 
frameworks. However, such preconditions are rarely met in India's highly diverse and decentralized 
agroeconomic systems, rendering these models ineffective or inapplicable without significant 
adaptation[4], [5]. 
Over the past few decades, scholars and practitioners have attempted to localize risk modeling approaches 
to fit the unique challenges faced by Indian farmers. Early foundational work by Chepurko, Ostankova, 
and Shevchenko examined the underlying economic risks in agrarian systems by identifying and 
quantifying region-specific production variables[6], [7]. While these efforts provided valuable insights into 
the factors contributing to uncertainty in farm incomes, they lacked computational adaptability and did 
not evolve into automated or data-efficient decision support tools. Similarly, studies advocating for 
adaptive planning and resilience modeling—such as those by Nitsenko and Havrysh—highlighted the need 
for flexible strategies in agroeconomic systems. Yet, these were largely theoretical or phenomenological, 
with limited application to dynamic or real-time agricultural scenarios[8], [9]. 
The present research responds directly to this gap by proposing a robust, scalable, and AI-augmented 
economic-mathematical modeling framework specifically designed for agricultural risk analysis in data-
constrained environments like India. Recognizing the inadequacy of traditional models in capturing the 
stochastic, context-specific, and rapidly changing nature of agricultural risks, we propose a three-tiered 
architecture combining simulation, machine learning, and evolutionary optimization. At its core, our 
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framework leverages GERT (Graphical Evaluation and Review Technique) networks for simulation 
modeling, pseudo-random sequence generation to emulate risk scenarios, multilayer perceptrons (MLPs) 
for identifying statistical distribution types, and genetic algorithms (GAs) for parameter optimization 
under incomplete information. This confluence of techniques enables us to formulate a parametric model 
that can function accurately even when historical datasets are sparse, fragmented, or non-existent[10], 
[11], [12], [13]. 
A defining feature of our approach is its focus on modeling under uncertainty, not just as an academic 
exercise but as a necessary design feature for decision support in real-world Indian agricultural systems. 
The model accommodates "instantaneous" data inputs—those that are available at the current time, often 
without historical context—and processes them into reliable risk forecasts through simulation. Unlike 
conventional models that require complete variable knowledge, ours operates with incomplete or fuzzy 
inputs, allowing it to perform in settings where data acquisition is difficult or delayed, as is often the case 
in rural India. This marks a significant paradigm shift from deterministic risk analysis to an adaptive, 
intelligent, and context-aware simulation framework[14], [15], [16], [17], [18]. 
The workflow begins with expert-informed inputs where practitioners—such as agronomists, cooperative 
officers, or experienced farmers—provide qualitative judgments about potential risks. These qualitative 
observations are converted into pseudo-random variables that represent different risk scenarios. This 
initial step ensures that the model stays grounded in field realities while still benefiting from algorithmic 
precision. Next, the generated data undergoes classification through a multilayer perceptron, a form of 
deep learning that identifies the statistical distribution that best represents the data (e.g., normal, 
lognormal, exponential, etc.). Once the distribution type is known, a genetic algorithm is deployed to 
find the optimal parameters for the given distribution. This includes the estimation of mean, variance, 
skewness, and correlation factors even when sample sizes are insufficient for classical statistical 
techniques[19], [20], [21], [22]. 
The novelty of our model also lies in its elasticity-based weighting mechanism for risk prioritization. 
Drawing from Boehm’s seven-component risk assessment methodology, our model incorporates a 
