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Abstract 
Weather nowcasting is the process of predicting the weather for a period of o to 6 hours.  Advanced deep learning 
models for weather nowcasting, emphasizes precise prediction of factors such as cumulative precipitation, humidity, 
wind direction, etc. Deep Learning models such as LSTMs and a CNN-LSTM Hybrid and stacked LSTM were 
applied to the AgriMet dataset. Stacked LSTM demonstrates notable performance with low Mean Squared Error 
(MSE) and Mean Absolute Error (MAE), indicating effective pattern capture. These results underscore the potential 
of deep learning for substantial improvement in short-term weather forecasting, providing pragmatic insights for 
decision-making in dynamic weather conditions. 
Keywords: Weather Nowcasting, Convolutional Neural Network, Long Short-Term Memory, Stacked LSTM, 
Cumulative Precipitation, Short-term rainfall prediction. 
 
I. INTRODUCTION 
Weather nowcasting has emerged as a pivotal field within meteorological research, focusing on the 
immediate future and playing a crucial role in mitigating the impact of rapidly changing weather 
conditions. With advancements in observational technologies, such as high-resolution satellite imagery, 
radar systems, and ground-based sensors, meteorologists are able to capture and analyze atmospheric 
phenomena in real-time. In the last decade, many significant efforts in weather forecasting using machine 
learning techniques including deep learning have been reported with successful results. AG Salman et 
al. [1] compared the performance of Recurrence Neural Network (RNN), Conditional Restricted 
Boltzmann Machine (CRBM), and Convolutional Network (CN) models. F Ahmad et al. [2] investigated 
the applicability of time series algorithms such as LSTM, GRU, and Bi-LSTM to develop efficient 
nonlinear forecasting models for automatic weather analysis. Xiongfa Mai et al. [3] introduced a Bayesian 
optimization XGBoost-based classification model for rain or shine weather forecasting in precipitation 
nowcasting, exhibiting superior performance compared to other deep learning methods 
Current work aims to analyse and evaluate existing deep learning models for weather nowcasting and 
develop better models. By analyzing various atmospheric factors with an immediate effect on the weather 
and exploiting this short-term relationship through deep learning models, the paper aims to demonstrate 
an improvement over currently used real-time models. Specifically, the research focuses on predicting 
precipitation patterns based on multiple atmospheric factors, including Vapor Pressure, Wind Speed, 
Humidity, and Atmospheric Temperature. Models that were considered include Long Short-Term 
Memory networks (LSTMs), recognized for their ability to capture temporal dependencies, and a hybrid 
model combining Convolutional Neural Networks (CNNs) with LSTMs. These models are chosen for 
their prowess in handling sequential and spatial-temporal data, a crucial aspect in weather forecasting 
where understanding both temporal patterns and spatial relationships is paramount. 
 
II. RELATED WORK 
The usage of deep learning in short-term weather forecasting has been explored in some detail in the last 
decade. Many researchers have incorporated radar images in addition to atmospheric data to help predict 
the weather. The recent works in weather nowcasting are briefly explained below. 
The paper by Xingjian Shi et al. [4] explores the application of deep learning techniques, specifically the 
Convolutional LSTM Network, for weather forecasting, focusing on precipitation nowcasting. The study 
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formulates precipitation nowcasting as a spatiotemporal sequence forecasting problem and proposes the 
ConvLSTM network as an end-to-end trainable model. Experimental results demonstrate that the 
ConvLSTM network outperforms the stan- dard Fully Connected Long Short-Term Memory (FC-LSTM) 
network and the state-of-the-art operational ROVER algorithm for precipitation nowcasting, showcasing 
its ability to capture spatiotemporal correlations effectively. The paper also discusses the challenges of 
high dimensionality and chaotic nature of the atmosphere and shows the potential of deep learning in 
effectively addressing these challenges for weather forecasting. 
However, with the Convolutional LSTM (ConvLSTM), challenges persist in handling location-variant 
natural motion. Building upon this, a novel Trajectory Gated Recurrent Unit (TrajGRU) model was 
proposed, actively learning location-variant structures for improved spatiotemporal correlations in 
precipitation nowcasting. Another paper by Xingjian Shi et al. [5] not only introduces the TrajGRU 
model but also establishes a benchmark dataset, HKO-7, offering a comprehensive evaluation protocol, 
balanced loss functions, and insights into the significance of online fine-tuning for enhancing deep 
learning models in the domain of short-term rainfall predictions. 
The paper by Makhamisa Senekane et al. [6] introduces and compares three deep learning models—
multilayer perceptron, Elman recurrent neural networks, and Jordan recurrent neural networks—for 
predicting sunshine and precipitation based on meteorological data from Lesotho. The models achieve 
high accuracies, with Elman and Jordan neural networks outperforming multilayer perceptron, 
showcasing the potential of deep learning in enhancing short-term weather forecasting. 
Another work conducted by Georgios Kyros et al. [7] explores the application of machine learning, 
including Deep Learning, for short-range rainfall forecasting in Western Macedonia, Greece. Their 
investigation incorporates Random Forest, XGBoost, and Neural Networks (LSTM), with a significant 
emphasis on analyzing relationships between satellite-derived thermodynamic parameters and observed 
rainfall. The research showcases the effectiveness of machine learning models, particularly Random 
Forest, in predicting instantaneous rainfall over a 3-hour period, providing valuable insights for 
enhancing current forecasting methodologies. 
The paper by Jihoon Ko et al. [8] contribute significantly with a novel pre-training scheme and loss 
function. Adapting the U-Net model for precipitation nowcasting and estimation from radar images, the 
study formulates these tasks as a classification and regression problem, respectively. Through 
comprehensive experiments on South Korean datasets, the proposed pre-training and loss function 
demonstrate substantial improvements in the critical success index for heavy rainfall nowcasting and 
reduce precipitation estimation errors. This research provides valuable insights into the effectiveness in 
using deep learning models for precipitation nowcasting and addressing challenges such as class 
imbalance in precipitation data. 
In the recent years, the usage and the effectiveness of LSTMs and their variants in weather nowcasting 
have been explored in detail [9] [10] [11]. Therefore, LSTM model was employed for analysis and 
nowcasting of rainfall in this current work. 
 
