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Abstract: There are unique difficulties in building two-sided tolerance intervals (TIs), particularly for some continuous 
distributions. The development and analysis of two-sided TIs for the Weibull and Laplace distributions are the main topics of 
this paper. These intervals are largely formed by maximum likelihood estimation (MLE); nevertheless, for certain distributions, 
MLE computations necessitate numerical solutions since closed-form equations are not available. In these situations, MLEs 
were successfully approximated using the Newton-Raphson approach. For two-sided TIs, coverage probabilities were assessed 
and recorded for a range of sample sizes and confidence/proportion pairs. The results showed that while the Weibull distribution 
needed larger sample sizes to reach comparable stability, the Laplace distribution showed comparatively faster convergence to 
nominal coverage levels. These findings offer insightful information about the design and functionality of TIs for various 
distributions, which guides their use in a variety of statistical scenarios 
Keywords: two-sided tolerance intervals, maximum likelihood estimation, Weibull distribution, Laplace distribution, 
prediction intervals and confidence interval 
 
INTRODUCTION 
In statistical analysis, tolerance intervals (TIs) are essential tools in estimating intervals within which a specific 
proportion of a population falls with a given confidence level. TIs are widely used in various applications, 
including quality control, environmental monitoring, and engineering tests. Unlike confidence intervals (CIs), 
which estimate a range for an unknown population parameter, or prediction intervals (PIs), which set bounds for 
future observations, TIs provide an estimate for the range that covers a certain proportion of the entire population 
with specified confidence. This study focuses on constructing two-sided TIs for Laplace and Weibull continuous 
distributions using a simulation-based approach. Two-sided TIs are valuable in assessing the range of a population 
between two limits and are particularly useful in establishing reference intervals for populations. By using 
simulation, this research evaluates the convergence behavior of the TIs for both distributions, with an emphasis 
on understanding how simulated confidence levels perform for each model. Convergence speed is critical, as faster 
convergence in the simulation implies more robust interval estimates, especially with limited data or computational 
resources. In the analysis, we observe that the Laplace model achieves faster convergence of simulated confidence 
levels compared to the Weibull model, suggesting possible differences in distributional characteristics that impact 
the stability and reliability of the constructed TIs. This finding provides insight into selecting appropriate models 
and methods for constructing TIs depending on the underlying distribution. The study proceeds with a literature 
review in Chapter 2, focusing on past methodologies and developments in tolerance interval theory. Chapter 3 
discusses the estimation of k-factors needed for constructing two-sided TIs, particularly for symmetric location-
scale families, with a focus on maximum likelihood estimation (MLE) methods applied to normal, logistic, 
Weibull, and Laplace distributions. Chapter 4 presents k-factor tables, coverage probabilities, and simulation 
results for the convergence characteristics of TIs in these distributions. Finally, Chapter 5 concludes the study, 
highlighting the implications of convergence behavior in applied contexts and offering recommendations for 
further research. 
1.1. Objectives 
The objectives of this study are as follows: 
1. To analyze the convergence behavior of simulated two-sided tolerance intervals for specific continuous 

distributions, particularly focusing on the Laplace and Weibull distributions. 
2. To estimate k-factors necessary for constructing two-sided tolerance intervals for the Laplace and Weibull 

distributions, providing insights into their interval coverage. 
To evaluate the convergence rates of simulated confidence levels and population proportions for the Laplace and 
Weibull models using Monte Carlo simulation, identifying potential differences in convergence speed between 
these distributions. 
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These objectives aim to provide a deeper understanding of the effectiveness and stability of two-sided tolerance 
intervals across different continuous distributions, enhancing the reliability of tolerance intervals in practical 
applications. 
1.2. Problem of the Study 
Tolerance intervals (TIs) are crucial in statistical analysis for defining intervals that contain a specified proportion 
of a population with a given confidence level. While two-sided TIs are well-developed for certain distributions, 
such as the normal and logistic, less is known about their behavior and accuracy in the context of the Laplace 
and Weibull distributions. Given the varied characteristics of these distributions, constructing accurate TIs poses 
unique challenges, particularly regarding the rate at which simulated intervals achieve stable confidence levels, 
known as convergence. This study addresses the problem of slow or inconsistent convergence of simulated two-
sided tolerance intervals for different distributions, which can lead to unreliable interval estimates in applications 
requiring precise population coverage. Specifically, while the Laplace distribution often exhibits faster 
convergence in simulations, the Weibull distribution may converge more slowly, potentially affecting the 
reliability of the TIs derived for populations following these distributions. Understanding and comparing the 
convergence characteristics of two-sided TIs for the Laplace and Weibull distributions is essential to provide more 
robust guidance for practitioners in fields like quality control, reliability engineering, and environmental 
monitoring, where accurate population coverage is paramount. This study seeks to identify and address these 
convergence challenges through a Monte Carlo simulation approach, aiming to offer improved methods for 
constructing reliable TIs across these commonly used distributions. 
 
