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Abstract 
In this paper, we propose a novel approach for cyber threat analysis using Graph Neural Networks (GNNs) enhanced 
by a Self-Adaptive Deep Neural Network (SADNN) and optimized through Gray Bee Optimization (GBO). The 
primary aim is to identify and mitigate cyber threats effectively by modeling the network as a graph, where nodes 
represent entities (such as computers, servers, or devices) and edges represent interactions or connections between them. 
Let G be a connected graph, and let S be a minimum detour dominating degree set of G. A subset T⊆ST is referred to 
as a forcing subset of S if S is the unique minimum detour dominating degree set containing T. The Self-Adaptive Deep 
Neural Network dynamically adjusts its parameters based on incoming network traffic, making it highly adaptable to 
new and evolving threats. GBO, a nature-inspired optimization technique, is used to fine-tune the parameters of the 
SADNN model, thereby enhancing its performance in detecting complex cyber attacks. The proposed framework not 
only improves the accuracy of cyber threat detection but also reduces the computational overhead involved in training 
deep models. We demonstrate the effectiveness of the proposed method on several benchmark datasets and evaluate its 
performance against state-of-the-art techniques in the field. 
Keywords: Cyber Threat Analysis, Graph Neural Networks, Self-Adaptive Deep Neural Network, Gray Bee 
Optimization, Cybersecurity and Attack Detection. 
 
INTRODUCTION 
The increasing sophistication of cyber attacks poses significant challenges to traditional security systems 
[1]. As networks evolve, new forms of cyber threats emerge, necessitating the development of more adaptive 
and intelligent systems for threat detection [2]. Graph Neural Networks (GNNs) have recently gained 
attention due to their ability to model complex relationships between entities in networks, making them 
an ideal tool for cyber threat analysis [3-5]. In this paper, we explore the integration of a Self-Adaptive 
Deep Neural Network (SADNN) with Graph Neural Networks to enhance the detection capabilities for 
evolving and unseen threats. 
The Self-Adaptive Deep Neural Network (SADNN) leverages real-time network data to adjust its structure 
and weights [6], optimizing itself dynamically [7] to the characteristics of the network traffic. The use of 
Gray Bee Optimization (GBO) further refines the performance of the model by searching for optimal 
solutions in a highly complex and nonlinear optimization landscape, typical of real-world cyber attack 
patterns [8-10]. This combination of techniques creates a robust, adaptive framework capable of addressing 
a wide range of cyber security challenges. This research provides a comprehensive evaluation of the SADNN 
model and GBO algorithm in the context of cyber threat analysis, demonstrating the superiority of the 
proposed approach compared to conventional static models. 
 
DEFINITION 3.1: Graph Neural Networks for Cyber Threat Analysis 
Let G=(V,E)G = (V, E)G=(V,E) represent a graph where VVV is the set of nodes (representing entities such 
as devices, servers, or users in a network) and EEE is the set of edges (representing relationships or 
interactions between these entities). A Graph Neural Network (GNN) is a neural network model that 
operates over graph data structures and is designed to learn representations of nodes, edges, and graph-
level features. The primary goal is to generate a meaningful representation of the graph or its substructures 
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(i.e., individual nodes or edges) that can be used for prediction or classification tasks. 
In the context of cyber threat analysis, the graph represents the network topology, and the edges denote 
interactions between nodes. GNNs allow the model to aggregate information from neighboring nodes, 
which can help detect abnormal behaviors or attacks based on patterns in these relationships. This 
methodology is particularly useful in identifying hidden threats that cannot be detected by traditional 
methods. 
 
