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Abstract 
Industrial wastewater contamination with heavy metals poses a significant environmental and health challenge in the 
21st century. This study investigates the effectiveness of tea and coffee waste as low-cost adsorbents for removing heavy 
metals (lead, nickel, cadmium, zinc, copper, and iron) from aqueous solutions. The research demonstrates that these 
agricultural wastes can achieve remarkable removal efficiencies, with lead showing the highest adsorption rate of up 
to 99.1% under optimal conditions. The study examined various parameters including initial metal concentration (5-
30 mg/L), adsorbent dosage (2-3 gm), and contact time (15-60 minutes). To complement the experimental 
investigation, a Random Forest machine learning model was implemented to analyse the relative importance of 
operational parameters on metal removal efficiency. The machine learning analysis revealed that contact time emerged 
as the most influential factor across all metals (importance scores: 0.90-1.82), while initial concentration and 
adsorbent dose showed varying importance depending on the specific metal. This data-driven approach provided 
quantitative insights into parameter optimization and validated the experimental findings through predictive 
modelling. Results indicate that tea and coffee waste represent economical and environmentally sustainable 
alternatives to conventional treatment methods, with optimal pH range of 4.5-8.0 for maximum metal removal 
efficiency. 
Keywords: Adsorption, Heavy metals, Tea waste, Coffee waste, Water treatment, Environmental remediation, Low-
cost adsorbents Machine learning, Random Forest, Feature importance 
 
1. INTRODUCTION 
1.1 Background and Significance 
The rapid industrialization and globalization of the 21st century have brought unprecedented 
technological advancement alongside severe environmental challenges. Water contamination, particularly 
from heavy metals discharged by industrial activities, has emerged as one of the most pressing 
environmental concerns affecting both human health and aquatic ecosystems worldwide. 
Heavy metals such as cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), copper (Cu), and iron (Fe) are 
particularly problematic due to their non-biodegradable nature and potential for bioaccumulation in the 
food chain. These metals can cause severe health complications including neurological disorders, kidney 
damage, cancer, and developmental abnormalities. The persistence of these contaminants in the 
environment necessitates effective and economically viable treatment solutions. 
1.2 Current Treatment Methods and Limitations  
Traditional wastewater treatment methods for heavy metal removal include: 
• Chemical reduction and oxidation  
• Ion exchange processes 
• Electrodialysis  
• Electrochemical precipitation  
• Liquid-liquid extraction  
• Ultrafiltration and reverse osmosis  
While these conventional methods demonstrate technical efficiency, they suffer from significant 
drawbacks including high operational costs, energy-intensive processes, generation of secondary 
pollutants, and limited applicability in developing regions where industrial pollution is often most severe.  
1.3 Adsorption as a Sustainable Alternative 
 Adsorption has emerged as a promising alternative due to its simplicity, cost-effectiveness, and high 
removal efficiency. The process involves the adhesion of contaminant molecules to the surface of solid 
adsorbent materials through physical or chemical interactions. The effectiveness of adsorption depends 
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on factors such as surface area, porosity, functional groups present on the adsorbent surface, and 
operational parameters. 
1.4 Agricultural Waste as Low-Cost Adsorbents  
Agricultural waste materials offer significant potential as adsorbents due to their: 
• Abundant availability  
• Low or zero cost  
• Biodegradable nature  
• Presence of functional groups capable of metal binding  
• Minimal processing requirements  
Tea and coffee cultivation is particularly extensive in Asian countries, with India being the second-largest 
producer globally. The substantial waste generation from tea and coffee processing presents an 
opportunity to convert these materials into valuable adsorbents while addressing waste management 
challenges. 
1.5 Machine Learning  
The integration of machine learning techniques in environmental engineering research has gained 
significant momentum in recent years. These data-driven approaches provide powerful tools for analysing 
complex datasets, identifying patterns, and optimizing process parameters that may not be immediately 
apparent through traditional statistical methods. 
Random Forest, an ensemble machine learning algorithm, has proven particularly effective in 
environmental applications due to its ability to: 
• Handle non-linear relationships between variables 
• Provide feature importance rankings 
• Manage datasets with multiple variables without overfitting 
• Offer robust predictions with uncertainty quantification 
In the context of adsorption studies, machine learning can identify the relative importance of operational 
parameters such as contact time, adsorbent dosage, and initial concentration, thereby providing 
quantitative insights for process optimization and scale-up design. 
 