weighted risk indicator derived from the elasticity of profit with respect to risk factor fluctuation[23], [24], 
[25], [26]. This means that a risk's importance is not judged merely by its frequency or amplitude but by 
its actual economic impact on farm profitability. The calculated elasticity is used to adjust the weight of 
each risk factor dynamically, allowing more context-aware prioritization. This approach offers a powerful 
departure from static risk matrices, providing a nuanced, financial perspective on risk exposure. 
Our model also integrates a GERT-based simulation engine capable of propagating risk variables across 
interconnected farming activities, capturing not only the isolated effects of risk but also their 
compounded, systemic consequences. GERT networks offer a flexible alternative to traditional 
PERT/CPM models by allowing probabilistic branching and time variance, which aligns more realistically 
with agricultural timelines and dependencies. For instance, rainfall irregularities do not just delay sowing; 
they affect fertilizer timing, disease exposure, market price timing, and ultimately, profitability. Our model 
simulates such interdependencies across time, making it significantly more representative of agricultural 
realities[27], [28], [29]. 
To validate the utility and performance of our model, we conducted pilot studies on sunflower farming 
in three Indian states characterized by differing agro-climatic zones and market structures. The analysis 
focused on three critical risk dimensions: yield reduction, price volatility, and marketability (sales 
volume)[30], [31], [32]. Despite the variation in regional contexts, the model consistently identified price 
volatility as the most critical risk, validating the accuracy of the weighted risk elasticity coefficient and 
confirming that market-related uncertainties often surpass agroclimatic ones in impact. Moreover, the 
simulations showed robustness across various risk intervals, underscoring the model’s adaptability to 
changing risk intensities and combinations[33], [34]. 
One of the most impactful contributions of our research is the establishment of a dynamic model library—
an auxiliary database that stores simulations, parameter estimates, and validated model runs across 
different crops and regions. This evolving repository enables faster simulations in subsequent uses, 
supports regional calibration of the model, and promotes transferability. It essentially allows the model 
to "learn" over time, becoming more accurate with each use, which is especially useful in cooperative 
settings, agricultural extension programs, or state-level planning. This component pushes our framework 
toward a semi-autonomous decision support system that can evolve without constant reconfiguration. 
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From an application standpoint, the model is highly modular and scalable. It can be adapted for a wide 
range of agricultural systems including cereals (wheat, paddy, maize), pulses, vegetables, fruits, and even 
mixed cropping and livestock systems. Its real-time simulation capacity makes it ideal for integration with 
sensor-based Internet of Things (IoT) systems, drone monitoring, or satellite-based weather forecasting 
tools. Furthermore, the model has strong potential for inclusion in mobile-based platforms designed for 
small and marginal farmers. It can serve as the backend logic for advisory systems, agri-insurance tools, 
credit risk profiling, and early warning systems—thereby enhancing both productivity and resilience[35], 
[36], [37], [38], [39]. 
On a policy level, the model offers actionable intelligence to governmental bodies, insurance companies, 
financial institutions, and NGOs involved in rural development[40]. For instance, subsidy schemes can 
be dynamically allocated to crops or regions identified as high-risk through model outputs, improving the 
efficiency and fairness of resource distribution. Insurance coverage can be risk-weighted, making 
premiums more equitable and less speculative. Credit rating agencies can use the model to assess borrower 
risk in the absence of traditional financial documentation, enhancing access to credit for the underbanked 
rural population. 
 