2. LITERATURE REVIEW 
This chapter reviews the theoretical foundations, developments, and applications of two-sided tolerance intervals 
(TIs), emphasizing their use across different continuous distributions, especially through simulation-based 
approaches.  
2.1.  Statistical Tolerance Intervals 
The study of statistical tolerance intervals (TIs) for continuous distributions has evolved since its inception, 
beginning with foundational work by[1], who explored two-sided tolerance intervals specifically for normal 
distributions. Ellison’s approach provided an essential framework for constructing TIs with reliable interval 
estimates. Expanding on this, [2] presented distribution-free TIs for general continuous symmetrical populations, 
which opened the possibility of applying TIs beyond strictly normal distributions. Building on these early 
developments, [3] introduced improvements to two-sided tolerance limits for normal populations, enhancing 
accuracy for practical applications. Similarly, [4] discussed sample size requirements for β-expectation TIs, which 
was instrumental in guiding effective sample size selection for desired confidence levels.[5] extended TI 
construction to the exponential distribution, proposing corrections and generalizations that addressed limitations 
in previous TI methods for non-normal data. 
2.2. Advances in Two-Sided Tolerance Intervals for Various Distributions 
As statistical applications of TIs expanded, researchers aimed to refine TI methods for different statistical models. 
[6, 7] investigated approximations of TIs for normally distributed data, offering methods that maintain a balance 
between computational efficiency and accuracy. Addressing more complex statistical models,[8] provided 
approaches for calculating one- and two-sided TIs in general balanced mixed models and unbalanced random 
models, broadening the scope of TIs in statistical modeling. More recent research has developed TI methods for 
controlling variance, an essential feature in quality control and reliability engineering.[9] proposed approximate 
two-sided TIs for sample variances, focusing on distributions where variance plays a crucial role. In parallel, [10] 
introduced exact TIs controlling tail proportions for sample variances, enhancing robustness in cases with high 
variance variability. Addressing location-scale families, [11] examined two-sided TIs for (log)-location-scale family 
distributions, highlighting the adaptability of TIs to different statistical structures. To address specific needs in 
the pharmaceutical industry, [12] assessed TIs in pharmaceutical quality control, while [13]  explored TIs for 
batch acceptance of dose uniformity. Their studies underscore the role of TIs in maintaining quality standards 
across varying [14]mixture distributions.[15] proposed approximate TIs for normal mixture distributions, while 
[16] provided exact TIs for univariate normal distribution and linear regression models, contributing essential 
methods for complex datasets.[17] examined TIs within balanced and unbalanced random effects models, 
emphasizing their utility in cases of random variation. 
2.3. Simulation Methods and Convergence of Tolerance Intervals 
Simulation-based methods have played a pivotal role in developing reliable TIs, particularly for complex 
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distributions.[17] offered general asymptotic results for constructing two-sided Bayesian and frequentist TIs, 
employing Monte Carlo simulations to address convergence challenges in non-normal distributions. In another 
simulation-based study, [17]. analyzed TIs in balanced one-way random effects models, using Monte Carlo 
methods to address cases with non-normal errors. Bootstrapping has been a key simulation method for enhancing 
TI accuracy. [18] demonstrated that bootstrap calibration could improve coverage (probabilities in parametric TIs, 
enabling more reliable application across varied datasets. [19]  contributed by proposing exact two-sided 
statistical tolerance limits for sample variances, highlighting simulation's role in achieving exact results in applied 
scenarios. Monte Carlo simulation has also been beneficial for estimating TIs within symmetric location-scale 
families. [20] developed methods based on uncensored and censored samples, further illustrating the flexibility 
of TIs for varied data conditions. The Bayesian approach to TIs was expanded by [21, 22], who demonstrated that 
Bayesian priors could enhance the precision of TIs, though selection of appropriate priors remains a critical factor. 
[23, 24] on two-sided normal TIs in single- and multistage batch acceptance tests also demonstrated the 
effectiveness of simulation in pharmaceutical statistics. Additionally, Liao and [25] developed TIs for the normal 
distribution with several variance components, contributing to variance-specific TI computation. [26] focused on 
two one-sided parametric TIs for controlling dose uniformity in pharmaceuticals, an application that relies heavily 
on accurate TI construction. 
2.4. Applications of Tolerance Intervals Across Fields 
The application of TIs spans various fields, from pharmaceutical quality to environmental assessments. For 
example, [27] used TIs to evaluate pharmaceutical product quality, establishing standards for dose consistency. 
[28, 29] explored TIs for sample variances, emphasizing their relevance in quality control and reliability 
engineering. The use of simulation has further facilitated TI applications in different fields, providing robust 
tools for complex data sets that require precise interval estimations. [30] demonstrated the utility of simulation 
in Bayesian and frequentist frameworks, while [31] highlighted the importance of controlling tail proportions in 
variance-sensitive applications. The work of [32] on TIs for normal mixture distributions exemplifies the role of 
TIs in industries where population mixtures occur frequently, such as environmental sciences and quality 
engineering. 
 