DEFINITION 3.2: Self-Adaptive Deep Neural Network (SADNN) 
A Self-Adaptive Deep Neural Network (SADNN) is a variant of deep neural networks that dynamically 
adjusts its internal parameters, such as the weights of the connections, based on the incoming data. The 
adaptability of the SADNN comes from its ability to self-optimize in real time, ensuring that the network 
continually adjusts to the ever-changing characteristics of network traffic. This process allows the model 
to effectively handle new, unseen types of attacks and adapt its detection strategies as cyber threats evolve. 
In mathematical terms, for a given input vector 𝑥, the SADNN optimizes its parameters 𝜃 such that: 
𝜃∗ = arg minℒ(𝑓(𝑥; 𝜃), 𝑦) 
𝜃 
where ℒ is the loss function (such as cross-entropy or mean squared error), 𝑓(𝑥; 𝜃) is the output of the 
SADNN, and 𝑦 is the true label (e.g., benign or attack). The SADNN is capable of adjusting the weights 
dynamically, which helps to improve the model's generalization to unseen attack patterns. 
 
DEFINITION 3.3: Gray Bee Optimization (GBO) 
Gray Bee Optimization (GBO) is a nature-inspired optimization algorithm based on the behavior of bees 
in a colony. In the context of this paper, GBO is used to optimize the parameters of the SADNN. The 
algorithm mimics the foraging behavior of bees in nature, where bees search for food (optimal solutions) 
while maintaining diversity in their exploration. The GBO algorithm employs multiple bees to explore the 
solution space and selects the best solutions based on a fitness function. 
Let 𝑥𝑖 denote the position of the 𝑖𝑡ℎ bee, and 𝑓(𝑥𝑖) the fitness of that solution. The GBO algorithm aims 
to maximize (or minimize) the fitness function by iterating over multiple generations and adjusting the 
positions of the bees. The update rule for the position of a bee can be expressed as: 
𝑥new = 𝑥𝑖 + 𝛼 ⋅ (𝑥∗ − 𝑥𝑖) + 𝛽 ⋅ (𝑥𝑗 − 𝑥𝑖) 
where 𝑥∗ is the best solution found by the swarm, and 𝑥𝑗 is a randomly selected solution from the 
population. The constants 𝛼 and 𝛽 control the exploration and exploitation abilities of the algorithm. 
The process continues until convergence, leading to optimal solutions for the SADNN model's 
parameters. 
 
DEFINITION 3.4: Detour Domination in Graph Theory 
In graph theory, detour domination is a type of domination where the dominating set is determined by 
detours, which are longer paths between vertices. A detour of a vertex 𝑣 is a path that starts at 𝑣 and 
reaches another vertex 𝑢, avoiding the direct edge between them. The detour domination number of a 
graph 𝐺, denoted by 𝛾𝐷(𝐺), is the minimum number of vertices in a set 𝐷 ⊆ 𝑉(𝐺) such that every vertex not 
in 𝐷 is connected to at least one vertex in 𝐷 via a detour path. 
• Example: In a simple graph 𝐺, suppose vertex 𝑢 is not adjacent to vertex 𝑣, and there exists a path 
from 𝑢 to 𝑣 passing through other vertices. If we can form such paths for every vertex not in 𝐷, then 𝐷 is 
a dominating set under detour domination. The size of 
𝐷 is the detour domination number 𝛾𝐷(𝐺). 
 
THEOREM 3.5: Detour Domination Number Bounds 
Let 𝐺 be a connected graph. The detour domination number 𝛾𝐷(𝐺) satisfies the following inequality: 
|𝑉(𝐺)| 
≤ 𝛾𝐷(𝐺) ≤ |𝑉(𝐺)| − 1 
2 
• Proof: The lower bound of 𝛾𝐷(𝐺) occurs when each vertex is dominated by a set of vertices such 
that no vertex in the dominating set is directly adjacent to the dominated vertex. The upper bound happens 
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when the detour paths for dominating a vertex involve almost all vertices except one, thus the largest set of 
dominators is |𝑉(𝐺)| − 1. 
• Example: For a cycle graph 𝐶6 r where |𝑉(𝐺)| = 6, the detour domination number 
𝛾𝐷(𝐶6) is 3. Here, it is clear that each vertex not in the set 𝐷 = {1,3,5} can be dominated by vertices in 𝐷 
through a detour path. 
 