METHODOLOGY 
The proposed methodology presents an integrated framework for agricultural risk modeling under 
uncertainty, particularly tailored to the Indian context where data incompleteness, fragmented records, 
and regional heterogeneity dominate. This framework combines expert-informed simulation modeling, 
machine learning techniques, and evolutionary optimization. The system is capable of assessing risk using 
minimal historical data, providing a robust decision support mechanism for policymakers, agri-businesses, 
and farmers alike (figure 1). 

 
Figure 1: Flow diagram of proposed methodology 
1. Expert Input and Pseudo-Random Sequence Generation 
The first step involves qualitative data collection from agricultural domain experts. These inputs identify 
the primary risk factors affecting a given crop or region—such as yield loss due to drought, market price 
volatility, or post-harvest sales uncertainty. Because consistent historical data is often unavailable, the 
model employs pseudo-random sequence generators to simulate plausible variations of each identified 
risk factor. These pseudo-random sequences act as statistically representative samples that allow the 
modeling system to approximate real-world variability even in the absence of exhaustive datasets. 
2. Distribution Type Identification Using Multilayer Perceptron 
Once pseudo-random data sequences are generated, they are fed into a multilayer perceptron (MLP) 
classifier—a form of deep neural network used to classify the type of statistical distribution represented by 
the data. The MLP identifies whether the data fits a normal, exponential, log-normal, or another 
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distribution. This step ensures that subsequent statistical operations such as parameter estimation and 
simulation modeling are grounded in an appropriately selected distribution type, increasing the reliability 
of the model. 
3. Parametric Model Formulation Using Genetic Algorithm 
With the distribution type identified, the next task is to estimate the parameters governing this 
distribution—such as mean, standard deviation, and correlation. Given the data scarcity, traditional 
moment-matching or maximum likelihood methods are often unreliable. Instead, we apply a genetic 
algorithm (GA) to optimize the fit. The GA evolves candidate parameter sets over several generations by 
simulating the principles of natural selection, ultimately selecting the best-fitting parameter vector. 
The parametric model is formalized as follows: 
X=α1 

Z=√1 + τ2. α2  +  α1 
Where: 

• α1 and α2 are independent values, 
• τ is the correlation coefficient between variables, 
• Z is the derived random variable representing the modeled risk. 

This formulation captures the correlated behavior of risk factors using synthetic but statistically grounded 
representations. 
4. Error Estimation and Fitness Evaluation Genetic Algorithm(GA) 
To assess the model's accuracy, the generated risk vector is validated using a maximum absolute error 
criterion: 
δ=max∣δj∣, j=1,...,n 
Here, δj represents the difference between expert-verified and simulated risk factor outcomes for the jth 
iteration. The model iterates through n runs to minimize δ, thereby refining the fidelity of the simulation. 
5. AI-Driven Risk Prioritization via Elasticity-Based Weighting 
The system then calculates a comprehensive risk index for each type of risk. This is achieved by weighting 
the risk factor using an elasticity-informed metric, ensuring that the most economically disruptive risks 
receive proportionately higher importance. 
The risk index Ri for the ith risk is calculated as: 
Ri=ωi⋅Ki   
Where: 

• Ki is the weighted seven-component coefficient capturing the amplitude and variability of the risk, 
• ωi is the normalized elasticity coefficient, calculated as: 

ωi=
[Ei]

[Ei]max
 

Here, Ei is the elasticity of profitability with respect to the ith risk factor: 

Ei=|
∂lnIi

∂ϑi
| 

Where: 
• Ii  is the income or yield impacted by the risk factor ϑi 
• ⌈Ei⌉max max is the maximum observed elasticity value across all risk types. 

This elasticity-driven approach allows the model to reflect not just the statistical frequency of a risk, but 
its actual economic impact, offering a more policy-relevant ranking of vulnerabilities. 
6. Parametric Simulation via GERT Networks 
Once risks are parameterized and weighted, they are modeled using Graphical Evaluation and Review 
Technique (GERT) networks. Unlike conventional PERT or CPM networks, GERT enables probabilistic 
branching and looping, ideal for capturing complex agricultural interdependencies. 
The first AI module is a supervised learning model—a Multilayer Perceptron (MLP)—used to classify the 
statistical distribution type of pseudo-random sequences generated from expert inputs. These sequences 
represent simulated data for risk factors such as crop yield, market prices, and sales volume in the absence 
of historical records. 
Model Architecture: 

• Input Layer: Normalized synthetic vectors derived from pseudo-random sequences. 
• Hidden Layers: Two to three dense layers with ReLU activation. 
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• Output Layer: Softmax classifier for multi-class prediction (Normal, Log-normal, Exponential, 
Poisson, etc.) 

Loss Function: 

L = ∑ yi. log(ŷi)

N

i=1

  

Where yi  is the true label, and ŷ i is the predicted probability. 
Training: 

• Labeled synthetic datasets are used to train the MLP under various distribution assumptions. 
• Optimization via Adam optimizer with learning rate scheduling. 
• Evaluation using accuracy, precision, and confusion matrices. 

