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ABSTRACT 
In agriculture, one of the most challenging tasks is predicting crop yield based on different factors, including weather, 
soil, and crop parameters. To solve this issue, many Deep Learning (DL) models have been developed in the past 
decades. Among them, the DL-based Multi-Modal Crop Yield prediction Network (DeepMMCropYNet) model takes 
into account time-series weather, crop, and soil data along with the soil images of specific regions to predict crop yield. 
This model was built by integrating the Long Short-Term Memory (LSTM)-Temporal Convolutional Networks (TCN) 
and multi-dimensional Convolutional Neural Networks (CNNs), that support both spatial and temporal feature 
extraction. However, overlapping data from multiple crops, which can occur in feature space, temporal, and spatial 
dimensions, limits its performance. These overlaps make it difficult to learn unique patterns for each crop, resulting 
in inaccurate predictions. Therefore, this article develops the Deep Multi-Modal Reinforcement Learning-based 
CropYNet (DeepMMRLCropYNet) model by integrating the DeepMMCropYNet with the deep Q-learning (DQL) 
for crop yield estimation. Initially, the actual output values of the DeepMMCropYNet are mapped into the Q values. 
After that, the parametric features are integrated with the threshold by the Q-learning agent to forecast crop yield. 
The agent obtains a consolidated score for its activities by reducing error and enhancing its ability to predict with the 
best rewarding iterations. Moreover, the total incentives dictate the agents' capacity for learning. Extensive experiments 
reveal that the DeepMMRLCropYNet achieves a higher efficiency for predicting different crop yields compared to the 
existing models in terms of Cohen’s Kappa, Mean Square Error (MSE), Mean Squared Logarithmic Error (MSLE), 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (R). 
Keywords: Crop yield prediction, DeepMMCropYNet, Reinforcement learning, Deep Q-learning, Rewards 
 
