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ABSTRACT  

Sign Language Recognition (SLR) is important to facilitate communication bridges between deaf and hearing populations. 
Traditional CNN and LSTM models fail to handle spatiotemporal complexities, particularly in continuous sign language, 
but we introduce a Transformer-based dual-stream approach with self-attention to extract spatial and temporal relationships. 
Our method handles raw video frames and Media Pipe-sourced skeletal key points with self-supervised masked feature 
prediction and contrastive learning for enhanced generalization under low-resource environments. Motivated by SLGT former, 
we incorporate hierarchical attention layers to learn about fine gesture subtleties. Tested on the ISL -CSLTR dataset, our 
model performs better than CNN-LSTM and state-of-the-art SLR baselines on both isolated and continuous gesture 
recognition and generalized well to out-of-distribution signs with small amounts of labelled data. This research pushes forward 
real-time, accessible AI for scalable and the most useful sign language translation. 
Keywords: SignLanguageRecognition (SLR),DeepLearning,ConvolutionalNeuralNetworks(CNNs),LongShort-Term Memory 
(LSTM)networks, Spatiotemporaldependencies, Transformer-based framework, Self-attention mechanism, Raw image frames, 
MediaPipe-extracted skeletal keypoints, Self-supervised learning 

 
INTRODUCTION:  
Sign languages are intricate visual ones that are used as the exclusive forms of communication for the 
deaf and hard-of-hearing population. They are a vibrant combination of hand signs, face expressions, 
and body positioning to convey meaning. Of these, Indian Sign Language (ISL) is used all over India 
with its unique set of gestures and grammatical structure. While it's equally significant, there is 
considerable communication disparity between ISL signers and the rest of the hearing population that 
has primarily been due to the lack of general popularity and awareness regarding the language. This 
calls for the imperative development of effective Sign Language Recognition (SLR) systems to reverse 
the gap as well as cause inclusiveness. 

Current solutions to SLR have largely been in the form of Convolutional Neural Networks (CNNs) 
and Long Short-Term Memory (LSTM) networks[4]. CNNs are particularly well-equipped to extract 
spatial features from images and can therefore be utilized to recognize static hand gestures. LSTMs are 
well-equipped to extract temporal dependencies and can therefore be utilized to model time sequences 
of gestures. While moderately proficient in detecting isolated signs, these models are weak when it 
comes to continuous sign recognition. Smooth transitions of gestures characterize continuous signing 
and hence the model needs to learn complex spatiotemporal relationships. Temporal dynamics can be 
challenging for CNNs, while long-range dependencies can be challenging to acquire for LSTMs well 
and therefore perform poorly in real-world environments[14]. 

Transformer models have revolutionized sequence modeling operations, particularly for natural 
language. Transformers apply self-attention patterns to provide weightage to relative importance of 
diverse elements of a sequence, where both local as well as global context information are possible to 
retain. Parallel input data processing with this model architecture is possible and enhances 
computational scaling and efficiency. As far as SLR is concerned, Transformers offer a natural path 
towards surpassing the limitations of traditional models through effective modeling of the intricate 
spatiotemporal patterns inherent in sign language gestures 
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In this paper, we present a Transformer-based model for Indian Sign Language recognition. We 
leverage the self-supervised learning approach, i.e., Masked Feature Prediction (MaskFeat), to train the 
model on unlabeled data during the pre-training stage. By the process of masking certain portions of 
the input data and requiring the model to predict the missing components, the model can learn robust 
feature representations and generalize better. Apart from that, we employ contrastive learning to 
further improve the model's discriminative capability between similar and dissimilar gestures. 
Contrastive learning is employed by learning the representations by discriminating positive pairs 
(similar gestures) and negative pairs (dissimilar gestures) and thereby improving the discriminative 
capability of the model. 