2. LITERATURE REVIEW 
 2.1 Previous Studies on Tea and Coffee Waste 
Recent studies have highlighted the potential of agricultural wastes such as tea and coffee for the 
adsorption of heavy metals from wastewater. Meenakshi et al. (2014) found that tea waste demonstrated 
considerable removal capacities for various heavy metals, which was attributed to its porous structure and 
functional groups. Similarly, Mahvi et al. (2005) demonstrated the effectiveness of tea waste in removing 
metal ions under varying operational parameters, emphasizing its role as a low-cost alternative to synthetic 
adsorbents. The enhanced adsorption capacity of powdered tea and coffee waste (particle size < 200 μm) 
is primarily due to increased surface area and better mass transfer characteristics. 
2.2 Adsorption Mechanisms 
The mechanism of adsorption of heavy metals onto these waste materials involves multiple processes. 
Physical adsorption via Van der Waals forces plays a minor role, while chemisorption involving hydroxyl 
(-OH), carboxyl (-COOH), and amino (-NH₂) groups is predominant. Ion exchange and complexation 
with metal ions have also been observed to contribute significantly, especially when nitrogen- and oxygen-
containing ligands are available. 
2.3 Factors Affecting Adsorption Efficiency 
Several parameters influence the adsorption process: 
• pH: A critical factor as it affects both metal ion speciation and the charge on the adsorbent surface. 
Ajmal et al. (1998) reported optimal performance for several metals within a pH range of 4.5 to 8.0. 
• Contact Time: The adsorption process typically shows a rapid initial uptake phase followed by a slower 
equilibrium phase. Sharma and Forster (1995) showed equilibrium was generally reached within 60–120 
minutes for natural adsorbents. 
• Initial Metal Concentration: Higher concentrations offer more ions for adsorption but may lead to 
active site saturation, reducing overall removal percentages. 
• Adsorbent Dosage: More adsorbent increases the number of active sites, up to a threshold, beyond 
which aggregation may reduce efficiency. 
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2.4 Machine Learning Applications in Adsorption Studies 
The application of machine learning, particularly ensemble models like Random Forest, in adsorption 
studies has grown due to its ability to handle non-linear relationships and offer robust predictions. It has 
been used to identify key parameters affecting adsorption performance and validate experimental data. 
Studies by Mahvi et al. (2005) and Tea Waste as a Sorbent (2014) highlight the importance of integrating 
data-driven approaches for optimizing operational conditions and enhancing prediction accuracy. 
 