III. DESIGN AND METHODOLOGY 
AgriMet dataset was extracted and preprocessed using min-max normalization and adding Gaussian 
noise. The dataset was split as training and testing set and further analyzed using deep learning models. 
The overall system architecture is shown in Figure 1. 
 

 
Figure. 1: System Architecture 
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A. Dataset 
Experiments were conducted on the AgriMet dataset for the “Forest Grove, Oregon (FOGO)” weather 
station. (https://www.usbr.gov/pn/agrimet/webagdayread.html) This is an official weather station 
maintained by the United States Bureau of Reclamation (USBR), and the weather data is accessible to 
the public via USBR’s AgriMet website. The FOGO station experiences a Mediterranean climate with 
dry summers and wet winters. This diverse set of weather conditions makes it ideal for testing and 
refining weather forecasting models across a range of scenarios. The different weather parameters 
available at the FOGO station and their descriptions have been tabulated in Table I. All parameters are 
recorded at 15-minute intervals at the FOGO station and are thus suitable for short-term forecasting 
experiments. 
TABLE I: FOGO Station Meteorological Data 

Variable Code Description 

OB Air Temperature 15 Minute Instantaneous (°F) 

      

OBX Air Temperature 15 Minute Maximum (°F) 

OBM Air Temperature 15 Minute Average (°F) 

OBN Air Temperature 15 Minute Minimum (°F) 

TU Relative Humidity 15 Minute Average (%) 

TUX Relative Humidity 15 Minute Maximum (%) 

TUN Relative Humidity 15 Minute Minimum (%) 

EA Actual Vapor Pressure 15 Minute Average (kPa) 

TP Dew Point Temperature 15 Minute Average (°F) 

WD Wind Direction Mean of Wind Vector (°azimuth) 

WG Peak Wind Gust Last 15 minutes (mph) 

WS Wind Speed Hourly Average (mph) 

UI Wind Run Cumulative (miles) 

SQ Global Solar Radiation Cumulative (langleys) 

SI 15 Minute Solar Radiation Cumulative (langleys/hour) 

PC Precipitation Cumulative (inches of water) 
 
B. Preprocessing 
All rows in the weather data with NaN values were identified and removed. Further, precipitation (PC) 
values at the FOGO station are reset whenever they reach a threshold of 50 inches. To make PC values 
consistent across the dataset, they were modified to reflect precipitation in each 15-minute interval rather 
than its cumulative value over time. All columns (weather parameters) were then normalized using min-
max scaling. To decrease overfitting, small gaussian noises were added to all weather parameters using 
their respective means and standard deviations. For model training, 3-year weather data from Jan 1, 2019 
to Jan 1, 2022 was used. For testing, 6-month weather data from Jan 1, 2021 to July 1, 2021 was used. 
The following models were used to predict the weather paramaters: Long Short-Term Memory network 
(LSTM), Convolutional Neural Network LSTM Hybrid (CNN LSTM Hybrid), 
and Stacked LSTM. 
C. DEEP LEARNING MODELS  
i. LSTM 
LSTMs [12] are a type of recurrent neural network designed to overcome the limitations of traditional 
RNNs in capturing long-term dependencies in sequential data. LSTMs introduce a memory cell with a 
gating mechanism, including input, forget, and output gates. These gates regulate the flow of 
information, allowing the network to selectively remember or forget information at each time step. The 
cell state serves as a long-term memory, while the hidden state acts as a short-term memory or output. 
Due to LSTMs’ excellent ability to learn and retain temporal patterns, they are well-suited for time series 
prediction tasks. 
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To build an LSTM for forecasting task, TensorFlow v2.15.0 was used. Along with the input layer, one 
LSTM layer with 50 memory cells, and an output layer were added. The model was compiled with the 
Adam optimizer and the Mean Squared Error (MSE) loss function. The Adam optimizer is commonly 
used for training neural networks, and MSE is suitable for regression tasks where the goal is to minimize 
the squared difference between predicted and actual values. 
The first paramater that was predicted is cumulative precipitation (PC) for a 6-hour lead time. Therefore, 
25 steps of 15-minute intervals (excluding PC) were used as inputs, and the cumulative precipitation 
(PC) over the next 25 steps of 15-minute intervals was predicted. The previously defined LSTM model 
was trained for 50 epochs with a batch size of 32 and a validation split of 20 percent was taken. Figure 
2 shows the actual and predicted Cumulative Precipitation values of LSTM model. 
ii. CNN-LSTM Hybrid 
A CNN LSTM Hybrid combines the strengths of CNNs and LSTMs, providing a powerful architecture 
for tasks involving both spatial and temporal dependencies, such as spatiotemporal forecasting. CNNs 
excel at capturing spatial features through convolutional layers, which analyze local patterns in data, 
while LSTMs specialize in modeling sequential dependencies over time. In a hybrid architecture, CNNs 
are typically employed as the initial layers to extract spatial features from input data, and the extracted 
features are then fed into LSTMs to capture temporal dependencies. 
To build a CNN LSTM Hybrid, TensorFlow v2.15.0 was used. Along with the input layer, a 1D 
convolutional layer with the ReLU activation function, a MaxPooling layer, an LSTM layer with 50 
memory cells, and an output layer were added. The model was compiled with the Adam optimizer and 
the Mean Squared Error (MSE) loss function. 
To predict PC values for 6-hour lead times, the CNN LSTM Hybrid model was trained for 50 epochs 
with a batch size of 32 and a validation split of 20 percent was taken. Figure 3 shows the actual and 
predicted Cumulative Precipitation values of CNN-LSTM Hybrid model. 