1. INTRODUCTION 
Food productivity must increase faster so that they can stay up with the growing population. The 
worldwide population is expected to reach 9.3 billion by 2050, requiring food productivity to increase by 
70-100% to encountersupply and demand [1]. Rising temperatures and erratic rainfall pose a threat to 
crop productivity. Agriculture has become a very susceptible sector due to unstable climate patterns, 
prompting experts to anticipate yield to plan suitable policy responses [2]. On the contrary, crop yield 
prediction is challenging since it involves both farmer choices or actions as well as climate and weather 
elements. Crop yield changes regionally, exhibiting unexpected patterns. Crop simulation [3] and data-
driven models [4] are commonly used tools for estimating the impact of different factors influencing crop 
production. Crop simulation models are highly effective at predicting yields because they incorporate 
empirical information relevant to each site, geographical measurement, and measurements at the plot 
level. However, they tend to be expensive, take a long time to create, and are only suitable for specific 
crops. Also, these on-siteoutcomes confront hurdles once applied to the plot since farmer conduct, 
cropping patterns, and land features vary [5]. Furthermore, adjusting models for crop simulations 
necessitates substantial amounts of data derived from multiple experiments. Instead, to overcome the 
above issues, data-driven methods are used to forecast crop yield. Previous research suggests that data-
driven models are more adaptable to agricultural development than crop development methods because 
of their ease of installation and superior efficiency [6]. Data-driven techniques forecast crop yield 
sensitivity to climatic parameters determined by past data on the rate of change in yields. A simple way to 
classify these models is as either linear or nonlinear. 
Linear methods highlight the use of parameters-based statistical techniques to evaluate the effects of 
climate change on agricultural crop yields [7].In practice, the statistical method predicts the worldwide, 
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national, and local impacts by analyzing historical data. Because the correlation between weather and crop 
yields changes over time, the fact that these models only produce one estimated association parameter for 
the entire study period is undesirable. Furthermore, the estimations from statistical methods may be 
unfair, resulting in decreased predictive accuracy. Alternatively, nonlinear models, such as Machine 
Learning (ML) models, handle the complex connection between weather conditions and crop yields by 
mathematically expanding the objective function [8]. The popular ML technique is the Artificial Neural 
Network (ANN), that has a nonparametric structure [9].In contrast, the predictive accuracy of this method 
was poor for extensive datasets. This technique necessitates distinct and autonomous algorithms for 
feature extraction and prediction tasks, resulting in longer computation time. The absence of values in 
the dataset can adversely affect the training of these algorithms, resulting in unreliable predictions. 
DLtechniquesare utilized for crop yield estimation in recent years [10] to resolve the limitations in ML 
techniques. Several studies employed Deep Neural Network (DNN) and CNNmethods to estimate 
various agricultural yields based on characteristics such as soil, weather, and yield data. These models can 
integrate feature learning and prediction tasks into a singular framework. In this context, 1-Dimensional 
CNNs (1DCNN) were utilized to elucidate more intricate correlations between yield and other variables, 
hence augmenting the discriminability of diverse aspects [11]. However, this model proved unfit to 
manage time-series crop yield data due to its inability to capture substantial temporal correlations among 
numerous components over time. This is primarily important for comprehending long-term 
environmental (i.e., meteorological) patterns to forecast agricultural yields.  
So, a novel DeepCropYNet model was created with a tailored dataset that includes historical data on 
weather, soil, and crop yields [12]. This model hierarchically integrated the LSTM and TCN. The initial 
stage involved normalizing the time series of historical yield and atmospheric data. Subsequently, the data 
were input into the LSTM network to acquire temporal dependencies. The TCN was designed to 
implement a hierarchy of temporal convolutions on the input data, thereby capturing information at 
several time scales. The feature vectors generated by the TCN were transmitted to the FC layer to forecast 
crop yields after designated intervals. This model has difficulties in extracting appropriate characteristics 
from intricate data sources that include multimodal inputs like time series and image data. 
To solve this problem, the DeepMMCropYNet model has been developed for predicting crop yields, 
utilizing both time series and image data for crop yields [13]. This model involved two components: (i) 
LSTM-TCN for time-series data and (ii) multidimensional CNN for soil image data. This 
multidimensional CNN model has static and temporal feature extraction modules. The static module 
uses 18 simultaneous 1DCNNs to learn static features from soil images, whereas the temporal module 
utilizes 16 concurrent 2D-CNNs to extract temporal information from soil images. The lateral connection 
fuses the outputs of these modules. Additionally, each branch employs an attention mechanism to allocate 
feature weights and identify significant information for precise prediction. The extracted features from 
each branch are fused and passed to the Fully Connected (FC) layer with a softmax to estimate the final 
crop yield. 
However, its ability was failed when dealing with overlapped data of multiple crops.Overlap can occur in 
various cases, including feature space, temporal, and spatial dimensions. Feature space overlap happens 
when input features for different crops share similar values. Temporal overlap arises when time-series data 
for multiple crops have overlapping periods with similar patterns. Spatial overlap occurs when crops in 
neighboring regions share environmental and agricultural conditions. These overlaps make it challenging 
for the model to learn distinct patterns for each crop, resulting in inaccurate predictions. 
1.1 Main Contributions 
This article proposes the DeepMMRLCropYNet model by integrating the DeepMMCropYNet with the 
Q-learning technique for crop yield estimation. This research integrates reinforcement learning and DL 
to create an effective crop yield estimation method that maps raw data to estimate values.This model 
applies DQL to construct a crop yield estimation setting, taking into account the input features. A linear 
layer initially converts the DeepMMCropYNet's real output values into Q values. The Q-learning agent 
then uses the threshold in conjunction with parametric features to forecast the yield.  By maximizing 
accurate predictions and reducing error with the best rewarding iterations, the agent earns a unified score 
for the activities accomplished.  More importantly, the sum of all incentives dictates how well the agents 
learn. As a result, the agents and the model experience inconsistent input as they adjust their efficiency.  
Consequently, this method of learning compels the agent to become more effective by revealing the 
profound differences in crop yields. 
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The following segments are organized as: Section 2 discusses similar works. Section 3 describesthe 
DeepMMRLCropYNet for crop yield prediction, and Section 4 demonstrates its performance. Section 5 
concludes the study. 
 