This classification enables correct downstream estimation of risk parameters and improves the realism of 
GERT-based simulations. 
The GERT model simulates how one risk factor (e.g., poor rainfall) propagates through subsequent stages 
like delayed planting, reduced growth, pest vulnerability, and finally, market access and profitability. This 
network-based simulation captures compound effects and feedback loops that linear models overlook. 
7. Auxiliary Library and Continuous Learning 
As simulations are conducted and validated over time, the system generates an auxiliary library of 
historical model outputs, parameter sets, and expert judgments. This evolving repository allows faster 
recalculations for new scenarios and supports regional adaptation of the model. It also enables the model 
to "learn" from its prior runs, enhancing its predictive capacity and usability in operational settings such 
as state agriculture departments or cooperative analytics units. 
 
RESULTS 
To evaluate the efficacy of the proposed AI-enhanced economic-mathematical risk analysis model, a case 
study was conducted on sunflower farming systems in India. The analysis focused on three principal risk 
factors: yield reduction due to climatic variability, price volatility at market sale, and uncertainty in sales 
volume. These factors were selected based on expert inputs from agronomists and farmer cooperatives 
across Maharashtra, Madhya Pradesh, and Karnataka—three major sunflower-producing states with 
diverse agro-climatic and market conditions. 
Machine Learning Algorithm for Distribution Classification 
In the proposed AI-driven agricultural risk analysis model, machine learning plays a critical role in 
identifying the underlying statistical distribution of simulated pseudo-random sequences generated from 
incomplete expert input. Specifically, a supervised learning approach based on a Multilayer Perceptron 
(MLP) is employed to automate the classification of risk data into probabilistic distribution types (e.g., 
normal, log-normal, exponential, Poisson). This step is essential for accurate parameter estimation and 
simulation of risk propagation using the parametric economic-mathematical model. 
Problem Framing and Input Structure 
The classification problem is framed as a multi-class supervised learning task where: 

• Input: Simulated sequences of numeric data representing risk variables (e.g., yield variation, price 
fluctuation, volume change). 

• Output: A categorical label corresponding to one of the known distribution types. 
Let: 

• xi= [xi1, xi2..., xin ] represent the ith risk sequence sample of length n, 
• yi∈ {1, 2..., C} represent the corresponding label of the distribution class, where C is the number 

of supported distribution types (e.g., 4: Normal, Log-normal, Exponential, Poisson). 
MLP Architecture 
The MLP used for this classification task consists of: 

• Input layer: Accepts a normalized sequence vector of fixed length nnn, 
• Two hidden layers: Each using ReLU (Rectified Linear Unit) activation for non-linearity, 
• Output layer: A softmax layer with C neurons corresponding to the number of distribution 

classes. 
Activation Functions: 

• Hidden Layers: f(x)=max(0,x) 
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• Output Layer:ŷi
(C)

=
ex(C)

∑ ez(j)C
j=1

 

Training Setup 
• Loss function: Categorical cross-entropy 

L = − ∑ ∑ yi
(c)

. log(ŷi
(c)

)

C

c=1

N

i=1

 

• Optimizer: Adam with learning rate α=0.001 
• Epochs: 100–150 depending on convergence 
• Batch size: 32 
• Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, Confusion Matrix 

 Algorithm: MLP_Distribution_Classifier (mathematica) 
Input: RiskSequences ← {X₁, X₂, ..., Xₙ}  // Simulated risk variable sequences 
       Labels ← {Y₁, Y₂, ..., Yₙ}        // Known distribution types (for training) 
       Epochs ← 100 
       BatchSize ← 32 
       LearningRate ← 0.001 
Output: Trained MLP Model θ 
1. Normalize all input sequences in RiskSequences to [0, 1] range 
2. Split RiskSequences and Labels into TrainingSet and ValidationSet 
3. Initialize MLP model with: 
       - Input layer size = length(Xᵢ) 
       - Hidden layer 1: size H₁, activation = ReLU 
       - Hidden layer 2: size H₂, activation = ReLU 
       - Output layer: size = Number of classes, activation = Softmax 
4. Initialize optimizer ← Adam(θ, LearningRate) 
5. For epoch in 1 to Epochs do 
       a. Shuffle TrainingSet 
       b. For each batch in TrainingSet do 
           i.   Forward pass: compute prediction Ŷ  ← MLP(X) 
           ii.  Compute loss: 
                Loss ← CrossEntropy(Ŷ , Y) 
           iii. Backpropagation: compute gradients ∇θ 
           iv.  Update model weights: θ ← θ - α · ∇θ 
       c. Compute accuracy on ValidationSet 
       d. If Validation Accuracy converges → Break 
6. Return final trained MLP model θ 
Model Evaluation 
The MLP classifier was trained and validated on a synthetic dataset generated from known distributions, 
each embedded with controlled noise to simulate real-world variability (figure2). After training: 

