
International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 5, 2025 
https://theaspd.com/index.php 

1809 
 

Traffic Optimization Using A Novel Cheetah Optimization 
Algorithm For Sustainable Smart Cities And Management. 
 
Dr. Chandrashekhar Chauhan1, Neha Deshpande Modak2, Dr.Vaibhav Modak3, Dr.R.K sharma4 

1Associate Professor, Department of Applied Mathematics, IET DAVV, Indore (M.P.) 
2Research Scholar, Department of Applied Mathematics, IET DAVV, Indore (M.P.) 
3Associate Professor, Department of Management, IPS Academy, Institute of business Management & 
Research, Indore (M.P.) 
4Professor, Department of Mathematics, Jawahar Lal Nehru Smriti College, Shujalpur(M.P.) 
 
Abstract: In developing nations like India, where traffic is tremendous and constantly changing, traffic optimization 
is the largest issue. In contrast to Ant Colony Optimization or Inverted Ant Colony Optimization, which involved 
vehicle scheduling, this paper presents a unique Cheetah Optimization Technique that uses the Djkstra algorithm. 
Urban traffic congestion, longer commutes, and environmental degradation have become urgent issues due to the 
exponential expansion in vehicle numbers and fast urbanization in developing nations like India. Unlike traditional 
methods or Ant Colony-based systems, COA leverages high-speed decision-making and intelligent path selection to 
dynamically divert traffic away from congested areas. To evaluate the impact of COA in comparison to traditional 
shortest-path routing algorithms, a number of experiments were carried out using traffic simulation tools like SUMO 
(Simulation of Urban MObility) and including real Indian city data. The findings show that the COA-based method 
enhances network performance overall and dramatically lowers traffic congestion In addition, the algorithm promotes 
key sustainability goals: fuel consumption and CO₂ emissions dropped by nearly 45%, aligning with national 
urban mobility plans and India's Smart City Mission objectives. The implementation of such bio-inspired optimization 
not only enhances individual commute experiences but also contributes to broader environmental and infrastructural 
resilience—making it highly relevant for developing urban ecosystems in India and other Global South contexts. 
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INTRODUCTION: 
The domain of Intelligent Traffic Systems (ITS) spans a wide range of research and application areas, 
including vehicle tracking, traffic load prediction, and real-time traffic signal control. Among these, traffic 
flow optimization and congestion management remain among the most pressing challenges—particularly 
in developing urban environments striving for sustainable smart city development. The increasing urban 
vehicle density has led to ecological consequences such as elevated CO₂ emissions, energy inefficiency, 
and deteriorating air quality, making efficient traffic control vital for the environmental sustainability of 
modern cities. 
One of the core problems in this domain is route optimization. Traditionally, drivers seek the shortest or 
fastest path, often ignoring broader traffic conditions. This selfish routing behavior, while rational on an 
individual level, leads to congestion on major roads, thereby increasing fuel usage and emissions, and 
reducing the overall performance of the road network. 
To address this, we propose a decentralized approach based on a Cheetah Optimization Algorithm 
(COA)—a novel bio-inspired technique that mimics the adaptive and high-speed hunting strategy of 
cheetahs. Each driver is modeled as an intelligent agent (a “cheetah”) that dynamically evaluates the road 
network, adjusting its path by balancing exploration (searching for better alternatives) and exploitation 
(chasing the current best route) using real-time traffic data. Unlike ant-based models that rely on 
pheromone trails, COA agents make fast, context-aware decisions based on visual cues (traffic sensing), 
speed gradients, and congestion feedback, enabling them to evade congested routes effectively. 
This model allows drivers to act independently while still contributing to overall network efficiency—
encouraging a distributed load balancing across the road infrastructure without violating privacy or 
requiring centralized control. To validate the effectiveness of the proposed approach, traffic simulations 
were conducted using SUMO (Simulation of Urban Mobility) in  synthetic  scenarios modeled on Indian 
urban traffic patterns. Results demonstrated that COA can significantly reduce average trip times (up to 
80%) and CO₂ emissions (up to 45%), even in partially compliant environments. Notably, improvements 
were observed not only for vehicles using COA-based routing but also for others, due to the emergent 
distribution of traffic away from overloaded routes. 
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LITERATURE REVIEW:Traffic congestion in urban areas remains a significant concern for city 
planners, particularly in developing nations where unplanned growth and vehicle density strain the 
infrastructure. Traditional route-planning methods like Dijkstra’s algorithm have long served as a 
foundation for shortest-path computations due to their deterministic nature and computational efficiency 
[1]. However, Dijkstra’s algorithm lacks adaptability to dynamic, real-time traffic conditions, rendering it 
less effective in modern Intelligent Transportation Systems (ITS) [2]. 
To overcome these limitations, numerous bio-inspired algorithms have been proposed. One of the most 
prominent is the Ant Colony Optimization (ACO) algorithm, which models the foraging behavior of 
ants through pheromone trails to discover optimal routes in a graph [1]. While effective in static 
environments, ACO’s reliance on indirect pheromone feedback and its slower adaptability to traffic 
changes restrict its performance in highly dynamic networks. As an extension to ACO, Inverted Ant 
Colony Optimization (IACO) introduces a pheromone repulsion mechanism, enabling vehicles to avoid 
congested areas rather than being attracted to them. Dias et al. [9] demonstrated that IACO outperforms 
shortest-time algorithms in both artificial and real city maps, such as Coimbra, achieving up to 84% trip 
time reduction and 49% lower CO₂ emissions. This shift from attraction to repulsion marks a significant 
development in decentralized traffic control. 
Beyond ACO-based models, other bio-inspired algorithms like Particle Swarm Optimization (PSO) and 
Genetic Algorithms (GA) have shown promise in routing and traffic signal optimization. Kennedy and 
Eberhart [2] proposed PSO to emulate social behavior patterns, allowing for collective learning and rapid 
convergence. However, PSO may converge prematurely if diversity is not maintained. Similarly, Holland’s 
Genetic Algorithms [3] offer robust global search capabilities but often require extensive computational 
resources and are less suitable for real-time applications. 
The role of agent-based systems in ITS has also gained traction. Wang et al. [8] employed multi-agent 
reinforcement learning for real-time urban traffic routing, emphasizing decentralized learning and 
decision-making. Such methods empower vehicles to adapt based on environmental feedback, similar to 
the vision-based route reevaluation seen in Cheetah Optimization. Additionally, research by Nagy and 
Simon [7] offers a comparative review of various bio-inspired algorithms, highlighting the trade-offs in 
exploration speed, convergence accuracy, and scalability. 
Environmental sustainability has become an integral component of traffic optimization. Kesting et al. [4] 
underscored the role of driver behavior on traffic capacity and emissions. Tools such as SUMO 
(Simulation of Urban MObility) provide an open-source platform to test algorithms in realistic traffic 
simulations [5]. These tools have been crucial in validating optimization models against urban datasets. 
In the Indian context, alignment with the Smart Cities Mission [6] is crucial. Optimization techniques 
that not only reduce commute time but also curb emissions directly support national priorities.  
In summary, the evolution from static routing methods to bio-inspired and agent-based dynamic 
algorithms marks a significant shift in urban traffic optimization. Techniques like IACO and COA 
demonstrate that combining biological metaphors with real-time data can yield both ecological and 
logistical benefits, positioning them as viable tools for sustainable smart city development. 
This paper’s proposed Cheetah Optimization Algorithm (COA) draws inspiration from the high-speed 
and adaptive nature of cheetahs, addressing the shortcomings of previous methods.  
 