3.MATERIALS AND METHODOLOGY 
3.1 Adsorbent Preparation  
Tea Waste Processing: 
1. Collection of used tea leaves from local sources 
2. Multiple washing cycles with distilled water to remove residual tea compounds 
3. Oven drying at 120°C to achieve constant moisture content 
4. Grinding and sieving through 40-mesh screen to obtain uniform particle size 
5. Storage in airtight containers to prevent moisture absorption 
Coffee Waste Processing: 
1. Collection of spent coffee grounds 
2. Thorough washing with distilled water 
3. Oven drying at 100°C 
4. Grinding and screening for particle size uniformity 
5. Proper storage until experimental use 
3.2 Metal Solution Preparation 
Synthetic wastewater solutions were prepared using analytical grade metal salts dissolved in distilled water. 
Four concentration levels were established for each metal:  
• 5 mg/L (low concentration)  
• 10 mg/L (medium-low concentration) 
• 20 mg/L (medium-high concentration)  
• 30 mg/L (high concentration)  
These concentrations represent typical ranges found in industrial wastewater and allow for comprehensive 
evaluation of adsorption performance across different pollution levels. 
 3.3 Experimental Design  
Batch Adsorption Studies: The experiments employed a systematic approach with the following 
parameters:  
Variables Studied:  
• Metal types: Lead (Pb), Nickel (Ni), Cadmium (Cd), Zinc (Zn), Copper (Cu), Iron (Fe)  
• Adsorbent dosages: 2.0, 2.5, and 3.0 grams per 100 mL solution  
• Contact times: 15, 30, and 60 minutes  
• Initial metal concentrations: 5, 10, 20, and 30 mg/L  
Experimental Procedure:  
1. Preparation of 12 conical flasks for each experimental set 
2. Addition of predetermined adsorbent quantity to each flask 
3. Introduction of 100 mL metal solution of known concentration 
4. Agitation using orbital shaker at 150 rpm for specified duration 
5. Filtration through Whatman No. 40 filter paper 
6. Analysis of residual metal concentration using atomic absorption spectrophotometry 
3.4 Analytical Methods 
Metal concentrations were determined using atomic absorption spectrophotometry (AAS), which 
provides high accuracy and precision for trace metal analysis. The percentage removal efficiency was 
calculated using the formula:  
Removal Efficiency (%) = [(C₀ - Cₑ) / C₀] × 100  
Where: 
• C₀ = Initial metal concentration (mg/L) 
• Cₑ = Equilibrium metal concentration (mg/L) 
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3.5 Machine Learning Implementation 
To complement the experimental investigation and provide quantitative insights into parameter 
importance, a Random Forest machine learning approach was implemented using the collected 
experimental data. 
3.5.1 Dataset Preparation 
The experimental data was organized into a structured dataset with the following features: 
Input variables (features): 
• Adsorbent dose (g/100 mL): 2.0, 2.5, 3.0 
• Contact time (minutes): 15, 30, 60 
• Initial metal concentration (mg/L): 5, 10, 20, 30 
• Output variable (target): 
• Removal efficiency (%): Calculated from experimental measurements 
Separate datasets were created for each metal to account for their distinct adsorption behaviours and 
mechanisms. 
3.5.2 Random Forest Model Configuration 
The Random Forest regression model was implemented with the following specifications: 
• Algorithm: Ensemble method combining multiple decision trees 
• Number of estimators: Optimized through cross-validation 
• Feature selection: All three operational parameters included 
• Validation approach: Train-test split to ensure model generalizability 
• Performance metrics: Mean squared error and R² score for model evaluation  
3.5.3 Feature Importance Analysis  
The primary objective of the machine learning implementation was to determine the relative importance 
of operational parameters on metal removal efficiency. Random Forest provides feature importance scores 
based on:  
• Mean decrease in impurity across all decision trees  
• Contribution of each feature to the overall model performance  
• Quantitative ranking of parameter influence  
This analysis enables: 
• Identification of the most critical operational parameters  
• Quantitative comparison of parameter influence across different metals 
• Data-driven optimization of experimental conditions  
• Validation of experimental observations through predictive modelling  
3.5.4 Model Validation and Interpretation  
• The trained Random Forest models were validated using:  
• Cross-validation techniques to ensure robust performance 
• Comparison of predicted vs. experimental values  
• Statistical metrics to assess model accuracy  
• Feature importance visualization for clear interpretation 
 The machine learning analysis was conducted separately for each metal to capture the unique adsorption 
characteristics and parameter sensitivities specific to each heavy metal studied. 
 
