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ABSTRACT

In agriculture, one of the most challenging tasks is predicting crop yield based on different factors, including weather,
soil, and crop parameters. To solve this issue, many Deep Learning (DL) models have been developed in the past
decades. Among them, the DL-based Multi-Modal Crop Yield prediction Network (DeepMMCropYNet) model takes
into account time-series weather, crop, and soil data along with the soil images of specific regions to predict crop yield.
This model was built by integrating the Long Short-Term Memory (LSTM)-Temporal Convolutional Networks (TCN)
and multidimensional Convolutional Neural Networks (CNNs), that support both spatial and temporal feature
extraction. However, overlapping data from multiple crops, which can occur in feature space, temporal, and spatial
dimensions, limits its performance. These overlaps make it difficult to learn unique patterns for each crop, resulting
in inaccurate predictions. Therefore, this article develops the Deep MultiModal Reinforcement Learningbased
CropYNet (DeepMMRLCropYNet) model by integrating the DeepMMCropYNet with the deep Q-learning (DQL)
for crop yield estimation. Initially, the actual output values of the DeepMMCropYNet are mapped into the Q wvalues.
After that, the parametric features are integrated with the threshold by the Q-learning agent to forecast crop yield.
The agent obtains a consolidated score for its activities by reducing error and enhancing its ability to predict with the
best rewarding iterations. Moreower, the total incentives dictate the agents' capacity for learning. Extensive experiments
reveal that the DeepMMRLCropYNet achieves a higher efficiency for predicting different crop yields compared to the
existing models in terms of Cohen’s Kappa, Mean Square Error (MSE), Mean Squared Logarithmic Error (MSLE),
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (R).
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1. INTRODUCTION

Food productivity must increase faster so that they can stay up with the growing population. The
worldwide population is expected to reach 9.3 billion by 2050, requiring food productivity to increase by
70-100% to encountersupply and demand [1]. Rising temperatures and erratic rainfall pose a threat to
crop productivity. Agriculture has become a very susceptible sector due to unstable climate patterns,
prompting experts to anticipate yield to plan suitable policy responses [2]. On the contrary, crop yield
prediction is challenging since it involves both farmer choices or actions as well as climate and weather
elements. Crop yield changes regionally, exhibiting unexpected patterns. Crop simulation [3] and data-
driven models [4] are commonly used tools for estimating the impact of different factors influencing crop
production. Crop simulation models are highly effective at predicting yields because they incorporate
empirical information relevant to each site, geographical measurement, and measurements at the plot
level. However, they tend to be expensive, take a long time to create, and are only suitable for specific
crops. Also, these on-siteoutcomes confront hurdles once applied to the plot since farmer conduct,
cropping patterns, and land features vary [5]. Furthermore, adjusting models for crop simulations
necessitates substantial amounts of data derived from multiple experiments. Instead, to overcome the
above issues, data-driven methods are used to forecast crop yield. Previous research suggests that data-
driven models are more adaptable to agricultural development than crop development methods because
of their ease of installation and superior efficiency [6]. Data-driven techniques forecast crop vyield
sensitivity to climatic parameters determined by past data on the rate of change in yields. A simple way to
classify these models is as either linear or nonlinear.

Linear methods highlight the use of parameters-based statistical techniques to evaluate the effects of
climate change on agricultural crop yields [7].In practice, the statistical method predicts the worldwide,
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national, and local impacts by analyzing historical data. Because the correlation between weather and crop
yields changes over time, the fact that these models only produce one estimated association parameter for
the entire study period is undesirable. Furthermore, the estimations from statistical methods may be
unfair, resulting in decreased predictive accuracy. Alternatively, nonlinear models, such as Machine
Learning (ML) models, handle the complex connection between weather conditions and crop yields by
mathematically expanding the objective function [8]. The popular ML technique is the Artificial Neural
Network (ANN), that has a nonparametric structure [9].In contrast, the predictive accuracy of this method
was poor for extensive datasets. This technique necessitates distinct and autonomous algorithms for
feature extraction and prediction tasks, resulting in longer computation time. The absence of values in
the dataset can adversely affect the training of these algorithms, resulting in unreliable predictions.
DLtechniquesare utilized for crop yield estimation in recent years [10] to resolve the limitations in ML
techniques. Several studies employed Deep Neural Network (DNN) and CNNmethods to estimate
various agricultural yields based on characteristics such as soil, weather, and yield data. These models can
integrate feature learning and prediction tasks into a singular framework. In this context, 1-Dimensional
CNNs (IDCNN) were utilized to elucidate more intricate correlations between yield and other variables,
hence augmenting the discriminability of diverse aspects [11]. However, this model proved unfit to
manage time-series crop yield data due to its inability to capture substantial temporal correlations among
numerous components over time. This is primarily important for comprehending longterm
environmental (i.e., meteorological) patterns to forecast agricultural yields.