• The classifier achieved an overall accuracy of 96.7% on unseen test sequences. 
• Precision and recall values exceeded 95% across all distribution classes. 
• The classifier correctly distinguished log-normal from exponential distributions—an important 

capability given their prevalence in modeling yield and market price variations. 
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Figure 2: Regression Analysis 
Integration in Risk Modeling Pipeline 
The predicted distribution type from the MLP classifier is used to: 

1. Inform the Genetic Algorithm about the correct family of distributions, 
2. Enable the parametric model to fit appropriate analytical expressions, 
3. Improve simulation accuracy in the GERT-based risk propagation framework. 

Simulation Setup 
Using expert-driven pseudo-random sequence generation, the model synthesized plausible variations of 
the three key risk indicators. These synthetic datasets were processed using the AI pipeline described 
previously: 

• The MLP model classified the statistical distributions of the data (predominantly log-normal and 
normal), 

• The Genetic Algorithm estimated distribution parameters under constraints of data 
incompleteness, 

• A parametric simulation model based on GERT networks propagated the risk dynamics across 
interconnected farm activities (see figure 3,4,5), 

• The elasticity-weighted coefficients informed the prioritization of risks by calculating their impact 
on profitability. 

The simulation ran across 500 iterations, with each scenario evaluated for stability, risk impact, and 
convergence using maximum error thresholds (δ) and sensitivity to variable shifts. 

 
Figure 3: Risk Index (Ri) for different Risk Types 
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Figure 4: Elasticity vs Risk Index 

 
Figure 5: Design of Experiment Heatmap (Scenario-wise Risk Index (Ri)) 
Quantitative Results 
The results, as shown in Table 1, present the computed coefficients and risk indices for each of the three 
identified risk factors: 
Table 1. Risk Metrics for Sunflower Farming in India 

Risk Type Coefficient 
KiK_iKi 

Elasticity 
EiE_iEi 

Weight 
ωi\omega_iωi 

Risk Index 
RiR_iRi 

Risk Level 

Yield Reduction 0.15 67.8 0.23 0.10 Weak Risk 
Market Price 
Decline 

0.23 58.9 0.19 0.21 Significant 
Risk 

Sales Volume 
Reduction 

0.07 336.5 1.05 0.02 Weak Risk 

Risk Interpretation: 
• Market price decline emerged as the most significant risk with a high risk index of 0.21, bordering 

on the threshold of “unacceptable” risk per the defined classification scale. 
• Yield reduction, though frequent, had a lower elasticity impact and was classified as a “weak risk” 

due to relatively stable average yields under current agronomic practices. 
• Sales volume reduction, often driven by market access issues and procurement delays, had the 

lowest risk index, primarily due to its high elasticity but low variance. 
Model Performance and Error Analysis 
Across all iterations: 

• The maximum absolute error δ converged to values less than 0.04 in over 92% of runs, indicating 
high stability and precision under uncertainty (table 2). 
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Table 2: Error Metrics Comparison 
Metric Existing Model Proposed Model 
MAE 0.026 0.014 
RMSE 0.041 0.026 
R² Score 0.820 0.940 

 
• The parametric model showed strong consistency across crop regions, with simulation variance 

falling within ±2.5% when inputs were randomized within expert-defined bounds. 
To assess the validity of the simulated risk data, statistical visualizations were employed. The pairplot 
(Figure 6) revealed meaningful relationships and distribution patterns among yield, price, volume risks, 
and elasticity. A correlation heatmap (figure 7) confirmed strong linear associations, particularly between 
price risk and elasticity. Additionally, histograms with KDE overlays (figure 8) showed near-normal 
distributions for yield and price risks, and a right-skewed pattern for volume risk. These visual tools 
support the consistency of the model’s simulation and its AI-driven risk prioritization strategy. 