2. LITERATURE SURVEY 
Sivanantham et al. [14] developed a new Quantile Regressive Empirical correlative Functioned Deep Feed-
Forward Multilayer Perceptron Classification (QRECF-DFFMPC) model for crop yield estimation. The 
input layer used apractical orthogonal function for identifying pertinent attributes. Then, quantile 
regression was employed in the hidden layer to generate the regression value for each data point. 
Moreover, these values were sent to the output layer to forecast crop yield. However, this model cannot 
fit time-series data since it fails to extract temporal correlations among the yield data.Abbaszadeh et al. 
[15] presented a model based on the Bayesian Model Averaging (BMA) and a collection of copula 
functions for combining the results of several DNNs (3D-CNN, ConvLSTM, etc.) for soybean crop yield 
prediction. However, it cannot handle overlapping data in multiple crops. 
Qiao et al. [16] suggested a Knowledge-guided Spatial-Temporal Attention Graph Network (KSTAGE) 
for crop yield prediction. First, they used a 3D-CNN to incorporate the first spectral characteristics. Then, 
a Knowledge-guided Temporal Multi-head Attention Algorithm (KTMA) was utilizedto create temporal 
attention weights using self-attention strategy. Also, a new strategy was applied to align self-attention scores 
by prior distribution. Furthermore, a location-aware spatial attention graph network using geospatial 
knowledge was introduced to combine the spatial neighborhood attributesto predict final yield. However, 
it fails to consider uncertainty when interpreting ambiguous inputs. 
Abdel-salam et al. [17] developed a new model by unifying a fusion feature selection method and an 
improved SVR for predicting crop yields. They first applied data normalization and then used K-means 
clustering with the correlation-based filter to create a dimension-condensed dataset. Then, a fusion FMIG-
RFE method was adopted for selecting attributes. Moreover, an Improved Crayfish Optimization 
Algorithm (ICOA) was used to fine-tune the hyperparameters of the SVR method for predicting crop 
yields. However, R2 was low due to a lack of crop yield data. 
Saravanan et al. [18] presented a hybrid DL model based on the Spatio-Temporal Attention-based CNN 
(STACNN)and BiLSTM to extract features from the crop yield dataset and predict the crop yield in Indian 
states. However, MAE and RMSE remained high.Krishna et al. [19] developed theMayFly Algorithm 
empowered attention-BiLSTM (MFA-BiLSTM) model using agricultural crop yield dataset to predict rice, 
sugarcane, wheat, and maize yields. However, RMSE was high.Punitha&Geetha [20] developed a Gorilla 
Troops Optimization with DL-based Crop Recommendation and Yield Prediction Model (GTODL-
CRYPM). Initially, the LSTM network was used to recommend suitable crops, whereas to choose the best 
LSTM parameters, the GTO is used.  Next, in order to make an accurate prediction of crop yield, the 
Deep Belief Network (DBN) was performed. Conversely, MAE and RMSE were high. 
2.1 Research Gap 
From the literature, it can be inferred that earlier models fail to address uncertainties and lack robustness 
in handling large-scale datasets with ambiguous or noisy inputs. To resolve this issue, this study develops 
a new DL model incorporated on top of the deep reinforcement learning algorithm for crop yield 
estimation with a minimum prediction error while effectively managing data overlaps and uncertainties. 
 
3. PROPOSED METHODOLOGY 
This section provides an explanation of the DeepMMRLCropYNet model for crop production 
prediction. Fig. 1 provides a visual representation of this study. First, a dataset of agricultural crop yield 
is obtained, which includes soil photos and time-series sequential data about soil, weather, and yield for 
different crops. The dataset is then pre-processed to eliminate outliers and missing values. The dataset is 
fed into the DeepMMRLCropYNet model to forecast yield. The model's performance is assessed using 
the estimated values. 
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Figure 1. Pipeline of the Proposed Study 
3.1 Data Pre-processing 
To effectively train the DeepMMCropYNet model for crop yield prediction, data preparation is an 
essential step. To deal with missing values and guarantee consistency across all features (such as crop yield, 
soil, and weather data), a normalization method based on min-max scaling is used to transform the data 
into a particular range between 0 and 1. It is represented as follows: 

x̂t
i =

xt
i−xmin

i

xmax
i −xmin

i        (1) 

In Eq. (1), xt
i is the ith feature at time t, xmax

i  and xmin
i  are the maximum and minimum values of the 

corresponding feature.The pre-processed time-series crop yield dataset has been generated from this 
approach. Subsequently, both the soil image dataset and the time-series crop yield dataset are divided into 
training and testing subsets. The training dataset is utilized to construct the predictive model with the Q-
learning technique. Following model development, the capability of the model to forecast crop yields is 
assessed with testing set. 
 