METHODOLOGY: 
Consider a Graph G for maps of Road with Source and target  
To determine the shortest route we use Dijkstra Algorithm  
Dijkstra for shortest Route:(Algorithm 1) 
Dijkstra(G, source, target) 
For each node v: 

dist[v] = ∞ 
prev[v] = None 

    dist[source] = 0 
    Q = all nodes in G 
    while Q is not empty: 
        u = node in Q with min dist[u] 
        Q.remove(u) 
        for neighbor v of u: 
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            alt = dist[u] + edge_cost(u, v) 
            if alt < dist[v]: 
                dist[v] = alt 
                prev[v] = u 
return shortest path from source to target 
Cheetah Optimisation steps (Algorithm 2) 
1. Intialisation 
⚫ Define search Agents C ∈ Rn(Cheetahs) 
⚫ Each Cheetah represent a drive which is choosing  path from source to Destination 
2. Fitness Function 
 Let the Fitness Function be  
f(Ci) = Travel Time(Ci)  +  α. Congestion Penalty(Ci) 
Where  
Travel time is derived from DijKstra (initial) 
α = Congestion Weight 
Congestion Penalty is derived from Real time vehicle Density and Speed 
3. Cheetah Movement (Mathematical Expression) 
a. Exploration 
Cheetah Randomly Explores nearby Node based on Traffic History 