To model the subtle movements commonly expressed in ISL, we preprocess raw image frames and 
MediaPipe-processed skeletal keypoints. MediaPipe is an open-source library that provides cross-
platform real-time solutions for human hand, body, and face keypoints detection and tracking[1]. 
Based on skeletal keypoints, the model has a structured hand and body movement representation with 
added capability to identify gestures. 

We contrast our model with the ISL-CSLTR dataset, which is a diverse collection of continuous sign 
language video annotation along with its corresponding text and speech transcript. ISL-CSLTR 
encompasses extensive ranges of signing videos, which include variation in signer look, signing speed, 
and setting. Our experimental results are unambiguously superior to the standard CNN-LSTM model 
and present state-of-the-art methods and show the efficacy of Transformers towards the recognition of 
sign language. It performs better in isolated and continuous gesture recognition tasks, depicting its 
robustness and versatility. 

This work makes a contribution to inclusive technology design by presenting a scalable and efficient 
real-time ISL translation system. By bridging the deaf-hearing communication gap, the system facilitates 
greater accessibility and inclusion. In addition, the use of self-supervised and contrastive learning 
techniques presents a data-efficient solution, where there is a reduced requirement for large quantities 
of annotated data and simplicity of deployment in resource-constrained settings. 

Finally, the designed Transformer-based model, backed by self-supervised and contrastive learning, is a stable 
Indian Sign Language recognition system. With its capacity to effectively encode the complex spatiotemporal 
relationships of sign gestures and through the utilization of raw image frames and skeleton keypoints, the system 
is found to surpass traditional models. This work sets the ground for subsequent research into sign language 
recognition, which may be used for other sign languages and towards the overall goal of inclusive 
communications technology. 

2. RELATED WORK 

2.1 Data Collection 
Sign Language Recognition (SLR) is a significant area of research in human-computer interaction and 
computer vision that facilitates bridging the communication gap between the hearing world and the 
deaf world through communication. Various methods have been proposed for sign language gesture 
recognition from the early time period starting with handcrafted conventional feature techniques to 
deep learning architectures. This section offers a comprehensive overview of prior work in the area, 
organized into three major directions: ancient vision-based approaches, deep CNNs/LSTMs, and 
Transformer-based models 
A. Conventional Vision-Based Approaches 
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These initial SLR systems were constructed mostly using typical computer vision algorithms, where 
skin color, hand shape, and motion trajectories were hand-extracted from video frames. These systems 
used algorithms like Hidden Markov Models (HMMs), Support Vector Machines (SVMs), and 
Dynamic Time Warping (DTW)[6] to classify gestures. Though very intuitive and simple to 
comprehend, these systems were struggling with varying lights, background noise, signer hand shape, 
and movement speed. Moreover, these systems were not scalable and could not generalize across signers 
and data sets. 

For instance, edge detection and background subtraction-based vision-based Indian Sign Language 
recognition was proposed in previous work, where a pre-defined gesture template was compared with 
each sign after segmentation. Although these approaches were partly effective in lab environments, 
they were not feasible in real environments since they utilized strict preprocessing pipelines. 

B. CNN and LSTM-Based Deep Learning Models 
With the advent of deep learning, CNNs revolutionized visual recognition tasks by directly learning 
spatial hierarchies from images. In SLR, CNNs were used to identify spatial hand gesture 
configurations from a single frame of video. The models were further augmented by introducing 
LSTMs to learn temporal dynamics in continuous signing. 

One of the best-performing architectures employed a pre-trained CNN (e.g., VGG-16 or ResNet) as a 
feature extractor to learn features at the frame level, and these were propagated to an LSTM network 
that acquired temporal dependencies across frames. A hybrid CNN-LSTM [4] architecture thus 
achieved significant advances in sign recognition accuracy, particularly for isolated sign recognition. 
Longer sequences would kill LSTMs due to the vanishing gradient problem, and their sequential access 
was a major bottleneck in scalability and training time. 