3.2 Design of DeepMMRLCropYNet Model 
This study uses supervised learning to solve a regression problem that represents crop yield forecasts. In 
order to determine the crop yield in the specific region, this supervised learning-based approach for 
forecasting crop yields requires appropriate crop yield data and related variables as inputs.The total 
rewards in Q-learning algorithm determine the learning efficacy of the agents. Together with the 
supervised learning techniques, it results in unstable feedback that allows the agents to modify their 
performance. The agents won't be able to determine which samples weren't learned efficiently because 
they can't access that information from the inputs.By demonstrating the significant variations in crop 
yield, this component compels the agent to be more effective. 
Based on the input data, a yield prediction environment is formed that changes the supervised learning 
into a DQLprocedure. A yield forecasting game can be used to find out the environment.A set of samples 
is included in each game, along with specific parameter-based feature groupings and thresholds related to 
the crop yield. The agent performs the behaviors to obtain the rewards when it first begins playing, hence 
determining the crop yield values. For each adjacent anticipated value of the target, the agent is rewarded 
positively if it succeeds, and negatively if it fails. The agent's overall performance will be evaluated once 
the entire process is finished.Figure 2 displays a flow diagram of the yield prediction process based on this 
DeepMMRLCropYNet model using DQL algorithm. 
It is challenging to differentiate and assess the crop output prediction since real reinforcement learning 
methods, such Q-learning, have a restricted ability to describe the states.  A DeepMMCropYNet is 
employed for predicting agricultural productionusing crop yield, weather, and soil data, taking inspiration 
from the Deep Q Network (DQN) principle of analyzing vast amounts of data. 
The DeepMMCropYNet model is used to frame the DQN agent in this study. To convert the 
DeepMMCropYNet model's output to Q-values, a linear layer is included to the model's parameters once 
they have been configured utilizing the weights saved in the pre-training method. The structure of the 
DeepMMCropYNet model is presented in [13].All training samples endure a pre-training process before 
the DQL training process begins. Then, the input layers of DeepMMCropYNet build final Q-values are 
produced by the FC layer, which is responsible for the agent's yield estimation vision. 
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Figure 2. Flow Diagram of Crop Yield Estimation Using DeepMMRLCropYNet Model 
The DQLtechnique processes a vast amount of state and action space during its training, that could 
potentially disrupt stability as a result of correlations in the data. To guarantee that the DQL algorithm's 
training process does not diverge, two modifications are performed to the Q-Learning in the DQN's 
training procedure. The first is experience replay, where the agent's experience is stored in replay memory 
(D) using the current and following timestamps' states, actions, and rewards. 
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Assume that the experience replay first records the agent’s experience at every time step t, producing a 
group of distinct experience sets. An individual experience et at a time t is defined as et = (st, at, rt, st+1) 
and the memory at t is described as Dt = {e1, … , et}.  
To help agents learn from their own mistakes, experience replay is a great tool for eliminating parameter 
divergence.  Two, throughout the Q-learning update process, a different network is used to generate the 
targets.These changes can significantly increase the stability of DQL. Also, It should be mentioned that 
Q-learning technique usually use a Bellman equation to iteratively update the action-value function. The 
DeepMMCropYNet function approximator with weight θcalculating the action-value function using this 
method is cumbersome in practice, thus it is utilized instead. Consequently, the DQN is constructed by 
modifying the parameters θi in the ith iteration in order to decrease the MSE in the Bellman equation. 
There are two phase in the training process. Pre-training of the DeepMMCropYNet is the initial phase, 
and training the DQN agent is the second. The agent uses an ε-greedy policy to choose and carry out an 
action. With a probability of ε, the action is selected at random in this example, while the action 
representing the largest q value is selected with a probability of 1 − ε.This study uses the stochastic 
gradient descent as its optimization technique, which iteratively adjusts the network weightsby the 
training information.Algorithm 1 presents the entire pseudocode for training theDeepMMRLCropYNet 
model. 
Algorithm 1: Training DeepMMCropYNet model based DQN 

1. Begin 
2. Pre-training of the DeepMMCropYNet 

a. Set the replay memory capacity as N; 
b. Set the DeepMMCropYNet with θi; 
c. 𝐟𝐨𝐫(i = 1, I) 
d. Train the ith layer in the DeepMMCropYNet; 
e.    Save the parameters of the ith layer; 
f. 𝐞𝐧𝐝 𝐟𝐨𝐫 
g. Put the hidden layer parameters into action-value network Q as an initialization 

parameter, excluding the input and output layers;  
h. Set the parameters of the target action-value function Q′ to match those of Q. 