So, a novel DeepCropYNet model was created with a tailored dataset that includes historical data on
weather, soil, and crop yields [12]. This model hierarchically integrated the LSTM and TCN. The initial
stage involved normalizing the time series of historical yield and atmospheric data. Subsequently, the data
were input into the LSTM network to acquire temporal dependencies. The TCN was designed to
implement a hierarchy of temporal convolutions on the input data, thereby capturing information at
several time scales. The feature vectors generated by the TCN were transmitted to the FC layer to forecast
crop yvields after designated intervals. This model has difficulties in extracting appropriate characteristics
from intricate data sources that include multimodal inputs like time series and image data.

To solve this problem, the DeepMMCropYNet model has been developed for predicting crop vyields,
utilizing both time series and image data for crop yields [13]. This model involved two components: (i)
LSTM-TCN for timeseries data and (ii) multidimensional CNN for soil image data. This
multidimensional CNN model has static and temporal feature extraction modules. The static module
uses 18 simultaneous IDCNNSs to learn static features from soil images, whereas the temporal module
utilizes 16 concurrent 2D-CNNs to extract temporal information from soil images. The lateral connection
fuses the outputs of these modules. Additionally, each branch employs an attention mechanism to allocate
feature weights and identify significant information for precise prediction. The extracted features from
each branch are fused and passed to the Fully Connected (FC) layer with a softmax to estimate the final
crop vyield.

However, its ability was failed when dealing with overlapped data of multiple crops.Overlap can occur in
various cases, including feature space, temporal, and spatial dimensions. Feature space overlap happens
when input features for different crops share similar values. Temporal overlap arises when time-series data
for multiple crops have overlapping periods with similar patterns. Spatial overlap occurs when crops in
neighboring regions share environmental and agricultural conditions. These overlaps make it challenging
for the model to learn distinct patterns for each crop, resulting in inaccurate predictions.

1.1 Main Contributions

This article proposes the DeepMMRLCropYNet model by integrating the DeepMMCropYNet with the
Q-learning technique for crop yield estimation. This research integrates reinforcement learning and DL
to create an effective crop yield estimation method that maps raw data to estimate values.This model
applies DQL to construct a crop yield estimation setting, taking into account the input features. A linear
layer initially converts the DeepMMCropYNet's real output values into Q values. The Q-learning agent
then uses the threshold in conjunction with parametric features to forecast the yield. By maximizing
accurate predictions and reducing error with the best rewarding iterations, the agent earns a unified score
for the activities accomplished. More importantly, the sum of all incentives dictates how well the agents
learn. As a result, the agents and the model experience inconsistent input as they adjust their efficiency.
Consequently, this method of learning compels the agent to become more effective by revealing the
profound differences in crop yields.
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The following segments are organized as: Section 2 discusses similar works. Section 3 describesthe
DeepMMRLCropYNet for crop yield prediction, and Section 4 demonstrates its performance. Section 5
concludes the study.

2. LITERATURE SURVEY

Sivanantham et al. [14] developed a new Quantile Regressive Empirical correlative Functioned Deep Feed-
Forward Multilayer Perceptron Classification (QRECF-DFFMPC) model for crop yield estimation. The
input layer used apractical orthogonal function for identifying pertinent attributes. Then, quantile
regression was employed in the hidden layer to generate the regression value for each data point.
Moreover, these values were sent to the output layer to forecast crop yield. However, this model cannot
fit time-series data since it fails to extract temporal correlations among the yield data.Abbaszadeh et al.
[15] presented a model based on the Bayesian Model Averaging (BMA) and a collection of copula
functions for combining the results of several DNNs (3D-CNN, ConvLSTM, etc.) for soybean crop yield
prediction. However, it cannot handle overlapping data in multiple crops.