In addition, ISL recognition, CNN-LSTM approaches required large amounts of annotated video data 
and computational resources. Optical flow and depth were also employed by some work for facilitating 
temporal modeling, but under unconstrained signing conditions, improvements were limited upon 
deployment  

C. Graph-Based Models and Skeletal Representations 
In response to the challenge of hand and body articulation, scientists aimed to work with skeleton 
representation from video. Techniques like OpenPose and MediaPipe[14] localized hands, face, and 
body keypoints in an efficient manner. These keypoints were then represented using Graph 
Convolutional Networks (GCNs) that were especially well suited to learn structured data. 

 Spatial-Temporal Graph Convolutional Networks (ST-GCNs) particularly demonstrated to be 
effective in representing human gestures as keypoints represented by graph nodes with inter-node 
connections based on the topology of a human body. Though detected to be of potential nature being 
less reliant on raw pixels, their functioning as well was found to be heavily reliant on precise detection 
of keypoints and did not generalize in case of noisy and multi-view environments. 

D. Transformer-Based SLR Approaches 
Transformers have acquired a lot of popularity in SLR recently due to their ability to model sequences. 
First introduced for use in natural language processing, Transformers apply self-attention to model 
short and long-range data dependencies. Unlike LSTMs, Transformers can do parallel sequencing, 
which enhances training efficiency and accuracy. 
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Some of these recent state-of-the-art models such as SLRTNet, SL-Gformer, and Sign2Text[12], [9], [8] 
demonstrated the ability of Transformers to perform sign language translation from visual semantics 
of video frames directly. The models utilize vision transformers (ViT) or spatiotemporal transformers 
with the ability to learn from visual semantics of video frames directly. SL-Gformer uses the 
combination of convolutional tokenization and global temporal attention for fluidity integration while 
signing. 

Other than that, advances in self-supervised pretraining techniques like Masked Autoencoders (MAE) 
and Masked Feature Prediction (MaskFeat)[11] enhanced feature learning from unlabelled sign 
language data to offset the limitation of labelled data sets. Contrastive learning techniques[7] also 
enhanced performance through developing capacity to differentiate visually related gestures, thereby 
being highly effective in few-shot and zero-shot settings 

E. Gap and Novelty of Our Work 
Though it has been observed that the Transformer-based models excel over CNN-LSTM counterparts, 
most past research is focused on American or Chinese Sign Language with less emphasis given to 
Indian Sign Language. Moreover, most models lack the use of skeletal keypoints in addition to raw 
video frames for leveraging structured movement as well as contextual appearance. 

In this paper, we bridge this gap by proposing a Transformer-based model that integrates skeletal keypoints (via 
MediaPipe) and raw frames, which are learned via self-supervised and contrastive learning. Our system is 
specifically designed for Indian Sign Language Continuous Sign Language Translation (ISL-CSLTR) and 
achieves recognition accuracy gain, data efficiency, and generalizability. 

3. Sign Language Transformers 
Transformer models have transformed the paradigm of sequential data processing, initially in Natural Language 
Processing (NLP) and increasingly now into spatiotemporal and visual domains like Sign Language Recognition 
(SLR). The strength of transformer models lies in the self-attention mechanism, which allows the model to 
dynamically assign weights to the relevance of different constituents of an input sequence such that both short- 
and long-range dependencies can be learned effectively. 
In the case of SLR, when input sequences are not only linguistic but also heavily visual and motion-based, 
Transformers possess the ideal architecture to represent jointly spatial and temporal dependencies. The next 
section discusses how Transformers are applied in the context of SLR and why they outperform the conventional 
CNN-LSTM models for isolated and continuous gesture recognition. 

A. Why Transformers for SLR? 
Basic LSTM-based models are inherently sequential, i.e., they process input sequentially one at a time, 
preventing parallelism and likely causing performance bottlenecks for lengthy sequences of input. Sign language 
videos, usually 50–200 frames per sign, are best suited to parallelism-enable and long-distance context reasoning 
models. 
Transformers, by virtue of their self-attention blocks,can 

• Process all the frames together, with accurate inter-frame relationship. 