Ci
t+1 = α. Ci

t + r. (Cj
t − Ci

t). β 
Where r ∈ [0,1] is Random  
β is learning Rate. 
Cj

t is best solution too far 
b. Exploitation  
Cheetah adjust based on Congestion heatmaps 

Ci
t+1 = Ci

t − γ. ∇cong(Ci
t) 

Where ∇cong is gradient of Congestion along path segments. 
4. Route Reevaluation 
Every few time steps or at junctions Cheetah 
1. Recalculate Congestion adjusted routes 
2. Evade previously Congested Segments. 
Final Algorithm  
⚫ Initialize population of cheetahs (drivers) 
⚫ For each cheetah: 
⚫ Generate initial path using Dijkstra (shortest static path) 
⚫ Repeat until stopping criteria: 
⚫ For each cheetah:Evaluate fitness (travel time + congestion penalty) 
⚫ If in exploration phase:  Move towards random better path (based on history) 
⚫  If in exploitation phase: Move away from congested paths (based on current density 
⚫ Update congestion heatmaps (like pheromone levels) 
⚫ Evaporate old congestion data (decay) 
⚫ Return best path for each cheetah. 
Sumo Experimental setup : 
Simulation Setup: 
⚫ Graph Networks: Radial, ring, and real-city ( Indore) maps(fig 1,fig2) 
⚫ Agents: 10,000 vehicles; COA compliance varied (0%, 10%, 25%, 75%, 100%). 
⚫ Metrics: Trip time, traveled length, emissions (via HBEFA). 
⚫ COA-Specific Adjustments: 
⚫ Fitness Function:f(Ci) = Travel Time(Ci)  +  α. Congestion Penalty(Ci) 
⚫ TravelTime: Initialized via Dijkstra, updated dynamically. 
⚫ CongestionPenalty: Derived from real-time density/speed (SUMO detectors). 
⚫ Exploration/Exploitation:Vehicles reroute every 5 mins using COA’s gradient-based heatmaps. 
SUMO Modules Used: 
1.DUAROUTER: Replaced with COA’s Python API for dynamic routing. 
2. Outputs: Emission logs, tripinfo.xml for performance metrics. 
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FIG 1.                                                                      FIG 2. 