DEFINITION 3.6: Detour Path 
A detour path between two vertices uuu and vvv in a graph is a simple path that connects u to v but does 
not use the edge directly connecting them. This path may involve intermediate vertices to ensure that the 
path is distinct from the direct edge. 
• Example: In a graph with vertices 𝑢, 𝑣, 𝑤, 𝑧, if there is an edge between 𝑢 and 𝑣, then the detour 
path between 𝑢 and 𝑣 could involve traversing through 𝑤 and 𝑧, i.e., 𝑢 → 
𝑤 → 𝑧 → 𝑣 
THEOREM 3.7: Detour Domination Number of Complete Graphs 
For a complete graph 𝐾𝑛, the detour domination number is given by: 
𝛾𝐷(𝐾𝑛) = 𝑛 − 1 
• Proof: In a complete graph, each vertex is directly connected to every other vertex. To dominate 
all vertices using detour domination, one must select all but one vertex. This is because no direct edge can 
be used, and every vertex needs to be reached through a detour involving the other vertices. 
• Example: For a complete graph 𝐾4, the detour domination number is 𝛾𝐷(𝐾4) = 3, since selecting 3 
vertices in this graph ensures every other vertex is dominated through a detour. 
 
DEFINITION 3.8: Detour Domination Set 
A detour domination set 𝐷 in a graph 𝐺 is a set of vertices such that every vertex 𝑣 ∉ 𝐷 is connected to at 
least one vertex in 𝐷 via a detour path. 
• Example: In a graph with vertices {𝑢, 𝑣, 𝑤, 𝑥}, if the detour path from 𝑤 to 𝑥 passes through 𝑢 , 
and the detour from 𝑣 to 𝑤 passes through 𝑥, then 𝐷 = {𝑢, 𝑥} is a valid detour domination set. 
 
THEOREM 3.9: Detour Domination Number in Trees 
Let 𝑇 be a tree. The detour domination number 𝛾𝐷 

(𝑇) is at most ⌈
|𝑉(𝑇)|

⌉. 
• Proof: In trees, vertices are less connected compared to other graphs. The dominating set under 
detour domination is minimized when each vertex is dominated by vertices in 
𝐷 using detour paths, and this can be achieved with at most half of the vertices (rounded up) in the tree. 
• Example: For a tree 𝑇 with 5 vertices, the detour domination number 𝛾𝐷(𝑇) would be 3 , as 
selecting 3 vertices from the tree ensures that all other vertices are dominated through detour paths. 
 
DEFINITION 3.10: Detour Domination Number of a Cycle 
The detour domination number of a cycle graph 𝐶𝑛 is the minimum number of vertices required to 
dominate all vertices in the cycle through detour paths. 
• Example: For 𝐶6, the detour domination number is 3, as every non-dominated vertex is connected 
to at least one of the 3 selected vertices via a detour path. 
THEOREM 3.11: Detour Domination in Complete Bipartite Graphs 
For a complete bipartite graph 𝐾𝑚,𝑛, the detour domination number satisfies: 
𝛾𝐷(𝐾𝑚,𝑛) = min(𝑚, 𝑛) 
• Proof: In a complete bipartite graph, vertices in one part are only connected to vertices in the 
other part. The minimum size of a detour dominating set occurs when all vertices in the smaller set are 
included, as each vertex in the larger set can be dominated by at least one vertex in the smaller set through 
a detour path. 
• Example: For 𝐾3,5, the detour domination number is 𝛾𝐷(𝐾3,5) = 3, since selecting all 3 vertices 
from the smaller set guarantees domination of all vertices in the larger set via detour paths. 
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DEFINITION 3.12: Detour Domination Path Length 
The detour domination path length is the length of the shortest detour path between a vertex and its 
dominating set. This length is an important metric to evaluate the effectiveness of the detour domination 
strategy. 
• Example: In a graph where the shortest detour from vertex 𝑢 to a dominating vertex 𝑣 
is a path of length 2, the detour domination path length is 2 . 
 