4.RESULTS AND DISCUSSION 
4.1 Lead (Pb) Removal Performance 
 Lead demonstrated the highest adsorption affinity among all tested metals, consistent with its larger ionic 
radius and higher binding affinity to organic functional groups. 
 Key Findings: 
• Optimal Performance: 99.1% removal achieved with 2.5g adsorbent dose at 60 minutes contact time 
for 5 mg/L initial concentration  
• Rapid Kinetics: 90.7% removal within first 30 minutes, indicating fast adsorption kinetics  
• Dose Response: Increased adsorbent dosage from 2g to 3g improved removal efficiency across all 
concentrations  
• Concentration Effect: Higher initial concentrations showed reduced percentage removal due to 
saturation of binding sites  
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Mechanistic Insights: Lead's superior removal can be attributed to its high affinity for carboxyl and 
hydroxyl functional groups abundant in tea and coffee waste. The formation of stable chelate complexes 
and favourable electrostatic interactions contribute to efficient removal 
Table 1: Removal of lead by adsorption (percentage) 

Adsorbent Dose 2gm 

Time 
(mm) 

Adsorption % of Lead (mg/L) 

5 10 20 30 

15 51.3 42.5 40.7 35.6 
30 86.2 83.2 78.4 72.4 

60 96.2 90.5 85.1 83.2 

 

                                                             
Figure 1: Variation in Adsorption Efficiency of Lead with Contact Time at 2gm Dosage 
                                      Table 2: Efficiency of Lead Removal through Adsorption (%) 

Adsorbent Dose 2.5gm 
Time 
(mm) 

concentration of Lead (mg/L) 
(Initial) 
5 10 20 30 

15 56.2 53.1 51.1 49.1 
30 90.7 88.8 85.3 75.2 
60 99.1 98.9 97.6 88.7 

 

 
Figure 2: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
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Table 3:  removal of lead by adsorption (percentage) 
Adsorbent Dose 3gm 

Time 
(mm) 

concentration of Lead (mg/L) 
(Initial) 
5 10 20 30 

15 60.5 52.2 49.1 45.3 

30 93.8 90.3 89.2 79.1 

60 100 100 99.4 97.6 

 

 
Figure 3: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-axis 
with 3 gm of adsorbent dose and its efficiency. 
4.1.1 Machine Learning-Based Feature Importance Analysis 
To complement the experimental investigation, machine learning was used to evaluate the influence of 
operational parameters on metal removal efficiency. A Random Forest regression model was applied 
separately to lead and nickel removal datasets to determine the relative importance of three input features: 
adsorbent dose (g/100 mL), contact time (minutes), and initial metal concentration (mg/L). 
4.1.2 Feature Importance in Lead (Pb) Removal 
A Random Forest regression model was trained using the experimental data collected for lead removal. 
The importance of each feature in predicting lead removal efficiency is shown in Figure 19. 
Interpretation: 
• Contact time emerged as the most influential factor, with an importance score of 1.81. 
• Initial concentration and adsorbent dose had considerably lower importance scores (0.09 and 0.07, 
respectively). 
• These findings indicate that adsorption kinetics drive lead removal, and that extending the contact 
time significantly improves performance. 
• The minimal influence of dose and concentration suggests that lead has a high affinity for binding 
sites and reaches equilibrium quickly even with moderate dosages. 

 
    Figure 4: Random Forest feature importance scores for lead removal. 
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4.2 Nickel (Ni) Removal Characteristics  
Nickel showed moderate to good removal efficiency with distinct patterns: 
Performance Summary: 
Maximum Removal: 89.6% with 2.5g adsorbent at 60 minutes (5 mg/L initial concentration) Time 
Dependency: Gradual increase from 49.8% (15 min) to 89.6% (60 min) 
Optimal Dosage: 2.5g provided best balance between efficiency and material usage 
Mechanistic Considerations: Nickel's smaller ionic radius compared to lead results in different binding 
mechanisms, primarily involving coordination with nitrogen-containing compounds in the waste 
materials 
Table 4: Percentage removal of Nickel by adsorption 

Adsorbent Dose 2gm 
Time 
(mm) 

Initial concentration of Nickel (mg/L) 
5 10 20 30 

15 43.8 40.2 37.4 30.5 
30 61.3 58.5 50.5 48.3 
60 78.2 71.5 68.1 59.2 

 