3. METHODOLOGY STUDY  
In this chapter, we will look at the methods that are used in this study which are: 
1. factors for constructing two-sided tolerance intervals. 
2. coverage probabilities of the (p, 1 − α)  two-sided tolerances intervals for the Weibull and Laplace 

distributions. 
3. maximum likelihood estimates (MLE) and two-sided tolerance intervals for the Weibull and Laplace 

distributions. 
3.1. Tolerance Intervals for Continuous Distributions 
3.1.1. Two-sided tolerance intervals 
To define a )1,( −p TI formally, let ),...,( 1 nXXX = be a random sample of continuous random variables 

that have cumulative distribution function XF  , and A )1,( −p  TI ))(),(( XUXL is constructed so that. 
 

−= 1}))()(({ pXXUXXLPP XX … (3.1) 

The interval is defined by two limits, L(X) and U(X), which are constructed using 
( ) ( ) , , kSXXUkSXXL +=−=  

where X  is the sample mean, S is the sample standard deviation and k is calculated as described in the following 
part. 
 
3.1.2. Coverage probabilities 

Let (.)XF denote the cumulative distribution function of X  defined in (3.1). We obtain 
 

 −=−−+ 1})ˆˆ()ˆˆ({
,

pkFkFP XSX
 ..(3.2) 

Therefore, the coverage probabilities can be expressed as 
pkFkF XX =−−+ )ˆˆ()ˆˆ(  …….(3.3) 
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The coverage probabilities for Weibull and Laplace distributions were found for values of 
 500, 100 50, 30, 25, 20, 15,n =  for all possible pairs )1,( −p from the set 0.95} {0.90, , and presented 

in tables 4.2-4.6 (see Chapter 4). 
 
3.2. Maximum likelihood estimation 
The maximum likelihood method is a procedure of finding the value of one or more parameters for a given 
statistic, which makes the known likelihood distribution a maximum. The maximum likelihood estimate (MLE) 

for a parameter   is denoted by ̂  . 