• Handle varying sequence lengths, which is vital for continuous sign language. 

Model both global and local contexts of hand positions, facial expressions, and body posture  

B.  Vision Transformers (ViT) 
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Fig 1. Transformer Architecture 

ViT chops up each frame into patches (e.g., 16x16 pixel regions), puts them in, and processes them as tokens—
like the words in a sentence. The tokens pass through multiple Transformer encoder layers, which conduct self-
attention to determine the relevance of each patch relative to other patches. 

ViTs are time-limited in temporal modeling, which is vital in SLR. This has led to Spatiotemporal Transformers 
being suggested to address space and time at once. 

C. Spatiotemporal Transformers for Gesture Recognition 

Models need to learn the following in order to detect dynamic sign gestures: 

• Spatial cues (handshape, facial expression, posture in each frame) 

• Temporal motion (how gestures vary from frame to frame) 

Spatiotemporal Transformers build upon ViT by incorporating temporal attention layers. A standard pipeline 
is as follows: 

Input: Video frame or keypoint embeddings sequence 

Spatial Encoder: Applies attention to patches in each frame 

Temporal Encoder: Applies attention to frames 

Output: Dense spatiotemporal embedding fed into classification or translation heads 

This multilayer architecture enables the model to learn subtle transitions between signs and identify co-
articulations in unsegmented sign streams. 

D.  Skeleton-Based Transformers 

With skeletal keypoints from tools such as MediaPipe (below), we can represent hand and body gestures as time-
series sequences of joint positions. The data can be processed effectively by transformers with linear projections 
and self-attention layers. 

Benefits: 

• Resilient to background noise and lighting 
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• More efficient than raw video processing 

• Focuses on gesture structure rather than appearance 

 

Fig.2 Media Pipe Pose Structure 

4. METHODOLOGY 
Our system for Indian Sign Language Recognition (ISLR) is a Transformer-based framework that 
combines skeletal keypoint information and raw image frames to capture spatiotemporal relationships 
between sign gestures. To support data-scarce recognition, we incorporate contrastive learning, masked 
feature prediction, and hierarchical attention into our training pipeline. In this section, we detail the 
entire methodology — from preprocessing to model training and inference. 

 

Fig. 3 Multi-Head Attention Flow 

This combination system style allows the model to learn body posture and handshape visual patterns, 
and movement of joints (kinematic structure), and so the solution is resistant to cluttered backgrounds, 
similar gestures, and variation of signers. 

A.  Feature Representation 

a) Raw Frame Embeddings 



International Journal of Environmental Sciences   
ISSN: 2229-7359 Vol. 
11 No. 18s, 2025  
https://www.theaspd.com/ijes.php  

3291 
 

Frames are divided into non-overlapping patches (e.g., 16x16) and flattened and projected via a 
learnable linear layer into patch embeddings. Spatial structure is maintained by adding positional 
encodings. 

b) Keypoint Embeddings 

Every keypoint sequence (pose, hands, face) is flattened and fed into a learnable MLP to embed into 
the same visual token space as Positional information is embedded into these sequences[12]. 

Feature Fusion 
A two-branch encoder is employed for both modalities' fusion: 

Branch 1: Visual Transformer deals with raw frame embeddings with spatial-temporal attention. 

Branch 2: Skeleton Transformer encodes sequential joint motion with self-attention. 

Intermediate layers employ cross-attention blocks to fuse semantic features between raw and keypoint 
streams. 