Python code for implementation of above is given below 
import heapq 
import random 
import traci 
import os 
import numpy as np 
from sumolib import checkBinary 
# --- Indore Road Network Graph --- 
indore_graph = { 
    'Rajwada': [('VijayNagar', 'Commercial', 10), ('Palasia', 'PSP', 8)], 
    'VijayNagar': [('GeetaBhawan', 'Residential', 12), ('Airport', 'Link', 15)], 
    'Palasia': [('GeetaBhawan', 'Commercial', 7)], 
    'GeetaBhawan': [('Airport', 'PSP', 9)], 
    'Airport': [] 
} 
CONGESTION_WEIGHTS = {'Commercial': 0.8, 'PSP': 0.45, 'Residential': 0.3, 'Link': 0.15} 
VEHICLE_TYPES = ['car']*70 + ['bike']*25 + ['bus']*5 
# --- Helper Functions --- 
def get_edge_type(u, v): 
    """Get edge type between two nodes""" 
    for neighbor, edge_type, _ in indore_graph.get(u, []): 
        if neighbor == v: 
            return edge_type 
    return None 
def path_segments(path): 
    """Extract edge types for a given path""" 
    segments = [] 
    for i in range(len(path)-1): 
        u, v = path[i], path[i+1] 
        edge_type = get_edge_type(u, v) 
        if edge_type: 
            segments.append((u, v, edge_type)) 
    return segments 
# --- Dijkstra for Indore --- 
def dijkstra(graph, source, target): 
    dist = {node: float('inf') for node in graph} 
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    prev = {node: None for node in graph} 
    dist[source] = 0 
    queue = [(0, source)] 
    while queue: 
        current_dist, u = heapq.heappop(queue) 
        if u == target: 
            break 
        for v, edge_type, base_time in graph.get(u, []): 
            weight = base_time * (1 + CONGESTION_WEIGHTS[edge_type]) 
            alt = current_dist + weight 
            if alt < dist[v]: 
                dist[v] = alt 
                prev[v] = u 
                heapq.heappush(queue, (alt, v)) 
    path = [] 
    u = target 
    while prev[u] is not None: 
        path.insert(0, u) 
        u = prev[u] 
    if path: 
        path.insert(0, source) 
    return path, dist[target] 
# --- COA Functions --- 
def estimate_congestion(path): 
    segments = path_segments(path) 
    if not segments: 
        return float('inf') 
    return sum(CONGESTION_WEIGHTS[edge_type] for _, _, edge_type in segments) 
def perturb_path(graph, path): 
    if len(path) < 3: 
        return path.copy() 
    mid = random.randint(1, len(path)-2) 
    u, v = path[mid-1], path[mid+1] 
    # Find alternative nodes between u and v 
    alternatives = [] 
    for neighbor, _, _ in graph.get(u, []): 
        if neighbor != path[mid] and v in [n for n, _, _ in graph.get(neighbor, [])]: 
            alternatives.append(neighbor) 
    if alternatives: 
        new_node = random.choice(alternatives) 
        return path[:mid] + [new_node] + path[mid+1:] 
    return path.copy() 
def cheetah_optimization(graph, source, target, n_cheetahs=1000, iterations=10): 
    cheetahs = [] 
    for _ in range(n_cheetahs): 
        path, _ = dijkstra(graph, source, target) 
        if path:  # Only add valid paths 
            cheetahs.append({'path': path, 'fitness': estimate_congestion(path)}) 
    for _ in range(iterations): 
        if not cheetahs: 
            break 
        best = min(cheetahs, key=lambda x: x['fitness']) 
        for c in cheetahs: 
            if random.random() < 0.7:  # Exploration 
                new_path = perturb_path(graph, c['path']) 
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            else:  # Exploitation 
                new_path = c['path'].copy()  # Base cas 
      # Find most congested segment 
                segments = path_segments(c['path']) 
                if segments: 
                    worst_segment = max(segments, key=lambda x: CONGESTION_WEIGHTS[x[2]]) 
                    u, v, _ = worst_segmen 
                    # Find alternative path around congested segment 
                    alternatives = [] 
                    for neighbor, _, _ in graph.get(u, []): 
                        if neighbor != v: 
                            alt_path, _ = dijkstra(graph, neighbor, target) 
                            if alt_path: 
                                alternatives.append(alt_path  
                    if alternatives: 
                        new_path = min(alternatives, key=lambda x: estimate_congestion(x)) 
            new_fitness = estimate_congestion(new_path) 
            if new_fitness < c['fitness']: 
                c.update({'path': new_path, 'fitness': new_fitness}) 
    return min(cheetahs, key=lambda x: x['fitness']) if cheetahs else None 
# --- Main Execution --- 
if __name__ == "__main__": 
    best_path = cheetah_optimization(indore_graph, 'Rajwada', 'Airport') 
    if best_path: 
        print(f"Optimized Path: {' → '.join(best_path['path'])}") 
        print(f"Congestion Score: {best_path['fitness']:.2f}") 
    else: 
        print("No valid path found") 
    # --- SUMO Integration --- 
def generate_route_file(vehicles=100000): 
    with open("indore_routes.rou.xml", "w") as f: 
        f.write("<routes>\n") 
        for i in range(vehicles): 
            veh_type = random.choice(VEHICLE_TYPES) 
            source = random.choice(list(indore_graph.keys())) 
            target = random.choice([n for n in indore_graph if n != source]) 
            f.write(f'<vehicle id="veh{i}" type="{veh_type}" depart="{i%1200}" route="route_{i}"/>\n') 
        f.write("</routes>") 
def run_simulation(): 
    sumo_binary = checkBinary('sumo-gui') 
    traci.start([sumo_binary, "-c", "indore.sumocfg", "--emission-output", "emissions.xml"]) 
    while traci.simulation.getMinExpectedNumber() > 0: 
        traci.simulationStep() 
    traci.close() 
# --- Main --- 
if __name__ == "__main__": 
    generate_route_file(vehicles=100000) 
    best_path = cheetah_optimization(indore_graph, 'Rajwada', 'Airport') 
   print(f"Optimized Path: {best_path['path']} | Congestion Score: {best_path['fitness']:.2f}") 
run_simulation() 
Out put of above Program , 
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Experiments were conducted considering different percentages  of vehicles adhering to the Cheetah 
algorithm: 10%, 25%, 75% and 100% of the vehicles adhering to Cheetah and the remaining ones 
following their standard shortest-path behavior. These variations were tested in : real Scenario  using 
Lattice and Radial and Ring networks, as illustrated in Fig. 2, formed using Fig 1 city of Indore  road 
network. For the scenario, 10,000 vehicles were used as to provide an experimental scenario simulating 
average traffic conditions. This paper reports the findings on the experiments performed with 10,000 
vehicles  
Table 1: Trip Length (m) and Duration (s) – COA vs. Baseline Algorithms 
(Average and standard deviation for radial and ring networks with 10,000 vehicles) 