Qiao et al. [16] suggested a Knowledge-guided Spatial-Temporal Attention Graph Network (KSTAGE)
for crop yield prediction. First, they used a 3D-CNN to incorporate the first spectral characteristics. Then,
a Knowledge-guided Temporal Multi-head Attention Algorithm (KTMA) was utilizedto create temporal
attention weights using self-attention strategy. Also, a new strategy was applied to align self-attention scores
by prior distribution. Furthermore, a location-aware spatial attention graph network using geospatial
knowledge was introduced to combine the spatial neighborhood attributesto predict final yield. However,
it fails to consider uncertainty when interpreting ambiguous inputs.

Abdel-salam et al. [17] developed a new model by unifying a fusion feature selection method and an
improved SVR for predicting crop yields. They first applied data normalization and then used K-means
clustering with the correlation-based filter to create a dimension-condensed dataset. Then, a fusion FMIG-
RFE method was adopted for selecting attributes. Moreover, an Improved Crayfish Optimization
Algorithm (ICOA) was used to fine-tune the hyperparameters of the SVR method for predicting crop
yields. However, R? was low due to a lack of crop yield data.

Saravanan et al. [18] presented a hybrid DL model based on the Spatio-Temporal Attention-based CNN
(STACNN)and BiLSTM to extract features from the crop yield dataset and predict the crop yield in Indian
states. However, MAE and RMSE remained high.Krishna et al. [19] developed theMayFly Algorithm
empowered attention-BiLSTM (MFA-BiLSTM) model using agricultural crop yield dataset to predict rice,
sugarcane, wheat, and maize yields. However, RMSE was high.Punitha&Geetha [20] developed a Gorilla
Troops Optimization with DL-based Crop Recommendation and Yield Prediction Model (GTODL-
CRYPM). Initially, the LSTM network was used to recommend suitable crops, whereas to choose the best
LSTM parameters, the GTO is used. Next, in order to make an accurate prediction of crop yield, the
Deep Belief Network (DBN) was performed. Conversely, MAE and RMSE were high.

2.1 Research Gap

From the literature, it can be inferred that earlier models fail to address uncertainties and lack robustness
in handling large-scale datasets with ambiguous or noisy inputs. To resolve this issue, this study develops
a new DL model incorporated on top of the deep reinforcement learning algorithm for crop yield
estimation with a minimum prediction error while effectively managing data overlaps and uncertainties.

3. PROPOSED METHODOLOGY

This section provides an explanation of the DeepMMRLCropYNet model for crop production
prediction. Fig. 1 provides a visual representation of this study. First, a dataset of agricultural crop yield
is obtained, which includes soil photos and time-series sequential data about soil, weather, and yield for
different crops. The dataset is then pre-processed to eliminate outliers and missing values. The dataset is
fed into the DeepMMRLCropYNet model to forecast yield. The model's performance is assessed using
the estimated values.
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Figure 1. Pipeline of the Proposed Study

3.1 Data Pre-processing

To effectively train the DeepMMCropYNet model for crop yield prediction, data preparation is an
essential step. To deal with missing values and guarantee consistency across all features (such as crop yield,
soil, and weather data), a normalization method based on min-max scaling is used to transform the data
into a particular range between O and 1. It is represented as follows:

R = Mo m

Xmax~Xmin

In Eq. (1), x! is the i feature at time t, xi,, and xL ;= are the maximum and minimum values of the
corresponding feature. The pre-processed time-series crop yield dataset has been generated from this
approach. Subsequently, both the soil image dataset and the time-series crop yield dataset are divided into
training and testing subsets. The training dataset is utilized to construct the predictive model with the Q-
learning technique. Following model development, the capability of the model to forecast crop yields is
assessed with testing set.