B. Classification Head 
We predict each gesture to its corresponding sign label through a fully connected softmax layer 
following fusion and encoding. At real-time translation, the output is projected to: 

• Text (English translation) 
• Speech (Text-to-Speech API for voice output) 

Inference Pipeline 

At inference: 

1. A new video is fed. 
2. Frames and keypoints are processed in real time. 
3. Transformer encodes features. 

Final prediction rendered as text + speech under ~1.5s latency per sign 

5. DATASET: ISL-CSLTR 
As a way of offering the actual-world usability of our model in Indian situations, we employ the ISL-
CSLTR dataset — an extensive collection of Indian Sign Language gestures [13] meticulously compiled 
for ongoing sign language translation and recognition purposes. The dataset takes a central role in 
training and evaluating our proposed system 
 
A.  Overview of ISL-CSLTR 
ISL-CSLTR (Indian Sign Language – Continuous Sign Language Translation and Recognition) is an 
open-source dataset to support the development of continuous ISL translation systems. It offers a rich 
video corpus of native ISL signers executing isolated and continuous sign phrases from a range of 
semantic categories. 
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Key Characteristics: 
• Total Signs: 500+ individual signs 
• Number of Sentences: 3,000+ continuous sign sentences 
• Signers: 10 native ISL signers (equal gender split) 
• Signs: Indian Sign Language, text: English in notes 
• Recording Environment: Indoor, static background, same lighting 
• Camera: Single-view RGB, 30 FPS 
• Resolution: 1280 x 720 (HD) 

B. Structure and Annotations 
The data is annotated with: 

• Single sign frame-wise gloss labels 
• Transcription at sentence-level for continuous sequences of signs 
• Start and end timestamps of each sign gesture in continuous video 

Each sample also includes metadata like signer ID, video ID, and gesture category (greeting, emotion, 
object, action, etc.). 

Video_ID: cont_0182.mp4 

Sentence: "My name is Ankitha" 

Frame-wise Gloss: ["MY", "NAME", "IS", "ANKITHA"] 

Start-End Frames: [[1, 25], [26, 45], [46, 65], [66, 85]] 

This specific naming enables the model to learn the correct temporal limits of a single sign in an input 
sentence, essential for real-time detection. 

C.  Data Split 
To maintain an even configuration and prevent overfitting, the data is divided in the following 
manner: 

Split Type Number of Samples Signers Included 
Training Set 70% (2100 samples) 7 signers 
Validation Set 15% (450 samples) 1 signer 
Test Set 15% (450 samples) 2 unseen signers 

The addition of unseen signers to the test set enables us to test the model's generalizability across 
variations in signers. 

D.  Data Augmentation 
As the dataset is quite moderate in size, we utilize augmentation methods during training to bring in 
variability: 

• Random Cropping 
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• Horizontal Flipping with sign consistency ensured 
• Gaussian Noise Injection 
• Brightness and Contrast Adjustment 
• Temporal Frame Shuffling (±2 frames) 

These augmentations are found to be useful in order to simulate real-world scenarios like varying 
lighting, signer position, and minor gesture variations. 

E.  ISL-CSLTR Challenges 
ISL-CSLTR also has some challenges in spite of its strengths: 

• Sign Boundaries Coarticulation: Sign boundaries are typically smooth, thus segmentation is 
difficult. 

• Signer Variability: Speed, hand shape, and expressiveness variation necessitate strong 
generalization capabilities. 

• Low Sign Contrast: The same hand movements with minor variations make classification 
challenging without deep feature learning. 

We overcome these challenges through hierarchical attention and contrastive learning explained in 
the previous sections. 

F.  Importance of ISL-CSLTR 
Compared to bulk ASL datasets, ISL-CSLTR fills a significant lacuna in Indian linguistics. It enables: 

• ISL-specific SLR system designing 
• Cross-lingual transfer learning applications 
• Cultural inclusivity in AI accessibility solutions 

By focusing on this dataset, we will create systems that are scalable, specifically designed for the Indian 
context but still applicable in real-world scenarios and adequate for regional linguistic requirements. 

6. EXPERIMENTS 
The goal of our experimental study is to contrast the performance of the designed dual-branch 
Transformer model on isolated and continuous Indian Sign Language (ISL) gesture recognition. We 
carried out our experiments to analyze the performance of the model in both typical supervised 
learning and few-shot learning cases, with an emphasis on generalization on unseen signers. 

