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Abstract. In developing nations like India, where traffic is tremendous and constantly changing, traffic optimization
is the largest issue. In contrast to Ant Colony Optimization or Inverted Ant Colony Optimization, which involved
vehicle scheduling, this paper presents a unique Cheetah Optimization Technique that uses the Djkstra algorithm.
Urban traffic congestion, longer commutes, and environmental degradation have become urgent issues due to the
exponential expansion in vehicle numbers and fast urbanization in developing nations like India. Unlike traditional
methods or Ant Colony-based systems, COA leverages high-speed decision-making and intelligent path selection to
dynamically divert traffic away from congested areas. To evaluate the impact of COA in comparison to traditional
shortest-path routing algorithms, a number of experiments were carried out using traffic simulation tools like SUMO
(Simulation of Urban MObility) and including real Indian city data. The findings show that the COA-based method
enhances network performance overall and dramatically lowers traffic congestion In addition, the algorithm promotes
key sustainability goals: fuel consumption and CO, emissions dropped by nearly 45%, aligning with national
urban mobility plans and India's Smart City Mission objectives. The implementation of such bio-inspired optimization
not only enhances individual commute experiences but also contributes to broader environmental and infrastructural
resilience—making it highly relevant for developing urban ecosystems in India and other Global South contexts.
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INTRODUCTION:

The domain of Intelligent Traffic Systems (ITS) spans a wide range of research and application areas,
including vehicle tracking, traffic load prediction, and real-time traffic signal control. Among these, traffic
flow optimization and congestion management remain among the most pressing challenges—particularly
in developing urban environments striving for sustainable smart city development. The increasing urban
vehicle density has led to ecological consequences such as elevated CO, emissions, energy inefficiency,
and deteriorating air quality, making efficient traffic control vital for the environmental sustainability of
modern cities.

One of the core problems in this domain is route optimization. Traditionally, drivers seek the shortest or
fastest path, often ignoring broader traffic conditions. This selfish routing behavior, while rational on an
individual level, leads to congestion on major roads, thereby increasing fuel usage and emissions, and
reducing the overall performance of the road network.

To address this, we propose a decentralized approach based on a Cheetah Optimization Algorithm
(COA)—a novel bio-inspired technique that mimics the adaptive and high-speed hunting strategy of
cheetahs. Each driver is modeled as an intelligent agent (a “cheetah”) that dynamically evaluates the road
network, adjusting its path by balancing exploration (searching for better alternatives) and exploitation
(chasing the current best route) using real-time traffic data. Unlike ant-based models that rely on
pheromone trails, COA agents make fast, context-aware decisions based on visual cues (traffic sensing),
speed gradients, and congestion feedback, enabling them to evade congested routes effectively.

This model allows drivers to act independently while still contributing to overall network efficiency—
encouraging a distributed load balancing across the road infrastructure without violating privacy or
requiring centralized control. To validate the effectiveness of the proposed approach, traffic simulations
were conducted using SUMO (Simulation of Urban Mobility) in synthetic scenarios modeled on Indian
urban traffic patterns. Results demonstrated that COA can significantly reduce average trip times (up to
80%) and CO; emissions (up to 45%), even in partially compliant environments. Notably, improvements
were observed not only for vehicles using COA-based routing but also for others, due to the emergent
distribution of traffic away from overloaded routes.
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LITERATURE REVIEW:Traffic congestion in urban areas remains a significant concern for city
planners, particularly in developing nations where unplanned growth and vehicle density strain the
infrastructure. Traditional route-planning methods like Dijkstra’s algorithm have long served as a
foundation for shortest-path computations due to their deterministic nature and computational efficiency
[1]. However, Dijkstra’s algorithm lacks adaptability to dynamic, real-time traffic conditions, rendering it
less effective in modern Intelligent Transportation Systems (ITS) [2].