3.2 Design of DeepMMRLCropYNet Model

This study uses supervised learning to solve a regression problem that represents crop yield forecasts. In
order to determine the crop yield in the specific region, this supervised learning-based approach for
forecasting crop yields requires appropriate crop yield data and related variables as inputs.The total
rewards in Q-Jearning algorithm determine the learning efficacy of the agents. Together with the
supervised learning techniques, it results in unstable feedback that allows the agents to modify their
performance. The agents won't be able to determine which samples weren't learned efficiently because
they can't access that information from the inputs.By demonstrating the significant variations in crop
yield, this component compels the agent to be more effective.

Based on the input data, a yield prediction environment is formed that changes the supervised learning
into a DQLprocedure. A yield forecasting game can be used to find out the environment.A set of samples
is included in each game, along with specific parameter-based feature groupings and thresholds related to
the crop yield. The agent performs the behaviors to obtain the rewards when it first begins playing, hence
determining the crop yield values. For each adjacent anticipated value of the target, the agent is rewarded
positively if it succeeds, and negatively if it fails. The agent's overall performance will be evaluated once
the entire process is finished.Figure 2 displays a flow diagram of the yield prediction process based on this
DeepMMRLCropYNet model using DQL algorithm.

It is challenging to differentiate and assess the crop output prediction since real reinforcement learning
methods, such Q-learning, have a restricted ability to describe the states. A DeepMMCropYNet is
employed for predicting agricultural productionusing crop yield, weather, and soil data, taking inspiration
from the Deep Q Network (DQN) principle of analyzing vast amounts of data.

The DeepMMCropYNet model is used to frame the DQN agent in this study. To convert the
DeepMMCropYNet model's output to Q-values, a linear layer is included to the model's parameters once
they have been configured utilizing the weights saved in the pre-training method. The structure of the
DeepMMCropYNet model is presented in [13].All training samples endure a pre-training process before
the DQL training process begins. Then, the input layers of DeepMMCropYNet build final Q-values are
produced by the FC layer, which is responsible for the agent's yield estimation vision.
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Figure 2. Flow Diagram of Crop Yield Estimation Using DeepMMRLCropYNet Model

The DQLtechnique processes a vast amount of state and action space during its training, that could
potentially disrupt stability as a result of correlations in the data. To guarantee that the DQL algorithm's
training process does not diverge, two modifications are performed to the Q-Learning in the DQN's
training procedure. The first is experience replay, where the agent's experience is stored in replay memory
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Assume that the experience replay first records the agent’s experience at every time step t, producing a
group of distinct experience sets. An individual experience e; at a time t is defined as e; = (S, at, I't, St41)
and the memory at t is described as Dy = {e4, ..., e}.
To help agents learn from their own mistakes, experience replay is a great tool for eliminating parameter
divergence. Two, throughout the Q-learning update process, a different network is used to generate the
targets. These changes can significantly increase the stability of DQL. Also, It should be mentioned that
Q-learning technique usually use a Bellman equation to iteratively update the action-value function. The
DeepMMCropYNet function approximator with weight Bcalculating the action-value function using this
method is cumbersome in practice, thus it is utilized instead. Consequently, the DQN is constructed by
modifying the parameters 8; in the i? iteration in order to decrease the MSE in the Bellman equation.
There are two phase in the training process. Pre-training of the DeepMMCropYNet is the initial phase,
and training the DQN agent is the second. The agent uses an &-greedy policy to choose and carry out an
action. With a probability of €, the action is selected at random in this example, while the action
representing the largest q value is selected with a probability of 1 — €. This study uses the stochastic
gradient descent as its optimization technique, which iteratively adjusts the network weightsby the
training information.Algorithm 1 presents the entire pseudocode for training theDeepMMRLCropYNet
model.
Algorithm 1: Training DeepMMCropYNet model based DQN

1. Begin

2. Pretraining of the DeepMMCropYNet
Set the replay memory capacity as N;
Set the DeepMMCropYNet with 6;;
for(i=1,0)
Train the i layer in the DeepMMCropYNet;

Save the parameters of the i layer;
end for
Put the hidden layer parameters into action-value network Q as an initialization
parameter, excluding the input and output layers;
h. Set the parameters of the target action-value function Q' to match those of Q.