0),..,;,( 1

2 =



nxxl 


 ……….(3.4) 

 
3.2.1. MLE for Laplace distribution 

Suppose that nxx ,...,1  form a random sample from a double exponential distribution (also referred to as Laplace 
distribution) for which the p.d.f. is given by 

( ) . 0s  ,-  ,-           , 
2

1
,, = 






 −−





xe
s

sxf
s

xi
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Here,   is a location parameter and s  a scale parameter for the distribution. 
The likelihood function can be expressed as 

( ) ( )
=

=
n

i

in sxfxxsL
1

1 ,;,...,;,   

( )  
1

exp
2

1
,...,;,

1

1 







−−








= 

=

n

i

i

n

n x
ss

xxsL  …….  (3.6) 

The log-likelihood function can be expressed as 

( ) ( )
=

=
n

i

in sxfxxsl
1

1 ,;log,...,;,   

= −n log(2s) −
1

s
∑ |xi − τ| n

i=1 …………      (3.7) 

Using the profile likelihood approach, we first find the MLE of   under fixed s . Directly from the form of the 

log-likelihood function for fixed s , maximizing ),( sL  with respect to   is equivalent to minimizing 


=

−
n

i

ix
1


 with respect to  . The key observation is that, since this function does not depend on s , the 

solution to this minimization problem will provide the MLE ̂  for  . 
Next, to obtain the MLE of σ, we can maximize the profile log-likelihood for this parameter: 
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http://mathworld.wolfram.com/Likelihood.html
http://mathworld.wolfram.com/Maximum.html


International Journal of Environmental Sciences   
ISSN: 2229-7359 
Vol. 11 No. 19s, 2025  
https://www.theaspd.com/ijes.php  

 

1851 

Note that it can be shown that one solution for the MLE of µ is the sample median, though it is not the unique 
solution when n is even. For two different proofs of this result, refer to Norton, R.M. (1984). 
3.3. The Newton-Raphson (NR) method 
Maximum likelihood estimates are often extremely complicated nonlinear functions of the observed data. As a 
result, closed form expressions for the MLEs will generally not exist for some models. The NR algorithm is an 
iterative procedure that can be used to calculate MLEs. The basic idea behind the algorithm are as follows:  
(1) Construct a quadratic approximation to the function of interest around some initial parameter value 
(hopefully close to the MLE).  
(2) Adjust the parameter value to that which maximizes the quadratic approximation. This procedure is iterated 
until the parameter values stabilize.  
The multi-parameter NR method is given as follows:  

( ) ( )( )  ( )( )mmmm ll  '''
11 −+ −= ……(3.9) 

where ( )l  is a log-likelihood function,  ( )'l  now is a vector consisting of the partial derivatives while ( )''l   

is a matrix with (i, j) entry equal to the second derivative with respect to i  and j . ( )''l is usually denoted as 
the Hessian matrix. The algorithm can be written as  
 

( ) ( )( ) ( )( )mmmm mH  11 −+ −= ….(3.10) 

For likelihood optimization, where ( )m  is the score function while ( )H  is the observed information matrix. 
In this study, the MLEs for Weibull and logistic distribution are found by the NR method. 
MLE for the Weibull distribution 

A random variable x is said have the Weibull distribution with parameter   and ( ) ( )( )++ ,0,,0   
if the pdf of x is 
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where   is a scale parameter and   described the shape parameter of the distribution, assuming all the 

distribution nxx ,...,1  are independent, the likelihood function can be written as 
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The log-likelihood is  
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In order to find the maximum likelihood estimates, 
we need to solve the following maximization problem 

),..,;,(max 1
,

nxxl 


 

The partial derivative of the log-likelihood with respect to the scale parameter,   is 
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The second partial derivative of the log-likelihood with respect to the scale parameter,   is 
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The partial derivative of the log-likelihood with respect to the shape parameter,   is 
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The second partial derivative of the log-likelihood with respect to the shape parameter,   is 
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The partial derivative of 
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The NR method is performed by solving the following equation: 
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3.4. Tolerance intervals for the Weibull and Laplace distributions 
A family of distributions is referred to as the location-scale family if its probability density function can be 
expressed in the form 
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Where   is the location parameter and s  is the scale parameter.  