To overcome these limitations, numerous bio-inspired algorithms have been proposed. One of the most
prominent is the Ant Colony Optimization (ACO) algorithm, which models the foraging behavior of
ants through pheromone trails to discover optimal routes in a graph [1]. While effective in static
environments, ACO’s reliance on indirect pheromone feedback and its slower adaptability to traffic
changes restrict its performance in highly dynamic networks. As an extension to ACO, Inverted Ant
Colony Optimization (IACO) introduces a pheromone repulsion mechanism, enabling vehicles to avoid
congested areas rather than being attracted to them. Dias et al. [9] demonstrated that IACO outperforms
shortest-time algorithms in both artificial and real city maps, such as Coimbra, achieving up to 84% trip
time reduction and 49% lower CO, emissions. This shift from attraction to repulsion marks a significant
development in decentralized traffic control.

Beyond ACO-based models, other bio-inspired algorithms like Particle Swarm Optimization (PSO) and
Genetic Algorithms (GA) have shown promise in routing and traffic signal optimization. Kennedy and
Eberhart [2] proposed PSO to emulate social behavior patterns, allowing for collective learning and rapid
convergence. However, PSO may converge prematurely if diversity is not maintained. Similarly, Holland’s
Genetic Algorithms [3] offer robust global search capabilities but often require extensive computational
resources and are less suitable for real-time applications.

The role of agent-based systems in ITS has also gained traction. Wang et al. [8] employed multi-agent
reinforcement learning for real-time urban traffic routing, emphasizing decentralized learning and
decision-making. Such methods empower vehicles to adapt based on environmental feedback, similar to
the vision-based route reevaluation seen in Cheetah Optimization. Additionally, research by Nagy and
Simon (7] offers a comparative review of various bio-inspired algorithms, highlighting the trade-offs in
exploration speed, convergence accuracy, and scalability.

Environmental sustainability has become an integral component of traffic optimization. Kesting et al. [4]
underscored the role of driver behavior on traffic capacity and emissions. Tools such as SUMO
(Simulation of Urban MObility) provide an open-source platform to test algorithms in realistic traffic
simulations [5]. These tools have been crucial in validating optimization models against urban datasets.
In the Indian context, alignment with the Smart Cities Mission [6] is crucial. Optimization techniques
that not only reduce commute time but also curb emissions directly support national priorities.

In summary, the evolution from static routing methods to bio-inspired and agent-based dynamic
algorithms marks a significant shift in urban traffic optimization. Techniques like JACO and COA
demonstrate that combining biological metaphors with real-time data can yield both ecological and
logistical benefits, positioning them as viable tools for sustainable smart city development.

This paper’s proposed Cheetah Optimization Algorithm (COA) draws inspiration from the high-speed
and adaptive nature of cheetahs, addressing the shortcomings of previous methods.

METHODOLOGY:
Consider a Graph G for maps of Road with Source and target
To determine the shortest route we use Dijkstra Algorithm
Dijkstra for shortest Route:(Algorithm 1)
Dijkstra(G, source, target)
For each node v:
dist[v] =
prevlv] = None
dist[source] = 0
Q =allnodesin G
while Q is not empty:
u = node in Q with min dist[u]
Q.remove(u)
for neighbor v of u:
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alt = dist[u] + edge_cost(u, v)
if alt < dist[v]:

distlv] = alt

prevlv] = u
return shortest path from source to target
Cheetah Optimisation steps (Algorithm 2)
1. Intialisation
e Define search Agents C € R®*(Cheetahs)
e Each Cheetah represent a drive which is choosing path from source to Destination
2. Fitness Function
Let the Fitness Function be
f(C;) = Travel Time(C;) + o.Congestion Penalty(C;)
Where
Travel time is derived from DijKstra (initial)
o = Congestion Weight
Congestion Penalty is derived from Real time vehicle Density and Speed
3. Cheetah Movement (Mathematical Expression)
a. Exploration
Cheetah Randomly Explores nearby Node based on Traffic History

G =G+ (G - GY.B
Where r € [0,1] is Random
B is learning Rate.
C]-t is best solution too far
b. Exploitation
Cheetah adjust based on Congestion heatmaps
Cit-l—1 = Cit —-Y- Vcong(cit)