 
Figure 5: The graph represents the adsorbent percentage on x-axis and time durations on y-axis with 2 
gm of adsorbent dose and its efficiency. 
Table 5: Percentage removal of Nickel by adsorption 

Adsorbent Dose 2.5gm 
Time 
(mm) 

Initial concentration of Nickel (mg/L) 
5 10 20 30 

15 49.8 46.3 40.1 33.7 
30 68.5 61.4 55.2 50.8 
60 89.6 80.3 75.1 71.2 

 

 
Figure 6: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
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Table 6: Percentage removal of Nickel by adsorption 
Adsorbent Dose 3gm 
Time 
(mm) 

Initial concentration of Nickel (mg/L) 
5 10 20 30 

15 55.7 49.2 45.1 39.4 
30 74.9 68.3 61.7 54.9 
60 87.1 85.6 80.6 79.1 

 

 
Figure 7: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-axis 
with 3 gm of adsorbent dose and its efficiency. 
4.2.1 Feature Importance in Nickel (Ni) Removal 
The Random Forest model was similarly trained on the nickel removal dataset. The feature importance 
scores for this model are illustrated below. 
Interpretation 
• Contact time again ranked as the most influential parameter (importance score: 1.54), similar to lead. 
• However, initial concentration (0.25) and adsorbent dose (0.15) had greater relative influence 
compared to lead. 
• This reflects nickel’s slower and more concentration-dependent adsorption behavior, which may stem 
from its smaller ionic radius and distinct interaction with nitrogen-containing functional groups. 
• The higher sensitivity to both dose and concentration implies that nickel removal is more reliant on 
adsorbent availability and ion competition for active sites. 
 

 
          Figure 8: Random Forest feature importance scores for nickel removal. 
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4.3 Cadmium (Cd) Removal Analysis  
Cadmium exhibited the lowest removal efficiency among tested metals: 
 Key Observations: 
 Maximum Achievement: 83.4% removal with 3g adsorbent dose  
Concentration Sensitivity: Significant decrease in removal efficiency at higher concentrations  
Kinetic Behaviour: Slower adsorption rate compared to lead and nickel 
 Mechanistic Explanation: Cadmium's relatively lower removal efficiency may result from its specific 
hydration characteristics and competitive binding with other functional groups present in the adsorbent 
material 
Table 7: Percentage removal of Cadmium by adsorption 

Adsorbent Dose 2gm 
Time 
(mm) 

Initial concentration of Cadmium (mg/L) 
5 10 20 30 

15 35.6 30.2 25.9 19.1 
30 54.5 45.3 35.7 27.3 
60 63.5 53.9 45.4 35.3 

 

 
Figure 9: The graph represents the adsorbent percentage on x-axis and time durations on y-axis with 2 
gm of adsorbent dose and its efficiency. 
Table 8: Percentage removal of Cadmium by adsorption 

Adsorbent Dose 2.5gm 
Time 
(mm) 

Initial concentration of Cadmium (mg/L) 
5 10 20 30 

15 41.6 37.2 28.9 23.5 
30 66.4 54.7 38.8 37.6 
60 76.2 63.1 51.3 48.2 

 

 
Figure 10: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
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Table 9: Percentage removal of Cadmium by adsorption 
Adsorbent Dose 3gm 
Time 
(mm) 

Initial concentration of Cadmium (mg/L) 
5 10 20 30 

15 49.5 40.2 35.4 29.3 
30 73.7 66.1 56.7 48.2 
60 83.4 75.6 65.6 60.1 

 

 
Figure 11: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-
axis with 3 gm of adsorbent dose and its efficiency. 
4.3.1 Feature Importance in Cadmium (Cd) Removal 
Interpretation: 
• Unlike other metals, cadmium removal was influenced by all three features. 
• Time (0.90), initial concentration (0.60), and dose (0.39) all had relatively balanced roles. 
• This suggests cadmium adsorption is slower and more complex, with increased sensitivity to both the 
amount of adsorbent and the level of contamination. 