3. DQN agent training 
a. 𝐟𝐨𝐫(event = 1, M) 
b. Randomly output the projected yield to create s1; 
c. 𝐟𝐨𝐫(t = 1, T) 
d.       Choose a random action at with probability ε; 
e. Executeat and get the reward rt; 
f.       Randomly produce the subsequent state st+1; 
g. ProtectD as (st, at, rt, st+1); 

h. Execute gradient descent on (rt − Q(st, at; θ))
2
according to θ; 

i.       Reset Q′ = Q; 
j. 𝐞𝐧𝐝 𝐟𝐨𝐫 
k. 𝐞𝐧𝐝 𝐟𝐨𝐫 

4. End 
 

4. EXPERIMENTAL RESULTS 
This section evaluates the efficiency of the DeepMMRLCropYNet model with existing models, such as 
1DCNN [11], DeepCropYNet [12], DeepMMCropYNet [13], and KSTAGE [16], GTODL-CRYPM [20].  
4.1 Simulation Environment 
The crop yield prediction models were implemented in MATLAB 2019b. The experiments were 
conducted on a system with an Intel® Core™ i5-4210 CPU @ 3GHz, 4GB RAM, and a 1TB HDD 
running on Windows 10 64-bit. The parameter settings for training different models are given in Table 
1. 
 
Table 1. Parameter Settings 

Parameters Range 
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1DCNN [11], DeepCropYNet [12], DeepMMCropYNet [13], KSTAGE [16], GTODL-CRYPM [20], 
and Proposed DeepMMRLCropYNet 
Learning rate 0.001 
Batch size 64 
No. of epochs 100 
Optimizer Stochastic gradient descent 
Dropout 0.5 

4.2 Dataset Description 
This study primarily focuses on estimating yield values for five primary crops in Tamil Nadu: groundnut, 
maize, moong, rice, and Urad. These agricultural yield datasets were created utilizing numerous sources. 
A publicly available website [21] was used to generate a custom agricultural crop yield dataset. This dataset 
comprises weather, yield, and soil data for the crops studied from 2016 to 2022. In addition, a Kaggle 
dataset [22] was used, which contains crop names, years, harvesting periods, states, farming regions, 
production amounts, yearly rainfall, fertilizer and pesticide use, and intended yields. Additionally, this 
study provides a soil image dataset. To build this dataset, the https://data.gov.in/ website was utilized to 
determine soil types in specific regions using geographical and agricultural datasets. The crop yield 
forecast was then supported by comparable soil photos obtained from Kaggle datasets. 
Consequently, 1012 samples are included in the time-series dataset and soil picture collected for every 
crop. Taking this into account, the dataset is split into 80:20 for training and testing. 
4.3 Evaluation Metrics 
Cohen’s Kappa: A statistical metric that assesses inter-rated consent for categorized results, while 
accounting for chance agreement. 
MAE: It is the mean absolute dissimilarity between estimated and observed values. 

MAE =
1

n
∑ |yi − ŷi|

n
i=1       (3) 

In Eq. (3), n denotes total observations, yi and ŷi denote the observed and estimated values of ith data, 
respectively. 
MSE: It measures the mean squared dissimilarity between estimated and observed values using Eq. (4). 

MSE =
1

n
∑ (yi − ŷi)

2n
i=1       (4) 

MSLE:A metric that quantifies the squared logarithmic disparity between anticipated and actual results, 
imposing greater penalties on underestimations compared to overestimations. 
RMSE: It is the square root of the MSE, provided that a mean magnitude of losses in Eq. (5). 

RMSE = √
1

n
∑ (yi − ŷi)

2n
i=1       (5) 

Correlation coefficient (R): It is used to assess the degree of association between predicted crop yields 
and actual crop yields. 

R = √1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅i)2n
i=1

       (6) 

In Eq. (6), y̅i is the average of the actual crop yield values. 