As given in equation (3.1), the general form of the two-sided tolerance interval is: .kSX   
 
3.4.1. The Laplace distribution 

Let that ),...,( 1 nxxx = form a random sample from a double exponential distribution (also referred to as Laplace 
distribution) for which the p.d.f. is given by 
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here,   is a location parameter and s is a scale parameter for the distribution. 
The likelihood function can be expressed as 
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The log of the likelihood function can be expressed as 
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The maximum likelihood estimates 
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as shown in section 3.2.2. 
Estimates of L and U for Laplacian distributed data are as follows (Young, 2010): 
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( )  2/112ln2/)1( +−=+ pk p … (3.28) 

Such that n is the sample size, 2/1 −z  is the ( )−1 -th quantile of a standard normal distribution 
 
 
3.4.2. The Weibull distribution 

A random variable x is said have Weibull distribution with parameter ( ) ( ) ,0 , and 0,  where,   
if the cumulative distribution function of x is 
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X
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F  ….(3.29) 
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where   is a scale parameter and   is the shape parameter Let a random variable Y be such that Y = ln(X). 
Then Y has an extreme-value distribution (also called the Gumbel distribution for the minimum) if it has 
cumulative distribution function 

( ) ,exp1,;













−−=

−




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y
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where ( ) ln , =+− y , (so +−  ), and 
1−=   (so 0 ). The maximum likelihood 

estimates of the parameters ( ) ˆ and ̂ can be found by using a NR algorithm initialized with the method of 

moments estimates. The maximum likelihood estimates of the parameters ( ) ˆ and ˆ  can be found by taking a 

log transformation on the data, finding the maximum likelihood estimates for (   and ), and then transforming 
those estimates back to the Weibull scale. 

Letting ( )( ) nww  ,lnln −= be the sample size, and 
( )

 2/1; *−d
t

 be the ( )−1 -th quantile of a non-central t 

distribution with d degrees of freedom and non-centrality parameter  , the formulas for estimating the two-
sided extreme-value tolerance limits (Bain and Engelhardt 1981) are: 
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The upper and lower limits for the two-sided Weibull tolerance limits are: 
 

L

W eL =  …..…..(3.33) 
U

W eU = ………(3.35) 

 
4. RESULTS AND DISCUSSION 
In this chapter, we will examine the results of this study which consists of three parts: 
1. factors for constructing two-sided tolerance intervals. 
2. simulation study of two-sided tolerances intervals for the Weibull and Laplace distributions. 

3. coverage probabilities of the )1,( −p  two-sided tolerances intervals for the Weibull and Laplace 
distributions 

4.1. Monte Carlo simulation study 
We conduct a Monte Carlo simulation study to study the performance of the k-factor two-sided tolerance intervals. 
We found that 10000 simulation runs were sufficient for our study.  
The following were studied: 
• k-factors for constructing two-sided tolerance intervals. 
• coverage probabilities for the Weibull and Laplace distributions. 
• two-sided TIs for the Weibull and Laplace distributions. 
 
Based on 10000 simulation runs, we computed k-factor for  two-sided TIs, coverage probabilities and two-sided 
tolerance intervals for the Weibull and Laplace distributions. For each simulated 

interval, we calculated the 
−= 1}))()(({ pXXUXXLPP XX  where ( ) ( )xLXU  and  are 

respectively the upper and lower limits of the interval. The confidence level is the proportion of time the content 

of the simulated tolerance intervals was at least p . The ‘tolerance pakage’ in R was used in the simulation 
proceses. 
4.1.1. Coverage probabilities 
This section examines the coverage probabilities of two-sided tolerance intervals (TIs) for the Weibull and Laplace 

distributions across various sample sizes and confidence/proportion pairs ( )−1,p selected from the set 
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[(0.90,0.90),(0.95,0.95),(0.90,0.95),(0.95,0.90)] both distributions, coverage probabilities approach nominal 
levels as sample size nnn increases, indicating that larger samples improve the accuracy of these intervals. 