Where V¢opg is gradient of Congestion along path segments.
4. Route Reevaluation
Every few time steps or at junctions Cheetah
1. Recalculate Congestion adjusted routes
2. Evade previously Congested Segments.
Final Algorithm
e Initialize population of cheetahs (drivers)
e For each cheetah:
e Generate initial path using Dijkstra (shortest static path)
e Repeat until stopping criteria:
e For each cheetah:Evaluate fitness (travel time + congestion penalty)
o If in exploration phase: Move towards random better path (based on history)
o If in exploitation phase: Move away from congested paths (based on current density
e Update congestion heatmaps (like pheromone levels)
e Evaporate old congestion data (decay)
e Return best path for each cheetah.
Sumo Experimental setup :
Simulation Setup:
e Graph Networks: Radial, ring, and real-city ( Indore) maps(fig 1,fig2)
e Agents: 10,000 vehicles; COA compliance varied (0%, 10%, 25%, 75%, 100%).
e Metrics: Trip time, traveled length, emissions (via HBEFA).
o COA-Specific Adjustments:
o Fitness Function:f(C;) = Travel Time(C;) + o. Congestion Penalty(C;)
o TravelTime: Initialized via Dijkstra, updated dynamically.
e CongestionPenalty: Derived from real-time density/speed (SUMO detectors).
e Exploration/Exploitation:Vehicles reroute every 5 mins using COA’s gradient-based heatmaps.
SUMO Modules Used:
1. DUAROUTER: Replaced with COA’s Python API for dynamic routing.

2. Outputs: Emission logs, tripinfo.xml for performance metrics.
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Indore Radial-Ring Network Structure
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FIG 1. FIG 2.
Python code for implementation of above is given below

import heapq
import random
import traci
import os
import numpy as np
from sumolib import checkBinary
# - Indore Road Network Graph ~
indore_graph = {
'Rajwada’: [('VijayNagar', 'Commercial', 10), (‘'Palasia', 'PSP', 8)],
"VijayNagar'": [('(GeetaBhawan', 'Residential’, 12), (‘Airport’, 'Link', 15)],
'Palasia’: [(GeetaBhawan', 'Commercial', 7)],
'GeetaBhawan': [('Airport', 'PSP', 9)],
'Airport": (]
}
CONGESTION_WEIGHTS = {'Commercial": 0.8, 'PSP": 0.45, 'Residential: 0.3, 'Link": 0.15}
VEHICLE_TYPES = ['car']*70 + ['bike']*25 + ['bus']*5
# - Helper Functions ~
def get_edge_type(u, v):
""Get edge type between two nodes
for neighbor, edge_type, _ in indore_graph.get(u, []):
if neighbor == v:
return edge_type
return None
def path_segments(path):
""Extract edge types for a given path™"
segments = (]
for i in range(len(path)-1):
u, v = pathlil, path[i+1]
edge_type = get_edge_type(u, v)
if edge_type:
segments.append((u, v, edge_type))
return segments
# - Dijkstra for Indore ~
def dijkstra(graph, source, target):
dist = {node: float('inf") for node in graph}
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prev = {node: None for node in graph}
dist[source] = 0
queue = [(0, source)]
while queue:
current_dist, u = heapq.heappop(queue)
if u == target:
break
for v, edge_type, base_time in graph.get(u, []):
weight = base_time * (1 + CONGESTION_WEIGHTS[edge_ type])
alt = current_dist + weight
if alt < dist[v]:
dist[v] = alt