 
(a) 
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(b) 

 
(c) 

 
(d) 
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(e) 
Figure. 3 Evaluation of suggested and existing models for crop yield prediction (in tons) from 2016 to 
2024. (a) groundnut, (b) maize, (c) moong, (d) rice, and (e) urad 
Figure 3 shows the time series comparisons of the DeepMMRLCropYNet model with existing methods 
for crop yield estimation. The analysis reveals that the DeepMMRLCropYNet technique closely aligns 
with the actual crop yield data, indicating its superior efficiency in predicting various crop yields. 
Table 1. Comparison of Different Models for Different Crop Yield Prediction 

Groundnut Crop 
Models Cohen’s 

Kappa 
MAE MSE MSLE RMSE R Accuracy Precision Recall F-M 

1D-CNN 0.92 0.081 0.0728 0.0082 0.2705 0.8329 80.14 79.65 80.13 79.85 
KSTAGE 0.9347 0.072 0.0644 0.0077 0.2548 0.8457 83.58 82.65 83.25 82.69 
GTODL-CRYPM 0.9477 0.065 0.0582 0.0068 0.2369 0.8520 85.15 85.47 85.03 85.35 
DeepCropYNet 0.9576 0.0513 0.0469 0.0064 0.2166 0.8617 88.38 88.26 89.24 88.35 
DeepMMCropYN
et 

0.971 0.049 0.043 0.0052 0.2024 0.8835 91.41 91.11 91.25 91.13 

DeepMMRLCrop
YNet 

0.9891 0.038 0.03 0.0049 0.1911 0.9254 93.09 92.35 92.94 92.63 

Maize Crop 
Models Cohen’s 

Kappa 
MAE MSE MSLE RMSE R Accuracy 

(%) 
Precision(
%) 

Recall 
(%) 

F-M 
(%) 

1D-CNN 0.912 0.0904 0.1 0.0084 0.3151 0.8155 79.55 77.15 79.55 78.35 
KSTAGE 0.9258 0.0832 0.0911 0.0076 0.301 0.8268 85.47 82.39 84.17 82.64 
GTODL-CRYPM 0.9314 0.0741 0.0807 0.0068 0.2843 0.8314 88.12 88.14 86.62 87.75 
DeepCropYNet 0.9421 0.0586 0.0719 0.0065 0.2681 0.8459 90.12 92.21 89.55 90.55 
DeepMMCropYN
et 

0.963 0.0525 0.0683 0.0051 0.2576 0.8532 91.65 93.76 91.84 92.35 

DeepMMRLCrop
YNet 

0.987 0.047 0.055 0.0035 0.2354 0.8625 93.49 95.18 92.36 93.79 

Moong Crop 
Models Cohen’s 

Kappa 
MAE MSE MSLE RMSE R Accuracy 

(%) 
Precision(
%) 

Recall 
(%) 

F-M 
(%) 

1D-CNN 0.8902 0.0921 0.0865 0.0079 0.2911 0.8364 77.12 75.53 80.12 77.75 
KSTAGE 0.9358 0.086 0.0807 0.0068 0.2743 0.8444 80.58 80.48 83.47 80.35 
GTODL-CRYPM 0.9547 0.075 0.071 0.0055 0.2515 0.8563 83.63 82.48 85.39 83.55 
DeepCropYNet 0.962 0.0612 0.06 0.0048 0.2449 0.8644 86.24 85.54 88.78 86.52 
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DeepMMCropYN
et 

0.9621 0.0577 0.049 0.0035 0.2381 0.8712 88.52 87.88 88.45 87.75 

DeepMMRLCrop
YNet 

0.977 0.05 0.04 0.0021 0.227 0.8827 90.15 89.75 90.01 89.85 

Rice Crop 
Models Cohen’s 

Kappa 
MAE MSE MSLE RMSE R Accuracy 

(%) 
Precision(
%) 

Recall 
(%) 

F-M 
(%) 

1D-CNN 0.8751 0.0894 0.089 0.0087 0.2956 0.8281 77.45 74.49 81.54 77.71 
KSTAGE 0.8799 0.0826 0.08 0.0081 0.2748 0.8318 80.47 76.54 83.25 80.12 
GTODL-CRYPM 0.8852 0.073 0.0676 0.0074 0.2527 0.8547 82.14 78.48 85.56 83.09 
DeepCropYNet 0.8948 0.0576 0.0552 0.0062 0.2349 0.8653 84.68 82.25 88.42 85.54 
DeepMMCropYN
et 