A.  Experimental Setup 
Component Configuration 
Framework PyTorch 2.0 
Hardware NVIDIA RTX 3090 (24GB) 
Epochs 100 
Batch Size 32 
Learning Rate 0.0001 (AdamW Optimizer) 
Warm-up 10 epochs 
Learning Rate Schedule Cosine Annealing 
Loss Functions Cross-Entropy, Contrastive Loss, MAE Loss 
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Input Frames 32–64 frames per video 
Keypoints 2D (543 points: hands, pose, face) 
Visual Input 224x224 RGB Frames 

B.  Evaluation Metrics 
We measure both model performance in terms of the following: 

• Top-1 Accuracy: Correctly predicted signs percentage 
• Top-5 Accuracy: Ground truth among top 5 predicted signs 
• F1 Score: Weighted harmonic means of recall and precision 
• WER (Word Error Rate): For continuous predicted signs 
• mAP (mean Average Precision): For gesture-level 

C.  Baseline Comparisons 
To provide context to performance, we compare our model with widely used architectures: 
Model Top-1 Accuracy WER (%) F1 Score 
2D-CNN + LSTM 67.2% 31.5 0.68 
I3D (RGB Only) 74.8% 25.6 0.75 
LSTM + Keypoint Stream 69.1% 29.4 0.70 
ST-GCN (Keypoints Only) 76.3% 22.1 0.76 
Proposed Transformer 84.7% 16.4 0.85 

The proposed Transformer significantly outperforms baseline models, validating the benefits of 
multi-modal fusion and attention-based temporal modeling. 

D. Ablation Studies 
We perform ablation experiments to quantify the impact of each architectural component: 
Configuration Top-1 Accuracy 
Only Visual Transformer 76.1% 
Only Keypoint Transformer 78.4% 
Dual Branch w/o Contrastive Learning 81.6% 
Dual Branch w/o Masked Feature Prediction 82.2% 
Full Proposed System 84.7% 

These experiments show that contrastive learning and MAE make a notable contribution to 
performance, particularly under low-data regimes. 

E.  Few-Shot Generalization 
To test generalization, we replicate few-shot learning with novel signs not seen in training: 

• 5-shot setting: 5 samples for each novel sign 
• Achieved Accuracy: 62.3% 
• Compared to: ST-GCN (41.7%), I3D (35.2%) 

This emphasizes the potential of the model to be used for real-world tasks where labeled data per 
novel sign is not readily available. 

F.  Qualitative Results 
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Predicted: "I want water" | Ground Truth: "I want water" 

We also provide attention heatmaps to illustrate which frames and keypoints were most influential 
to the model prediction and indicate decision-making interpretability. 

G.  Inference Time 
• Average Latency: ~1.4 seconds per gesture 
• Throughput: ~21 signs per minute in real-time settings 
• Model Size: ~63M parameters 

The lightness and compactness of the Transformer backbone due to its efficiency allow for near-real-
time deployment even on consumer-grade GPUs. 

7. RESULTS AND DISCUSSION 
The experimental findings comprehensively illustrate how our proposed Transformer-based Sign 
Language Recognition (SLR) model outperforms conventional architectures largely in isolated and 
continuous sign translation tasks on the ISL-CSLTR dataset. This section details an analysis of our 
model's strengths, generalization power, usability, and areas for improvement. 

 

Fig.4 Output 

A.  Performance Summary 
Our two-branch model, integrating skeletal keypoints and raw RGB frames, performed better 
universally on all the metrics of evaluation. 84.7% top-1 accuracy, 0.85 F1 score, and 16.4% WER 
confirm the model to reason over intricate spatiotemporal dynamics of ISL gestures. 