THEOREM 3.13: Detour Domination Number and Vertex Connectivity 
In any connected graph 𝐺, the detour domination number 𝛾𝐷(𝐺) is related to the vertex connectivity 𝜅(𝐺) 
by the inequality: 
𝛾𝐷(𝐺) ≥ 𝜅(𝐺) 
• Proof: Vertex connectivity measures the minimum number of vertices whose removal disconnects 
the graph. For detour domination, at least 𝜅(𝐺) vertices are required to ensure all other vertices are 
dominated by detour paths. 
• Example: In a graph with vertex connectivity 𝜅(𝐺) = 2, the detour domination number must also 
be at least 2 , ensuring that enough vertices are included in the dominating set for detour paths to cover 
the graph. 
 
DEFINITION 3.14: Detour Domination Number ( 𝒚𝐱(𝐆) ) 
The detour domination number 𝛾𝐷(𝐺) of a graph 𝐺 is the minimum number of vertices required to 
dominate the entire graph, such that every vertex not in the dominating set is connected to at least one 
vertex in the set through a detour path. A detour path between two vertices 𝑢 and 𝑣 is a path that does not 
use the direct edge 𝑢𝑣, if it exists. 
• Example: Consider a graph 𝐺 with vertices {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} and edges 𝐴 − 𝐵, 𝐵 = 𝐶, 𝐶 − 
𝐷, 𝐷 − 𝐸. Suppose 𝐷 = {𝐵, 𝐷} is a dominating set. Here, vertex 𝐴 is dominated by 𝐵, vertex 𝐶 is dominated 
by 𝐵 (through the detour 𝐵 → 𝐴 → 𝐶 ), vertex 𝐸 is dominated by 𝐷 (through the detour 𝐷 → 𝐶 → 𝐸 
), and so on. The detour domination number 
𝛾𝐷(𝐺) = 2 since only 2 vertices 𝐵 and 𝐷 are required to dominate the entire graph via detours. 
 
DEFINITION 3.15: Detour Path for indirectly connected networks 
A detour path between two vertices 𝑢 and 𝑣 in a graph is a simple path that connects 𝑢 to 𝑣, but does 
not include the direct edge 𝑢𝑣, if such an edge exists. Detour paths are used in detour domination to 
establish connectivity between vertices that are not directly adjacent. 
• Example: In a graph with vertices 𝐴, 𝐵, 𝐶, 𝐷, and edges 𝐴 − 𝐵, 𝐵 − 𝐶, 𝐶 − 𝐷, the direct path 
between 𝐴 and 𝐶 is 𝐴 → 𝐵 → 𝐶. A detour path from 𝐴 to 𝐶 could involve the path 
𝐴 → 𝐵 → 𝐷 → 𝐶, avoiding the direct edge between 𝐴 and 𝐶. This detour path demonstrates how vertices 
can still be connected indirectly to each other through detours. 
 