 
                    Figure 12: Random Forest feature importance scores for cadmium removal 
4.4 Zinc (Zn) Removal Performance 
 Zinc demonstrated excellent removal efficiency, particularly at higher adsorbent doses: 
 Notable Results:  
Peak Performance: 99.6% removal achieved with 3g adsorbent dose  
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Consistent Efficiency: Maintained high removal rates across different initial concentrations Rapid 
Equilibrium: Quick establishment of adsorption equilibrium 
Table 10: Percentage removal of Zinc by adsorption 

Adsorbent Dose 2gm 
Time 
(mm) 

Initial concentration of Zinc (mg/L) 
5 10 20 30 

15 32.6 33.5 31.2 30.2 
30 60.2 61.5 66.3 67.2 
60 88.3 86.1 80.5 85.2 

 

 
Figure 13: The graph represents the adsorbent percentage on x-axis and time durations on y-axis with 
2 gm of adsorbent dose and its efficiency. 
Table 11: Percentage removal of Zinc by adsorption 

Adsorbent Dose 2.5gm 
Time 
(mm) 

Initial concentration of Zinc (mg/L) 
5 10 20 30 

15 42.5 42.3 41.5 40.2 
30 70.2 68.6 69.5 71.3 
60 90.5 91.6 91.8 92.3 

 

 
Figure 14: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
Table 12: Percentage removal of Zinc by adsorption 

Adsorbent Dose 3gm 
Time 
(mm) 

Initial concentration of Zinc (mg/L) 
5 10 20 30 
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15 49.1 50.2 50.9 52.6 
30 78.3 79.6 80.6 82.4 
60 98.6 97.3 92.6 99.6 

 

 
Figure 15: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-
axis with 3 gm of adsorbent dose and its efficiency. 
4.8.5 Feature Importance in Zinc (Zn) Removal 
Interpretation: 
• Contact time was overwhelmingly dominant (1.82), showing fast and consistent adsorption behaviour. 
• Adsorbent dose had a minor role (0.18), while initial concentration had negligible impact (0.009). 
• This confirms that zinc reaches high removal efficiency quickly, especially with adequate exposure 
time. 

 
Figure 16: Random Forest feature importance of zinc remoal 
4.5 Copper (Cu) and Iron (Fe) Removal  
Both metals showed good removal efficiency with distinct characteristics: 
Copper Removal: 
• Steady improvement with increased contact time and adsorbent dose 
• Maximum removal: 88.5% with 3g adsorbent dose 
Iron Removal: 
• Required longer contact time for optimal performance 
• Maximum removal: 91.6% with 3g adsorbent dose 
• pH sensitivity more pronounced than other metals 
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Table 13: Percentage removal of Copper by adsorption 
Adsorbent Dose 2gm 
Time 
(mm) 

Initial concentration of Copper (mg/L) 
5 10 20 30 

15 32.6 39.5 37.5 38.6 
30 55.6 54.8 50.2 57.3 
60 70.3 69.5 72.3 75.2 

 

 
Figure 17: The graph represents the adsorbent percentage on x-axis and time durations on y-axis with 
2 gm of adsorbent dose and its efficiency. 
Table 14: Percentage removal of Copper by adsorption 

Adsorbent Dose 2.5gm 
Time 
(mm) 

Initial concentration of Copper (mg/L) 
5 10 20 30 

15 48.6 48.3 42.6 45.5 
30 66.4 62.3 52.6 61.2 
60 80.3 79.3 78.6 80.2 

 

 
Figure 18: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
Table 15: Percentage removal of Copper by adsorption 

Adsorbent Dose 3gm 
Time Initial concentration of Copper (mg/L) 
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(mm) 5 10 20 30 
15 49.6 50.3 52.7 55.8 
30 69.5 70.3 71.2 73.5 
60 80.3 82.6 88.5 85.6 

 

 
Figure 19: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-
axis with 3 gm of adsorbent dose and its efficiency. 
.8.4 Feature Importance in Copper (Cu) Removal 
Interpretation: 
• Contact time had the highest influence (importance score: 1.61). 
• Adsorbent dose followed with a moderate effect (0.33), indicating its significant role in enhancing 
removal. 
• Initial concentration had minimal influence (0.04), suggesting that removal is less sensitive to starting 
concentrations once equilibrium is achieved. 