For the Weibull distribution, coverage probabilities demonstrate high stability across different ( )−1,p pairs, 
even with smaller sample sizes, particularly when the shape parameter is set to 2 and the scale parameter to 1. 
This stability, as shown in Table 4.1, reflects a reliable convergence of TIs to their target coverage levels, making 
the Weibull distribution suitable for applications where consistent coverage is essential. 
In contrast, the Laplace distribution shows slightly lower convergence rates, especially at smaller sample sizes, 
where coverage probabilities may vary more from nominal levels, as presented in Table 4.2. This behavior suggests 
that the Laplace distribution requires larger sample sizes to reach the same level of coverage stability as observed 
in the Weibull distribution. 
Overall, the results in Tables 4.1 and 4.2 provide essential insights into the convergence characteristics of two-
sided TIs for these distributions, emphasizing the influence of sample size on coverage accuracy. This comparison 
highlights that the Weibull distribution achieves target coverage more consistently than the Laplace distribution, 
underscoring the importance of selecting appropriate sample sizes and distributions for reliable TI estimation. 
4.1.2. Two-Sided Tolerance Intervals (TIs) 
This section presents the results of two-sided tolerance intervals (TIs) for the Weibull and Laplace distributions, 

computed for various sample sizes n and confidence/proportion pairs ( )−1,p chosen from the set (0.90, 0.90), 
(0.95, 0.95), (0.90, 0.95), (0.95, 0.90). The results indicate that the difference between the lower and upper 
tolerance limits decreases as sample size increases, reflecting increased precision in TI estimates with larger 

samples. This decrease in difference is more rapid when smaller proportions (p) and confidence levels ( )−1  
are used. For the normal distribution, when the mean and variance are unequal, the difference between the lower 

and upper tolerance limits is higher than when they are equal. These differences tend to increase as ( )−1  
increases, indicating a wider interval range with higher confidence requirements. For the Weibull distribution, 
the difference between the lower and upper tolerance limits is relatively smaller compared to those observed in 
the normal, Laplace, and logistic distributions, suggesting a quicker convergence in interval width as sample size 
grows. Tables 4.1 and 4.2 illustrate coverage probabilities for various two-sided TIs of the Weibull and Laplace 
distributions across different sample sizes, while Tables 4.3 and 4.4 display the corresponding lower and upper 
tolerance limits. The tables provide insights into the convergence characteristics of two-sided tolerance intervals 
(TIs) for the Weibull and Laplace distributions. For the Weibull distribution, interval widths are generally 
narrower, indicating tighter coverage even with smaller sample sizes, and coverage probabilities remain stable 
across different confidence and proportion pairs, as shown in Table 4.1. In contrast, the Laplace distribution 
displays broader interval widths, particularly at smaller sample sizes, suggesting slower convergence in interval 
estimation, which is reflected in the coverage probabilities in Table 4.2. Table 4.1 highlights the stability of 

coverage probabilities for the Weibull distribution across various ( )−1,p pairs, especially as sample size n 
increases, while Table 4.2 shows that the Laplace distribution has slightly lower convergence rates, with more 
significant changes in coverage as sample size grows. Tables 4.3 and 4.4 present the lower and upper tolerance 
limits for the Weibull and Laplace distributions, respectively, where interval widths become narrower with 
increasing sample size, underscoring the effect of sample size on interval precision. This analysis provides 
comparative insights into the convergence and coverage stability of two-sided TIs for the Weibull and Laplace 
distributions, highlighting how distribution properties influence TI width and reliability. 

Table 4.1: Coverage probabilities of ( )−1,p two sided TIs for the Weibull distribution. 
 

Weibull, shape=2, scale=1 

(p,1-α) 
n 

(0.90,0.90) (0.95,0.95) (0.90,0.95) (0.95,0.90) 

15 0.970 0.991 0.979 0.987 
20 0.966 0.990 0.975 0.985 
25 0.963 0.988 0.972 0.984 
30 0.960 0.987 0.969 0.983 
50 0.951 0.983 0.960 0.979 
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100 0.940 0.977 0.947 0.973 
500 0.920 0.965 0.924 0.962 

Table 4.2: Coverage probabilities of ( )−1,p  two sided TIs for the Laplace distribution. 
Laplace 
, location=2, scale=1 
(p,1-
α) 
n 

(0.90,0.90) (0.95,0.95) (0.90,0.95) (0.95,0.90) 

15 0.968 0.993 0.980 0.986 
20 0.963 0.990 0.975 0.984 
25 0.958 0.988 0.970 0.982 
30 0.955 0.986 0.966 0.981 
50 0.946 0.981 0.955 0.976 
100 0.935 0.974 0.942 0.971 
500 0.917 0.963 0.921 0.961 