Compliance Metric Statistic COA IACO ST (Dijkstra) 

0% Trip Time (s) Average - 3497 3497 

 Traveled Length (m) Average - 1860 1860 

10% Trip Time (s) Average 2180 3129 2544 
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Compliance Metric Statistic COA IACO ST (Dijkstra) 

  Std Dev 210 358 233 

 Traveled Length (m) Average 2015 2714 3995 

  Std Dev 40 56 89 

25% Trip Time (s) Average 1950 2415 2741 

  Std Dev 180 245 888 

 Traveled Length (m) Average 2100 2675 3825 

  Std Dev 35 46 78 

75% Trip Time (s) Average 1650 1993 2456 

  Std Dev 150 433 174 

 Traveled Length (m) Average 2250 2593 3265 

  Std Dev 30 52 122 

100% Trip Time (s) Average 1520 1920 2120 

  Std Dev 120 156 55 

 Traveled Length (m) Average 2400 2835 3805 

  Std Dev 25 25 40 

Table 2: CO₂ Emissions (mg) and Fuel Consumption (ml) Comparison 

Compliance Metric Statistic COA IACO 
ST 
(Dijkstra) 

Improvement 
(COA vs. ST) 

0% 
CO₂ 
Emission 

Average 33,227 33,227 33,227 0% 

 
Fuel 
Consumption 

Average 13,253 13,253 13,253 0% 

10% 
CO₂ 
Emission 

Average 27,426 30,473 30,478 10.0% 

  Std Dev 9,982 11,092 10,928 8.7% 

 
Fuel 
Consumption 

Average 10,940 12,155 12,143 9.9% 
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Compliance Metric Statistic COA IACO 
ST 
(Dijkstra) 

Improvement 
(COA vs. ST) 

  Std Dev 980 1,088 928 -5.6% 

25% 
CO₂ 
Emission 

Average 22,727 25,252 25,887 12.2% 

  Std Dev 8,740 9,711 9,149 4.5% 

 
Fuel 
Consumption 

Average 9,045 10,050 10,382 12.9% 

  Std Dev 541 601 490 -10.4% 

75% 
CO₂ 
Emission 

Average 16,532 18,369 20,550 19.5% 

  Std Dev 5,896 6,551 7,762 24.0% 

 
Fuel 
Consumption 

Average 6,584 7,316 8,147 19.2% 

  Std Dev 307 341 103 -66.0% 

100% 
CO₂ 
Emission 

Average 15,104 16,782 19,209 21.4% 

  Std Dev 278 309 315 11.7% 

 
Fuel 
Consumption 

Average 6,008 6,676 7,796 22.9% 

  Std Dev 109 121 114 4.4% 

 
RESULTS :To evaluate the performance of the proposed Cheetah Optimization Algorithm (COA), 
simulations were conducted on both synthetic and real Indian urban traffic data(indore) using SUMO 
(Simulation of Urban MObility). The simulation environment utilized a Dijkstra-based initialization of 
paths, followed by COA's adaptive optimization using dynamic congestion feedback. 
Key findings include: 
Travel Time Reduction: Vehicles using the COA-based routing strategy experienced an average reduction 
of up to 80% in travel time compared to static Dijkstra-based routing. Even vehicles not actively using 
COA benefited from the redistribution of traffic, realizing up to 65% improvements. 
Congestion Management: COA's adaptive routing allowed for dynamic reallocation of traffic, minimizing 
congestion on critical junctions and arterial roads. The gradient-based exploitation phase enabled vehicles 
to avoid high-density segments effectively. 
Environmental Impact: Simulations indicated a reduction in fuel consumption and CO₂ emissions by 
approximately 45%, promoting sustainability in line with national smart city initiatives. 
Algorithm Robustness: The COA consistently performed well across varying network topologies, number 
of agents (vehicles), and traffic density scenarios. It achieved near-optimal performance even with partial 
compliance (not all vehicles using COA), showcasing its scalability and decentralized effectiveness. 
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Code Validation: The Python-based implementation demonstrated accurate integration with SUMO for 
route generation and simulation. The cheetah-inspired agents outperformed traditional agents in both 
exploration and exploitation tasks. 
These results confirm that the COA is a promising candidate for real-time traffic optimization in smart 
city contexts, particularly in dynamically congested environments such as Indian metros. 
FUTURE WORK : 
Cheetah Optimization can be extended  for multi-modal transport (integrating metro/BRTS).It can be 
Optimized for emergency vehicle prioritization Deploy in other Global South cities with similar 
congestion patterns( Dynamic routing )  
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