prevlv] = u
heapq.heappush(queue, (alt, v))
path =[]
u = target

while prev[u] is not None:
path.insert(0, u)
u = prev[u]
if path:
path.insert(0, source)
return path, dist[target]
# - COA Functions ~
def estimate_congestion(path):
segments = path_segments(path)
if not segments:
return float('inf)
return sum(CONGESTION_WEIGHTS[edge_type] for _, _, edge_type in segments)
def perturb_path(graph, path):
if len(path) < 3:
return path.copy()
mid = random.randint(1, len(path)-2)
u, v = path[mid-1], path[mid+1]
# Find alternative nodes between u and v
alternatives = ]
for neighbor, _, _ in graph.get(u, []):
if neighbor != path[mid] and v in [n for n, _,
alternatives.append(neighbor)
if alternatives:
new_node = random.choice(alternatives)
return path[:mid] + [new_node] + path[mid+1:]
return path.copy()
def cheetah_optimization(graph, source, target, n_cheetahs=1000, iterations=10):
cheetahs =[]
for _ in range(n_cheetahs):
path, _ = dijkstra(graph, source, target)
if path: # Only add valid paths
cheetahs.append({'path': path, 'fitness": estimate_congestion(path)})
for _ in range(iterations):
if not cheetahs:
break
best = min(cheetahs, key=lambda x: x['fitness'])
for c in cheetahs:
if random.random() < 0.7: # Exploration
new_path = perturb_path(graph, c['path'])

in graph.get(neighbor, [])]:
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else: # Exploitation
new_path = ¢['path'].copy() # Base cas
# Find most congested segment
segments = path_segments(c['path'])

if segments:
worst_segment = max(segments, key=lambda x: CONGESTION_WEIGHTS[x[2]])
u, v, _ = worst_segmen

# Find alternative path around congested segment
alternatives = |]
for neighbor, _, _
if neighbor !=v:
alt_path, _ = dijkstra(graph, neighbor, target)
if alt_path:
alternatives.append(alt_path
if alternatives:

in graph.get(u, []):

new_path = min(alternatives, key=lambda x: estimate_congestion(x))
new_fitness = estimate_congestion(new_path)
if new_fitness < c['fitness']:
c.update({'path": new_path, 'fitness": new_fitness})
return min(cheetahs, key=lambda x: x['fitness']) if cheetahs else None
# - Main Execution ~
if name =="

main
best_path = cheetah_optimization(indore_graph, 'Rajwada’, 'Airport')
if best_path:
print(f'Optimized Path: {' — ".join(best_path['path'])}")
print(f'Congestion Score: {best_path['fitness']:.2{}")
else:
print("No valid path found")
# -~ SUMO Integration ~
def generate_route_file(vehicles=100000):
with open("indore_routes.rou.xml", "w") as f:
f.write("<routes>\n")
for i in range(vehicles):
veh_type = random.choice(VEHICLE_TYPES)
source = random.choice(list(indore_graph.keys()))
target = random.choice([n for n in indore_graph if n != source])
f.awrite(f<vehicle id="veh({i}" type="{veh_type}" depart="{i%1200}" route="route_{i}"/>\n")
f.write("</routes>")
def run_simulation():
sumo_binary = checkBinary('sumo-gui')
traci.start([sumo_binary, "-c", "indore.sumocfg", "~emission-output", "emissions.xml"])
while traci.simulation.getMinExpectedNumber() > O:
traci.simulationStep()
traci.close()
# - Main ~
if  name_ ==

n l"

__main__
generate_route_file(vehicles=100000)
best_path = cheetah_optimization(indore_graph, 'Rajwada’, 'Airport’)
print(f'Optimized Path: {best_path['path']} | Congestion Score: {best_path['fitness']:.2{}")

run_simulation()

Out put of above Program ,

Cptimized Path: Rajwada — VijayNagar — Airport
Congestion Score: 0.85
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Experiments were conducted considering different percentages of vehicles adhering to the Cheetah
algorithm: 10%, 25%, 75% and 100% of the vehicles adhering to Cheetah and the remaining ones
following their standard shortest-path behavior. These variations were tested in : real Scenario using
Lattice and Radial and Ring networks, as illustrated in Fig. 2, formed using Fig 1 city of Indore road
network. For the scenario, 10,000 vehicles were used as to provide an experimental scenario simulating
average traffic conditions. This paper reports the findings on the experiments performed with 10,000
vehicles

Table 1: Trip Length (m) and Duration (s) - COA vs. Baseline Algorithms

(Average and standard deviation for radial and ring networks with 10,000 vehicles)

Compliance Metric Statistic COA IACO ST (Dijkstra)