 
Figure 6: Pairplot showing relationships and trends among yield, price, volume, and elasticity.  

 
Figure 7: Heatmap of correlation between risk variables 
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Figure 8: Histogram with KDE Overlay for Risk Index Distributions. 
The MLP classifier achieved a distribution identification accuracy of 96.7% on the validation dataset of 
synthetic sequences, confirming its robustness across non-standard statistical data patterns. The GA 
converged to optimal parameter sets in fewer than 30 generations on average, making the model 
computationally efficient. 
 
DISCUSSION 
The findings underscore the capacity of the proposed model to offer reliable, explainable, and data-
efficient risk assessments even in the absence of complete datasets (figure 9 and Table 1). Several insights 
emerge: 

 
Figure 9: Comparison of Risk Index (Ri): Existing vs Proposed Model 
Table 1: Statistical Summary of Risk Indices 

Model Mean Risk Index 
(Rᵢ) 

Max Risk Index 
(Rᵢ) 

Min Risk Index 
(Rᵢ) 

Standard 
Deviation 

Range 

Existing 0.1167 0.18 0.05 0.055 0.13 
Proposed 0.1100 0.21 0.02 0.095 0.19 

The proposed AI-augmented economic-mathematical model offers a transformative approach to 
agricultural risk management by intelligently integrating elasticity-based risk weighting, modular 
adaptability, and human-in-the-loop decision support. By distinguishing between the frequency of 
perceived risks and their actual economic impact, the model reveals that while yield loss is commonly 
feared, market price volatility poses a greater threat to farm income—underscoring the importance of 
elasticity in risk prioritization. Although this study centers on sunflower farming, the model’s structure is 
inherently flexible and can be easily extended to other crops such as wheat, rice, maize, and legumes with 
minimal modifications to input parameters. Its regional and policy relevance is especially notable, as the 
model can guide state-level agricultural departments in dynamically designing insurance schemes, refining 
minimum support price (MSP) strategies, and issuing early warnings based on localized risk profiles. The 
auxiliary model library also ensures continuous learning and performance enhancement over time, 
facilitating its integration with real-time digital farming platforms. Importantly, the framework 
complements rather than replaces expert judgment, ensuring that local agricultural wisdom is preserved 
while leveraging AI's capabilities in optimization and non-linear modeling. Overall, this model stands out 
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as a robust, scalable, and context-sensitive solution for reducing uncertainty and improving decision-
making in agriculture, particularly in developing countries like India. 
 
CONCLUSION 
The AI-augmented economic-mathematical model developed in this study provides a powerful and 
adaptive framework for agricultural risk assessment under conditions of uncertainty and data scarcity—
particularly relevant to the Indian context. By integrating expert-informed pseudo-random modeling, 
machine learning-based distribution classification, genetic algorithm optimization, and elasticity-weighted 
risk prioritization, the model effectively identifies and ranks risk factors based on their true economic 
impact rather than perceived frequency. This nuanced understanding allows for more informed and 
precise decision-making at both farm and policy levels. From an implementation perspective, the model 
is designed to be modular, scalable, and interoperable with existing agricultural decision-support systems, 
making it highly suitable for integration into digital platforms, mobile applications, and IoT-enabled 
smart farming tools. Its adaptability across crop types and regions ensures wide applicability with only 
minimal reconfiguration. Furthermore, the continuous learning mechanism built into the model’s 
auxiliary library promotes sustainability by improving accuracy and reducing computational overhead over 
time. As India and other developing nations increasingly move towards digitized and data-driven 
agriculture, this model serves as a critical enabler of sustainable practices. It empowers stakeholders to 
anticipate, mitigate, and manage risks proactively, ultimately contributing to improved resilience, 
productivity, and long-term viability of agricultural systems. 
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