0.9516 0.054 0.051 0.0056 0.2296 0.8681 86.21 85.75 89.25 87.35 

DeepMMRLCrop
YNet 

0.9936 0.048 0.043 0.0047 0.221 0.8818 89.07 87.47 90.32 88.85 

Urad Crop 
Models Cohen’s 

Kappa 
MAE MSE MSLE RMSE R Accuracy(

%) 
Precision(
%) 

Recall 
(%) 

F-M    
(%) 

1D-CNN 0.8698 0.1006 0.0998 0.0079 0.3172 0.8273 74.75 73.54 76.55 74.75 
KSTAGE 0.8745 0.094 0.09 0.0074 0.2948 0.8347 78.15 75.25 79.57 78.43 
GTODL-CRYPM 0.8802 0.083 0.081 0.0070 0.2755 0.8424 80.39 78.38 83.14 80.35 
DeepCropYNet 0.8916 0.0741 0.0709 0.0068 0.2663 0.8587 82.54 80.45 85.54 82.55 

DeepMMCropYN
et 

0.9064 0.07 0.065 0.0060 0.2552 0.862 85.12 82.36 87.89 84.65 

DeepMMRLCrop
YNet 

0.9332 0.06 0.052 0.0055 0.2351 0.876 87.56 85.42 89.21 87.25 

 
Figure. 4 Performance analysis of different yield prediction models for groundnut yield prediction 
Figure 4 illustrates a performance comparison of the suggested with conventional DL methods using 
groundnut yield information. The MAE of DeepMMRLCropYNet is 53.1%, 47.2%, 41.5%, 25.9%, and 
22.5% lower than 1D-CNN, KSTAGE, GTODL-CRYPM, DeepCropYNet, and DeepMMCropYNet, 
respectively. Similarly, it reduces the MSE by 58.8%, 53.4%, 48.5%, 36%, and 30.2% in comparison to 
the same models. In terms of RMSE, DeepMMRLCropYNet achieves a reduction of 29.4%, 24.7%, 
19.8%, 11.8%, and 5.6%, respectively. Moreover, the correlation coefficient (R) is enhanced by 8.1%, 
7%, 5.6%, 4.4%, and 1.9% compared to 1D-CNN, KSTAGE, GTODL-CRYPM, DeepCropYNet, and 
DeepMMCropYNet, respectively. These results demonstrate the superior predictive accuracy and 
robustness of DeepMMRLCropYNet over the existing methods. 
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Figure. 5 Prediction efficiency of different yield prediction models for groundnut yield prediction 
Figure 5 presents the classification performance comparison of the proposed DeepMMRLCropYNet 
model with other deep learning models using groundnut yield data. The accuracy of 
DeepMMRLCropYNet reaches 93.09%, which is 16.8%, 9.8%, 7.1%, 4.7%, and 1.8% higher than the 
existing models, respectively. In terms of precision, DeepMMRLCropYNet outperforms the above models 
by 15.9%, 10.5%, 6.8%, 4.6%, and 1.4%, respectively. The recall is also significantly improved, showing 
increases of 15.9%, 10.3%, 7.8%, 4.1%, and 1.5% compared to the same models. Furthermore, the F-
measure of DeepMMRLCropYNet is 16%, 9.9%, 7.6%, 4.8%, and 1.6% higher than that of other 
models, respectively. These results confirm the superior classification capability and generalization 
strength of the proposed DeepMMRLCropYNet model. 

 
Figure. 6 Performance analysis of different yield prediction models for maize yield prediction 
In Figure 6, a performance comparison of the suggested with conventional DL methods using maize yield 
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other 
model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior 
performance over in maize yield prediction. 

75

77

79

81

83

85

87

89

91

93

95

Accuracy Precision Recall F-Measure

R
a
n

g
e 

(%
)

1DCNN

KSTAGE

GTODL-CRYPM

DeepCropYNet

DeepMMCropYNet

DeepMMRLCropYNet

0

0.2

0.4

0.6

0.8

1

1.2

Cohen’s 

Kappa

MAE MSE MSLE RMSE R

R
a
n

g
e

1D-CNN

KSTAGE

GTODL-CRYPM

DeepCropYNet

DeepMMCropYNet

DeepMMRLCropYNe

t



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 19s, 2025 
https://theaspd.com/index.php 

1592 

 

 
Figure. 7 Prediction efficiency of different yield prediction models for maize yield prediction 
In Figure 7, a performance comparison of the suggested with conventional DL methods using maize yield 
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other 
model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance over in 
maize yield prediction. 