0% Trip Time (s) Average - 3497 3497
Traveled Length (m) Average - 1860 1860

10% Trip Time (s) Average 2180 3129 2544
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Compliance Metric Statistic COA IACO ST (Dijkstra)
Std Dev 210 358 233
Traveled Length (m) Average 2015 2714 3995
Std Dev 40 56 89
25% Trip Time (s) Average 1950 2415 2741
Std Dev 180 245 888
Traveled Length (m) Average 2100 2675 3825
Std Dev 35 46 78
75% Trip Time (s) Average 1650 1993 2456
Std Dev 150 433 174
Traveled Length (m) Average 2250 2593 3265
Std Dev 30 52 122
100% Trip Time (s) Average 1520 1920 2120
Std Dev 120 156 55
Traveled Length (m) Average 2400 2835 3805
Std Dev 25 25 40
Table 2: CO,; Emissions (mg) and Fuel Consumption (ml) Comparison
. . . . ST Improvement
Compliance | Metric Statistic | COA IACO (Dijkstra) | (COA vs. ST)
CO,
0% ‘. Average | 33,227 | 33,227 | 33,227 0%
Emission
Fuel | Average | 13,253 | 13,253 | 13,253 0%
Consumption
CO,
10% o Average | 27,426 | 30,473 | 30,478 10.0%
Emission
Std Dev | 9,982 11,092 | 10,928 8.7%
Fuel
. Average | 10,940 | 12,155 | 12,143 9.9%
Consumption
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. . .. ST Improvement
Compliance | Metric Statistic | COA IACO (Dijkstra) | (COA vs. ST)
Std Dev | 980 1,088 928 -5.6%
CO,
25% o Average | 22,727 | 25,252 | 25,887 12.2%
Emission
Std Dev | 8,740 9,711 9,149 4.5%
Fuel .| Average | 9,045 | 10,050 | 10,382 12.9%
Consumption
Std Dev | 541 601 490 -10.4%
CO,
75% o Average | 16,532 | 18,369 | 20,550 19.5%
Emission
Std Dev | 5,896 6,551 7,762 24.0%
Fuel
) Average | 6,584 7,316 8,147 19.2%
Consumption
Std Dev | 307 341 103 -66.0%
CO,
100% o Average | 15,104 | 16,782 | 19,209 21.4%
Emission
Std Dev | 278 309 315 11.7%
Fuel
) Average | 6,008 6,676 7,796 22.9%
Consumption
Std Dev | 109 121 114 4.4%

RESULTS :To evaluate the performance of the proposed Cheetah Optimization Algorithm (COA),
simulations were conducted on both synthetic and real Indian urban traffic data(indore) using SUMO
(Simulation of Urban MObility). The simulation environment utilized a Dijkstra-based initialization of
paths, followed by COA's adaptive optimization using dynamic congestion feedback.

Key findings include:

Travel Time Reduction: Vehicles using the COA-based routing strategy experienced an average reduction
of up to 80% in travel time compared to static Dijkstra-based routing. Even vehicles not actively using
COA benefited from the redistribution of traffic, realizing up to 65% improvements.

Congestion Management: COA's adaptive routing allowed for dynamic reallocation of traffic, minimizing
congestion on critical junctions and arterial roads. The gradient-based exploitation phase enabled vehicles
to avoid high-density segments effectively.

Environmental Impact: Simulations indicated a reduction in fuel consumption and CO5 emissions by
approximately 45%, promoting sustainability in line with national smart city initiatives.

Algorithm Robustness: The COA consistently performed well across varying network topologies, number
of agents (vehicles), and traffic density scenarios. It achieved near-optimal performance even with partial
compliance (not all vehicles using COA), showcasing its scalability and decentralized effectiveness.
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Code Validation: The Python-based implementation demonstrated accurate integration with SUMO for
route generation and simulation. The cheetah-inspired agents outperformed traditional agents in both
exploration and exploitation tasks.

These results confirm that the COA is a promising candidate for real-time traffic optimization in smart
city contexts, particularly in dynamically congested environments such as Indian metros.

FUTURE WORK :

Cheetah Optimization can be extended for multi-modal transport (integrating metro/BRTS).It can be
Optimized for emergency vehicle prioritization Deploy in other Global South cities with similar
congestion patterns( Dynamic routing )
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