Compared to the state-of-the-art models such as I3D, ST-GCN, and LSTM-based architectures, the 
new method uncovers: 

• Better temporal context learning with attention mechanisms 
• Better sign disambiguation with contrastive learning 
• Robust feature representations from visual and skeletal streams 
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B.  Real-World Implications 
The design enables low-latency inference with a prediction time of around 1.4 seconds. This allows 
for its deployment in real-time for tasks such as: 

• Deaf communities' virtual interpreters 
• Classroom assistive tools 
• Government or healthcare service interfaces 
• Multi-modal communication assistance 

The model's performance in few-shot regimes also holds the promise of scalability of deployment in 
low-resource environments where the entire datasets might not be feasible to utilize. 

C.  Robustness to Variability 
One of the significant implications of the findings is the robustness of the model to: 

• Different signers, including novel unseen signers 
• Different gesture speed, orientation, and facial expression 
• Context ambiguity, particularly in continuous signing 

This is largely due to the hierarchical attention layers that allow contextual meaning to be preserved 
over longer sequences. 

D.  Limitations 
Apart from its success, the present model has some limitations: 

• High reliance on keypoint accuracy: Hand landmarking or pose (by MediaPipe) mistakes can 
neutralize prediction accuracy. 

• Dataset size: ISL-CSLTR may be high in content yet relatively low on size for deeper 
generalization across different regional alternative ISL dialects. 

• Hierarchical sentence complexity: It falls off where signers illustrate complex, non-linear 
sentence organizations of ISL. 

E.  Future Directions 
In pursuit of opening fresh frontiers on Sign Language Translation in Indian horizons, following are 
future add-ons being posited: 

Multilingual Translation Support: Output to other Indian languages such as Hindi, Telugu, and Tamil 
in addition to English. 

Transformer Pretraining with Larger Datasets: Pre-train on large-scale sign data such as RWTH-
PHOENIX prior to fine-tuning in ISL-CSLTR. 

Signer Adaptation Layers: Add a signer-identification branch to adapt translation per signer for 
improved accuracy. 

Gesture-to-Speech Interface: Employ text-to-speech (TTS) for real-time audio output, allowing end-to-
end interaction. 
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Edge Deployment: Deploy model to mobile and edge devices, deploying accessibility utilities directly 
to users' phones. 

F.  Social Impact 
The project fills a pressing accessibility requirement for India's 27 million+ deaf and hard-of-hearing 
population. By facilitating real-time ISL translation, the project can: 

• Decrease communication barriers in school, public, and workplace settings 
• Facilitate the deaf community with easier-to-access digital content 
• Support ISL awareness and inclusion on a national level 

8. CONCLUSION 
This paper introduced a new Transformer-based Sign Language Recognition (SLR) and a new 
Translation architecture with emphasis on Indian Sign Language (ISL), which is aimed at addressing 
the critical issue of deaf-hearing communication barrier transcendence. Deep models such as CNNs 
and LSTMs, although quite decent at recognizing single gestures, become worse in capturing complex 
spatiotemporal relationships common in continuous signing. Our method addresses this gap by 
leveraging[1] the self-attention mechanism of Transformers to learn both local and global contextual 
relations in sign language data. 

The dual-stream design that is proposed handles raw image frames and MediaPipe-processed skeletal 
keypoints and thus acquires visual and structural features needed for sign representation accuracy. In 
order to make the model robust under low-resource and few-shot learning settings, we use self-
supervised learning techniques, e.g., masked feature prediction[11] along the lines of MaskFeat, and 
contrastive learning to perform robust inter-class separation. These modifications significantly increase 
the model's generalizability and enable its real-time, real-world deployability. 

Looking forward, the proposed model opens the door to deployment in assistive technology, learning software, 
and public service interfaces—ultimately to the broader vision of accessible and inclusive artificial intelligence. 
Future work could involve incorporating natural language processing for improved sentence-level translation, 
multi-modal inputs such as depth or audio for additional contextual information, and lightweight deployment 
for edge devices such as mobile phones and AR glasses. 
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