3. DON agent training
for(event = 1,M)
Randomly output the projected yield to create sq;
for(t=1,T)

Choose a random action a; with probability &
Executea; and get the reward ry;

Randomly produce the subsequent state Sty 1;
ProtectD as (St, at, I't, St41);

R e o0 o

@R othe oap o

Execute gradient descent on (rt — Q(sy, ag; 6))2according to 0;
i. Reset Q' = Q;
j. end for
k. end for

4. End

4. EXPERIMENTAL RESULTS

This section evaluates the efficiency of the DeepMMRLCropYNet model with existing models, such as
1DCNN [11], DeepCropYNet [12], DeepMMCropYNet [13], and KSTAGE [16], GTODL-CRYPM [20].
4.1 Simulation Environment

The crop yield prediction models were implemented in MATLAB 2019b. The experiments were
conducted on a system with an Intel® Core™ i5-4210 CPU @ 3GHz, 4GB RAM, and a 1TB HDD

running on Windows 10 64-bit. The parameter settings for training different models are given in Table

1.

Table 1. Parameter Settings

| Parameters Range
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1DCNN [11], DeepCropYNet [12], DeepMMCropYNet [13], KSTAGE [16], GTODL-CRYPM [20],
and Proposed DeepMMRLCropYNet

Learning rate 0.001

Batch size 64

No. of epochs 100

Optimizer Stochastic gradient descent
Dropout 0.5

4.2 Dataset Description

This study primarily focuses on estimating yield values for five primary crops in Tamil Nadu: groundnut,
maize, moong, rice, and Urad. These agricultural yield datasets were created utilizing numerous sources.
A publicly available website [21] was used to generate a custom agricultural crop yield dataset. This dataset
comprises weather, yield, and soil data for the crops studied from 2016 to 2022. In addition, a Kaggle
dataset [22] was used, which contains crop names, years, harvesting periods, states, farming regions,
production amounts, yearly rainfall, fertilizer and pesticide use, and intended yields. Additionally, this
study provides a soil image dataset. To build this dataset, the https://data.gov.in/ website was utilized to
determine soil types in specific regions using geographical and agricultural datasets. The crop yield
forecast was then supported by comparable soil photos obtained from Kaggle datasets.

Consequently, 1012 samples are included in the time-series dataset and soil picture collected for every
crop. Taking this into account, the dataset is split into 80:20 for training and testing.

4.3 Evaluation Metrics

Cohen’s Kappa: A statistical metric that assesses inter-rated consent for categorized results, while
accounting for chance agreement.

MAE: It is the mean absolute dissimilarity between estimated and observed values.

MAE = Z3IL,ly; - il (3)

In Eq. (3), n denotes total observations, y; and §; denote the observed and estimated values of it® data,
respectively.

MSE: It measures the mean squared dissimilarity between estimated and observed values using Eq. (4).
MSE = =%, (v — 91)? (4)

MSLE:A metric that quantifies the squared logarithmic disparity between anticipated and actual results,

imposing greater penalties on underestimations compared to overestimations.
RMSE: It is the square root of the MSE, provided that a mean magnitude of losses in Eq. (5).

RMSE = \/ﬁ i - 90)? (5)

Correlation coefficient (R): It is used to assess the degree of association between predicted crop yields
and actual crop yields.

_ 2L (=92

= L4 6
i, vi-y)? ©)
In Eq. (6), ¥; is the average of the actual crop yield values.
&rpundnut Yield Prediction (2016-2024)
—=— 1DCNN

—— KSTAGE

GTODL-CRYPM
—_—— DeepCropYNet
m—je— DeepMMCropYNet
—if— DeepMMRLCropY Net
- 2= Actual values

Predicted Groundnut Yield (in tons)
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Figure. 3 Evaluation of suggested and existing models for crop yvield prediction (in tons) from 2016 to
2024. (a) groundnut, (b) maize, (c) moong, (d) rice, and (e) urad
Figure 3 shows the time series comparisons of the DeepMMRLCropYNet model with existing methods
for crop yield estimation. The analysis reveals that the DeepMMRLCropYNet technique closely aligns
with the actual crop yield data, indicating its superior efficiency in predicting various crop yields.
Table 1. Comparison of Different Models for Different Crop Yield Prediction