 
Figure. 8 Performance analysis of different yield prediction models for moong yield prediction 
In Figure 8, a performance comparison of the suggested with conventional DL methods using moong 
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every 
other model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior 
performance over in moong yield prediction. 

 
Figure. 9 Prediction efficiency of different yield prediction models for moong yield prediction 
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In Figure 9, a performance comparison of the suggested with conventional DL methods using moong 
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every 
other model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance 
over in moong yield prediction. 

 
Figure. 10 Performance analysis of different yield prediction models for rice yield prediction 

In Figure 10, a performance comparison of the suggested with conventional DL methods using rice yield 
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other 
model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior 
performance over in rice yield prediction. 

 
Figure. 11 Prediction efficiency of different yield prediction models for rice yield prediction 
In Figure 11, a performance comparison of the suggested with conventional DL methods using rice yield 
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other 
model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance over in 
rice yield prediction. 

 
Figure. 12 Performance analysis of different yield prediction models for urad yield prediction 
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A performance comparison of the suggested with conventional DL methods using uradyield data is 
illustrated in Figure 12. It is observed that the proposed DeepMMRLCropYNet model outperforms every 
other model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior 
performance over in urad yield prediction. 

 
Figure. 13 Prediction efficiency of different yield prediction models for Urad yield prediction 
In Figure 13, a performance comparison of the suggested with conventional DL methods using Urad 
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every 
other model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance 
over in Urad yield prediction. 
Tests showed that the DeepMMRLCropYNet is better at predicting groundnut yield than other models, 
with a Cohen’s Kappa of 0.9891, 0.038 MAE, 0.03 MSE, 0.0049 MSLE, 0.1911 RMSE, and a R of 
0.9254.. It has a Cohen’s Kappa of 0.987, 0.047 MAE, 0.055 MSE, 0.0035 MSLE, 0.2354 RMSE, and 
0.8625 R for predicting maize yield. For moong yield prediction, the model achieved a Cohen’s Kappa of 
0.977, 0.05 MAE, 0.04 MSE, 0.0021 MSLE, 0.227 RMSE, and a R of 0.8827. In predicting rice yield, it 
recorded a Cohen’s Kappa of 0.9936, 0.048 MAE, 0.043 MSE, 0.0047 MSLE, 0.221 RMSE, and 0.8818 
R. For Urad yield, the model attained a Cohen’s Kappa of 0.9332, 0.06 MAE, 0.052 MSE, 0.0055 MSLE, 
0.2351 RMSE, and a R of 0.876.For groundnut, maize, moong, rice, and Urad crops, 
DeepMMRLCropYNet achieved precision values of 92.35%, 95.18%, 89.75%, 87.47%, and 85.42%; 
recall values of 92.94%, 92.36%, 90.01%, 90.32%, and 89.21%; F-measure values of 92.63%, 93.79%, 
89.85%, 88.85%, and 87.25%; and accuracy of 93.09%, 93.49%, 90.15%, 89.07%, and 87.56%, 
respectively 
The above outcomes highlight the significance of the DeepMMRLCropYNet method in forecasting crop 
yields precisely compared to other models by learning the relationships between input parameters and 
crop yield. By combining reinforcement learning with DL, this model fine-tunes the forecasting results to 
ensure robustness and prediction performance. 
 
5. CONCLUSION 
This study presented the DeepMMRLCropYNet model by integrating the DeepMMCropYNet on top of 
the DQL algorithm to predict crop yield. First, the actual output values of the DeepMMCropYNetwere 
mapped into the Q values. The Q-learning agent then integrated the parametric attributes with the 
threshold to forecast crop yield. The agent received a unified grade for the actions executed by reducing 
the error and increasing the precision with the best rewarding iterations. Besides, the total rewards 
determined the agents' learning efficiency. Tests showed that the DeepMMRLCropYNet is better at 
predicting groundnut yield than other models. On the other hand, the performance of 
DeepMMCropYNet relies on the proper tuning of hyperparameters. So, future work will involve 
implementing a metaheuristic algorithm for optimizing hyperparameters to enhance crop yield prediction 
performance. Additionally, the focus will be on recommending the appropriate use of pesticides or 
fertilizers to improve yield productivity.  
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