 
 
 
 
 
 
 

Figure 2. Actual vs predicted Cumulative Precipitation (PC) 

values from LSTM model. 
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Figure 3. Actual vs predicted Cumulative Precipitation (PC) 

values from CNN-LSTM Hybrid model. 
Figure 4. Actual vs predicted Cumulative Precipitation (PC) 
values from Stacked LSTM model. 
iii. Stacked LSTM 
Stacked LSTMs refer to the use of multiple LSTM layers in a neural network, allowing for hierarchical 
learning of sequential patterns. The output of one LSTM layer serves as the input for the next, creating 
a stacked architecture. This stacking enables the network to learn hierarchical representations of 
temporal features, with lower layers capturing short-term patterns and higher layers capturing longer-
term dependencies. 
To build a Stacked LSTM model, TensorFlow v2.15.0 was used. Along with the input layer, two LSTM 
layers with 50 memory cells each, and an output layer were added. The model was compiled with the 
Adam optimizer and the Mean Squared Error (MSE) loss function. 
To predict PC values for 6-hour lead times, the Stacked LSTM model was trained for 15 epochs with a 
batch size of 32 and a validation split of 20 percent was taken. Figure 4 shows the actual and predicted 
Cumulative Precipitation values of Stacked LSTM model. 
 
IV. RESULTS AND ANALYSIS 
To evaluate the goodness of different models, Mean Squared Error (MSE), and Mean Absolute 
Error (MAE) metrics were used. The results from different models are rounded to the nearest ten 
thousandth and given in Table III.  

TABLE III: Performance Metrics 
 

Model MSE MAE 

LSTM 0.0069 0.0295 

CNN-LSTM Hybrid 0.0073 0.0304 

Stacked LSTM 0.0065 0.0281 

The relatively low MSE and MAE values of the LSTM model from Figures 3 and 4 indicate that it is 
performing well on the task, capturing the patterns in the data effectively. The slightly higher MSE and 
MAE of the CNN LSTM Hybrid compared to LSTM alone may be due to the added complexity of the 
hybrid architecture. The MSE and MAE values of the Stacked LSTM model are comparable to that of 
the LSTM model, indicating that the additional layer may not significantly impact or improve 
performance. 
 
V. CONCLUSION 
Deep Learning models such as LSTM, CNN-LSTM Hybrid and Stacked LSTM were applied on AgriMet 
dataset. It is observed that Stacked LSTM performed better when compared to other two models at 
predicting Cumulative Precipitation (PC) values. Furthermore, these models tend to excel at predicting 
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low values of PC, and struggle with accurately predicting the PC values beyond the threshold value of 
0.3. Based on the above results, improvements could be done by incorporating various boosting models 
to extract the spatial features. Additional pre-processing methods could have been employed such as 
subsampling the dataset to eliminate class imbalance via clustering of the features. 
Applications of deep learning weather nowcasting models include emergency response planning where 
deep learning models enable accurate short-term weather predictions, aiding emergency response 
planning for events like heavy rainfall, storms, or floods. Timely forecasts assist authorities in preparing 
for and mitigating potential disasters. 
Another application is public health management where timely weather predictions contribute to 
anticipating conditions conducive to the spread of diseases. For example, predicting heavy rainfall helps 
authorities prepare for potential flooding and the associated health risks. Other applications include 
urban planning and infrastructure maintenance, tourism and event planning, and agricultural decision 
support. 
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