Groundnut Crop

Models Cohen’s | MAE | MSE MSLE | RMSE | R Accuracy | Precision | Recall | FM
Kappa

1D-CNN 0.92 0.081 |0.0728 0.0082 | 0.2705 | 0.8329 | 80.14 79.65 80.13 79.85

KSTAGE 0.9347 0.072 | 0.0644 | 0.0077 | 0.2548 | 0.8457 | 83.58 82.65 83.25 82.69

GTODL-CRYPM | 0.9477 0.065 | 0.0582 0.0068 | 0.2369 | 0.8520 | 85.15 85.47 85.03 85.35

DeepCropYNet 0.9576 0.0513 | 0.0469 0.0064 | 0.2166 | 0.8617 | 88.38 88.26 89.24 88.35

DeepMMCropYN | 0.971 0.049 | 0.043 0.0052 | 0.2024 | 0.8835 | 91.41 91.11 91.25 91.13

et

DeepMMRLCrop | 0.9891 0.038 | 0.03 0.0049 | 0.1911 | 0.9254 | 93.09 92.35 92.94 | 92.63

YNet

Maize Crop

Models Cohen’s | MAE | MSE MSLE | RMSE | R Accuracy | Precision( | Recall | F-M
Kappa (%) %) (%) (%)

1D-CNN 0.912 0.0904 | 0.1 0.0084 | 0.3151 | 0.8155 | 79.55 71.15 79.55 78.35

KSTAGE 0.9258 0.0832 | 0.0911 0.0076 | 0.301 | 0.8268 | 85.47 82.39 84.17 82.64

GTODL-CRYPM | 0.9314 0.0741 | 0.0807 0.0068 | 0.2843 | 0.8314 | 88.12 88.14 86.62 87.75

DeepCropYNet 0.9421 0.0586 | 0.0719 0.0065 | 0.2681 | 0.8459 | 90.12 92.21 89.55 90.55

DeepMMCropYN | 0.963 0.0525 | 0.0683 0.0051 | 0.2576 | 0.8532 | 91.65 93.76 91.84 92.35

et

DeepMMRLCrop | 0.987 0.047 | 0.055 0.0035 | 0.2354 | 0.8625 | 93.49 95.18 92.36 | 93.79

YNet

Moong Crop

Models Cohen’s | MAE | MSE MSLE | RMSE | R Accuracy | Precision( | Recall | F-M
Kappa (%) %) (%) (%)