Table 4.3: Lower and upper tolerance limits for the ( )−1,p  two-sided TIs for the Weibull distribution. 
Weibull, shape=2, scale=1 
( )−1,p  (0.90,0.90) (0.95,0.95) (0.90,0.95) (0.95,0.90) 
n  lower upper lower upper lower upper lower upper 
15 0.126 2.465 0.067 3.147 0.107 2.700 0.081 2.843 
20 0.138 2.318 0.077 2.868 0.121 2.488 0.090 2.651 
25 0.147 2.228 0.084 2.707 0.131 2.364 0.096 2.536 
30 0.153 2.170 0.089 2.605 0.139 2.285 0.101 2.461 
50 0.168 2.044 0.103 2.397 0.157 2.120 0.112 2.304 
100 0.185 1.938 0.118 2.228 0.177 1.984 0.125 2.172 
500 0.207 1.816 0.140 2.044 0.204 1.834 0.143 2.023 

Table 4.4:  Lower and upper tolerance limits for the ( )−1,p  two-sided TIs for the Laplace distribution. 
Laplace, location=2, scale=1 

( )−1,p  (0.90,0.90) (0.95,0.95) (0.90,0.95) (0.95,0.90) 

n  lower upper lower upper lower upper lower upper 

15 -1.921 5.923 -3.892 7.894 -2.569 6.571 -3.057 7.059 

20 -1.616 5.613 -3.254 7.251 -2.074 6.072 -2.665 6.662 

25 -1.421 5.422 -2.878 6.879 -1.781 5.783 -2.416 6.417 

30 -1.298 5.299 -2.645 6.646 -1.600 5.601 -2.259 6.260 

50 -1.019 5.020 -2.148 6.149 -1.211 5.212 -1.903 5.904 

100 -0.777 4.779 -1.740 5.743 -0.891 4.893 -1.595 5.598 
500 -0.499 4.499 -1.296 5.296 -0.540 4.541 -1.243 5.244 

 
5. Concluding Remarks And Future Research 
5.1. Concluding remarks 
This study focused on analyzing two-sided tolerance intervals (TIs) for the Weibull and Laplace distributions, 
examining k-factors, coverage probabilities, and the convergence characteristics of TIs through simulation. In 
Chapter 3, we discussed the methods used for constructing two-sided TIs, highlighting the role of the maximum 
likelihood estimate (MLE) in defining tolerance limits. For Weibull, where closed-form solutions to the likelihood 
equation are unavailable, the Newton-Raphson approach was applied to approximate the MLE[33]. 
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Chapter 4 presented the primary findings, encompassing three core areas: 
• Factors for constructing two-sided tolerance intervals specific to the Weibull and Laplace distributions. 
• Simulation study of two-sided tolerance intervals across various confidence/proportion pairs to assess interval 

precision and coverage behavior. 
• Coverage probabilities of two-sided TIs for the Weibull and Laplace distributions, emphasizing how sample 

size influences convergence to nominal levels. 
The results showed that the convergence of simulated confidence levels was faster for the Laplace distribution 
compared to the Weibull distribution, which displayed a slower convergence rate and required larger sample sizes 
to achieve stable coverage. This analysis provides valuable insights into the effectiveness of two-sided TIs for these 
distributions, offering guidance on their application based on specific sample sizes and confidence settings. 
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Appendix – A 
 

p  content in )1,( −p  

−1  confidence level in )1,( −p tolerance interval 

( )XL  lower tolerance interval 

( )XU  upper tolerance interval 

)( 1−NO  At most of orders 1−N  

f  probability density function 

L  likelihood function 
l  log-likelihood function 

F  cumulative distribution function 
P  probability 
q  p quantile of the sampled population 
cdf  cumulative distribution function 

pdf  probability density function 

( )m  score function 

( )H  information matrix 

IID independent and identically distributed 
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L  likelihood function 
l  log-likelihood function 

F  cumulative distribution function 
P  probability 
q  p quantile of the sampled population 
cdf  cumulative distribution function 

pdf  probability density function 

( )m  
score function 

( )H  
information matrix 

IID independent and identically distributed 
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