DEFINITION 3.16: Detour Domination Set for indirectly connected networking graphs 
A detour domination set 𝐷 of a graph 𝐺 is a subset of vertices such that every vertex 𝑣&𝐷 is connected to 
at least one vertex in 𝐷 by a detour path. This set 𝐷 ensures that all vertices in the graph are dominated, 
and the domination occurs exclusively through detour paths. 
• Example: Consider a graph 𝐺 with vertices 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 and edges 𝐴 − 𝐵, 𝐵 − 𝐶, 𝐶 − 
𝐷, 𝐷 − 𝐸, 𝐸 − 𝐹. If 𝐷 = {𝐵, 𝐷, 𝐹}, then the vertices 𝐴, 𝐶, 𝐸 are dominated by 𝐵, 𝐷, 𝐹 
through detours: 
• Vertex 𝐴 is dominated by 𝐵 (through the detour 𝐵 → 𝐴 ). 
• Vertex 𝐶 is dominated by 𝐵 (through the detour 𝐵 → 𝐴 → 𝐶 ). 
• Vertex 𝐸 is dominated by 𝐷 (through the detour 𝐷 → 𝐶 → 𝐸 ). 
• Vertex 𝐹 is trivially dominated by itself. 
The detour domination set is 𝐷 = {𝐵, 𝐷 ↓}, and this set dominates the entire graph. 
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DEFINITION 3.17: Detour Domination Path Length for indirectly connected networking graphs 
The detour domination path length refers to the length (in terms of the number of edges) of the shortest 
detour path between a vertex and the set of vertices that dominate it. The length of a detour path is an 
important metric when considering the efficiency of the domination process. 
• Example: In the graph with vertices 𝐴, 𝐵, 𝐶, 𝐷 and edges 𝐴 − 𝐵, 𝐵 − 𝐶, 𝐶 − 𝐷, if 𝐷 = 
{𝐵, 𝐷} is the detour domination set, the detour path from vertex 𝐴 to vertex 𝐵 is 1 (directly adjacent). 
However, the detour path from vertex 𝐶 to vertex 𝐷 is 2 , as it must follow the path 𝐶 → 𝐵 → 𝐷. Thus, 
the detour domination path length varies across the graph, and the maximum length is an important 
factor to evaluate the efficiency of the detour domination strategy. 
 
DEFINITION 3.18: Detour Domination of Complete Graphs 
The detour domination number of a complete graph 𝐾𝑛 is the minimum number of vertices required to 
dominate the entire graph via detour paths. Since every pair of distinct vertices in a complete graph is 
directly connected by an edge, detour domination requires selecting vertices that dominate all others by 
paths that avoid direct edges. 
• Example: Consider the complete graph 𝐾4 with vertices 𝐴, 𝐵, 𝐶, 𝐷 and edges 𝐴 − 
𝐵, 𝐴 − 𝐶, 𝐴 − 𝐷, 𝐵 − 𝐶, 𝐵 − 𝐷, 𝐶 − 𝐷. In this case, the detour domination number is 3 
. The set {𝐴, 𝐵, 𝐶} forms a detour domination set because each vertex not in the set is dominated by at 
least one of the selected vertices through a detour path: 
• Vertex 𝐷 is dominated by 𝐴 through the detour path 𝐴 → 𝐶 → 𝐷. 
• Vertices 𝐴, 𝐵, 𝐶 are trivially dominated by themselves. Thus, the detour domination number 
𝛾𝐷(𝐾4) = 3. 
 
4. CONCLUSION 
This paper discusses a new approach to cyber threat analysis using Graph Neural Networks, in conjunction 
with a Self-Adaptive Deep Neural Network and optimized by Gray Bee Optimization. The suggested 
framework effectively models the intricate relationships in a network that will allow for dynamic and 
adaptive detection of cyber threats. Combining GNNs with a self-optimizing deep learning model means 
the system adjusts in real time with evolving attack patterns for robust and efficient threat detection. The 
integration of GBO strengthens the model performance by tuning the SADNN parameters, enhancing the 
detection accuracy while saving on computational overhead. These results show how this technique 
outperforms static models, offering a more adaptive and resilient approach to counter cybersecurity threats. 
Graph structure-based detection also identifies potential hidden or complex threats not identified by 
standard methods. Moreover, the theory of detour domination within graph theory provides insights into 
optimizing the network model, especially complex topologies. This paper emphasizes that dynamic self-
optimizing mechanisms and nature-inspired optimization algorithms must be integrated to build more 
powerful cybersecurity systems. Further enhancement of this proposed model would be real-time data 
source in addition to including the range of cyber-attack types to which this model is to be further applied. 
Adaptability as well as optimization methods analyzed here can act as building blocks toward advanced 
intelligent frameworks of cybersecurity with self-learning abilities, and it also has the capacity to change in 
accordance with changing cyber-attack landscape. 
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