I1D-CNN 0.8902 0.0921 | 0.0865 0.0079 | 0.2911 | 0.8364 | 77.12 75.53 80.12 71.75

KSTAGE 0.9358 0.086 | 0.0807 0.0068 | 0.2743 | 0.8444 | 80.58 80.48 83.47 80.35

GTODL-CRYPM | 0.9547 0.075 | 0.071 0.0055 | 0.2515 | 0.8563 | 83.63 82.48 85.39 83.55

DeepCropYNet 0.962 0.0612 | 0.06 0.0048 | 0.2449 | 0.8644 | 86.24 85.54 88.78 86.52
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DeepMMCropYN | 0.9621 0.0577 | 0.049 0.0035 | 0.2381 | 0.8712 | 88.52 87.88 88.45 87.75
et
DeepMMRLCrop | 0.977 0.05 0.04 0.0021 | 0.227 | 0.8827 | 90.15 89.75 90.01 89.85
YNet
Rice Crop
Models Cohen’s | MAE MSE MSLE | RMSE | R Accuracy | Precision( | Recall | F-M
Kappa (%) %) (%) (%)
1D-CNN 0.8751 0.0894 | 0.089 0.0087 | 0.2956 | 0.8281 | 77.45 74.49 81.54 71.71
KSTAGE 0.8799 0.0826 | 0.08 0.0081 | 0.2748 | 0.8318 | 80.47 76.54 83.25 80.12
GTODL-CRYPM | 0.8852 0.073 | 0.0676 0.0074 | 0.2527 | 0.8547 | 82.14 78.48 85.56 83.09
DeepCropYNet 0.8948 0.0576 | 0.0552 0.0062 | 0.2349 | 0.8653 | 84.68 82.25 88.42 85.54
DeepMMCropYN | 0.9516 0.054 | 0.051 0.0056 | 0.2296 | 0.8681 | 86.21 85.75 89.25 87.35
et
DeepMMRLCrop | 0.9936 0.048 | 0.043 0.0047 | 0.221 0.8818 | 89.07 87.47 90.32 88.85
YNet
Urad Crop
Models Cohen’s | MAE | MSE MSLE | RMSE | R Accuracy( | Precision( | Recall | F-M
Kappa %) %) (%) (%)
1D-CNN 0.8698 0.1006 | 0.0998 0.0079 | 0.3172 | 0.8273 | 74.75 73.54 76.55 74.75
KSTAGE 0.8745 0.094 | 0.09 0.0074 | 0.2948 | 0.8347 | 78.15 75.25 79.57 78.43
GTODL-CRYPM | 0.8802 0.083 | 0.081 0.0070 | 0.2755 | 0.8424 | 80.39 78.38 83.14 80.35
DeepCropYNet 0.8916 0.0741 | 0.0709 0.0068 | 0.2663 | 0.8587 | 82.54 80.45 85.54 82.55
DeepMMCropYN | 0.9064 0.07 0.065 0.0060 | 0.2552 | 0.862 | 85.12 82.36 87.89 84.65
et
DeepMMRLCrop | 0.9332 0.06 0.052 0.0055 | 0.2351 | 0.876 | 87.56 85.42 89.21 87.25
YNet
1.2 -
m 1D-CNN
1 .
u KSTAGE
0.8 -
206 = GTODL-CRYPM
£0.
=7
0.4 - H DeepCropYNet
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Figure. 4 Performance analysis of different yield prediction models for groundnut yield prediction

Figure 4 illustrates a performance comparison of the suggested with conventional DL methods using
groundnut yield information. The MAE of DeepMMRLCropYNet is 53.1%, 47.2%, 41.5%, 25.9%, and
22.5% lower than 1D-CNN, KSTAGE, GTODL-CRYPM, DeepCropYNet, and DeepMMCropYNet,
respectively. Similarly, it reduces the MSE by 58.8%, 53.4%, 48.5%, 36%, and 30.2% in comparison to
the same models. In terms of RMSE, DeepMMRLCropYNet achieves a reduction of 29.4%, 24.7%,
19.8%, 11.8%, and 5.6%, respectively. Moreover, the correlation coefficient (R) is enhanced by 8.1%,
7%, 5.6%, 4.4%, and 1.9% compared to 1D-CNN, KSTAGE, GTODL-CRYPM, DeepCropYNet, and
DeepMMCropYNet, respectively. These results demonstrate the superior predictive accuracy and
robustness of DeepMMRLCropYNet over the existing methods.
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Figure. 5 Prediction efficiency of different yield prediction models for groundnut yield prediction
Figure 5 presents the classification performance comparison of the proposed DeepMMRLCropYNet
model with other deep learning models using groundnut vyield data. The accuracy of
DeepMMRLCropYNet reaches 93.09%, which is 16.8%, 9.8%, 7.1%, 4.7%, and 1.8% higher than the
existing models, respectively. In terms of precision, DeepMMRLCropYNet outperforms the above models
by 15.9%, 10.5%, 6.8%, 4.6%, and 1.4%, respectively. The recall is also significantly improved, showing
increases of 15.9%, 10.3%, 7.8%, 4.1%, and 1.5% compared to the same models. Furthermore, the F-
measure of DeepMMRLCropYNet is 16%, 9.9%, 7.6%, 4.8%, and 1.6% higher than that of other
models, respectively. These results confirm the superior classification capability and generalization
strength of the proposed DeepMMRLCropYNet model.
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Figure. 6 Performance analysis of different yield prediction models for maize yield prediction

In Figure 6, a performance comparison of the suggested with conventional DL methods using maize yield
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other
model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior

performance over in maize yield prediction.
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Figure. 7 Prediction efficiency of different yield prediction models for maize yield prediction

In Figure 7, a performance comparison of the suggested with conventional DL methods using maize yield
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other
model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance over in
maize yield prediction.
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Figure. 8 Performance analysis of different yield prediction models for moong yield prediction

In Figure 8, a performance comparison of the suggested with conventional DL methods using moong
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every
other model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior
performance over in moong yield prediction.
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Figure. 9 Prediction efficiency of different yield prediction models for moong yield prediction
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In Figure 9, a performance comparison of the suggested with conventional DL methods using moong
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every
other model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance
over in moong yield prediction.
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Figure. 10 Performance analysis of different yield prediction models for rice yield prediction

In Figure 10, a performance comparison of the suggested with conventional DL methods using rice yield
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other
model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior

performance over in rice yield prediction.
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Figure. 11 Prediction efficiency of different yield prediction models for rice yield prediction

In Figure 11, a performance comparison of the suggested with conventional DL methods using rice yield
data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every other
model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance over in
rice yield prediction.
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Figure. 12 Performance analysis of different yield prediction models for urad yield prediction
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A performance comparison of the suggested with conventional DL methods using uradyield data is
illustrated in Figure 12. It is observed that the proposed DeepMMRLCropYNet model outperforms every

other model in terms of Cohen’s Kappa, MAE, MSE, MSLE, RMSE and R, demonstrating superior
performance over in urad yield prediction.
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Figure. 13 Prediction efficiency of different yield prediction models for Urad yield prediction

In Figure 13, a performance comparison of the suggested with conventional DL methods using Urad
yield data is portrayed. It is observed that the proposed DeepMMRLCropYNet model outperforms every
other model in terms of accuracy, precision, recall and f-measure, demonstrating superior performance
over in Urad yield prediction.

Tests showed that the DeepMMRLCropYNet is better at predicting groundnut yield than other models,
with a Cohen’s Kappa of 0.9891, 0.038 MAE, 0.03 MSE, 0.0049 MSLE, 0.1911 RMSE, and a R of
0.9254.. It has a Cohen’s Kappa of 0.987, 0.047 MAE, 0.055 MSE, 0.0035 MSLE, 0.2354 RMSE, and
0.8625 R for predicting maize yield. For moong yield prediction, the model achieved a Cohen’s Kappa of
0.977, 0.05 MAE, 0.04 MSE, 0.0021 MSLE, 0.227 RMSE, and a R of 0.8827. In predicting rice yield, it
recorded a Cohen’s Kappa of 0.9936, 0.048 MAE, 0.043 MSE, 0.0047 MSLE, 0.221 RMSE, and 0.8818
R. For Urad yield, the model attained a Cohen’s Kappa of 0.9332, 0.06 MAE, 0.052 MSE, 0.0055 MSLE,
0.2351 RMSE, and a R of 0.876.For groundnut, maize, moong, rice, and Urad crops,
DeepMMRLCropYNet achieved precision values of 92.35%, 95.18%, 89.75%, 87.47%, and 85.42%;
recall values of 92.94%, 92.36%, 90.01%, 90.32%, and 89.21%; F-measure values of 92.63%, 93.79%,
89.85%, 88.85%, and 87.25%; and accuracy of 93.09%, 93.49%, 90.15%, 89.07%, and 87.56%,
respectively

The above outcomes highlight the significance of the DeepMMRLCropYNet method in forecasting crop
yields precisely compared to other models by learning the relationships between input parameters and
crop yield. By combining reinforcement learning with DL, this model fine-tunes the forecasting results to
ensure robustness and prediction performance.

5. CONCLUSION

This study presented the DeepMMRLCropYNet model by integrating the DeepMMCropYNet on top of
the DQL algorithm to predict crop yield. First, the actual output values of the DeepMMCropYNetwere
mapped into the Q values. The Q-learning agent then integrated the parametric attributes with the
threshold to forecast crop yield. The agent received a unified grade for the actions executed by reducing
the error and increasing the precision with the best rewarding iterations. Besides, the total rewards
determined the agents' learning efficiency. Tests showed that the DeepMMRLCropYNet is better at
predicting groundnut vyield than other models. On the other hand, the performance of
DeepMMCropYNet relies on the proper tuning of hyperparameters. So, future work will involve
implementing a metaheuristic algorithm for optimizing hyperparameters to enhance crop yield prediction
performance. Additionally, the focus will be on recommending the appropriate use of pesticides or
fertilizers to improve yield productivity.
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