 
Figure 20: Random Forest feature importance scores for copper removal. 
Table 16: Percentage removal of Iron by adsorption 

Adsorbent Dose 2gm 
Time 
(mm) 

Initial concentration of Iron (mg/L) 
5 10 20 30 

15 29.5 25.6 24.9 28.3 
30 40.6 41.7 45.9 48.3 
60 70.2 72.3 75.6 78.6 
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Figure 21: The graph represents the adsorbent percentage on x-axis and time durations on y-axis with 
2 gm of adsorbent dose and its efficiency. 
Table 17: Percentage removal of Iron by adsorption 

Adsorbent Dose 2.5gm 
Time 
(mm) 

Initial concentration of Iron (mg/L) 
5 10 20 30 

15 30.2 35.6 42.6 40.8 
30 50.6 51.8 52.4 55.4 
60 80.2 82.3 81.9 83.2 

 

 
Figure 22: The graphical representation shows the adsorbent percentage on x-axis and time durations 
on y-axis with 2.5 gm of adsorbent dose and its efficiency. 
Table 18: Percentage removal of Iron by adsorption 

Adsorbent Dose 3gm 
Time 
(mm) 

Initial concentration of Iron (mg/L) 
5 10 20 30 

15 40.2 41.0 40.9 42.5 
30 58.6 59.3 60.1 62.3 
60 85.6 89.6 90.3 91.6 
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Figure 23: The plotted graph represents the adsorbent percentage on x-axis and time durations on y-
axis with 3 gm of adsorbent dose and its efficiency. 
4.8.7 Feature Importance in Iron (Fe) Removal 
Interpretation: 
• Contact time remained the most significant factor (1.79), similar to lead and zinc. 
• Adsorbent dose contributed modestly (0.19), while concentration had minimal impact (0.02). 
• These results highlight that iron adsorption is time-dependent, with the effectiveness of binding sites 
playing a supportive but secondary role. 

 
Figure 24: Random Forest feature importance scores for iron removal. 
4.6 Comparative Analysis of Metal Removal Efficiency 
The ranking of metals based on removal efficiency follows the order: Lead > Zinc > Iron > Copper > 
Nickel > Cadmium 
This sequence correlates with several factors: 
1. Ionic Properties: Ionic radius, charge density, and hydration energy 
2. Chemical Affinity: Binding strength with functional groups present in adsorbent 
3. Competitive Adsorption: Competition between different metal ions for binding sites 
Table 18: Comparative Feature Importance Scores for All Metals 

Metal Time Dose Concentration 

Lead 1.81 0.07 0.090 

Nickel 1.54 0.15 0.250 

Copper 1.61 0.33 0.040 

Zinc 1.82 0.18 0.009 

Cadmium 0.90 0.39 0.600 
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Metal Time Dose Concentration 

Iron 1.79 0.19 0.020 

 

 
                                         
Figure 25: Comparative Feature Importance for All Metals 
Interpretation: 
• Contact Time consistently emerged as the dominant factor for all metals except cadmium, 
emphasizing the critical role of sufficient exposure for adsorption. 
• Cadmium deviates from this trend, showing a higher reliance on initial concentration (importance 
score: 0.60), indicating more complex binding behaviour and possible competition effects. 
• Copper and Cadmium showed greater dependence on adsorbent dose, reflecting the need for more 
available binding sites due to weaker or slower interactions. 
4.7 Optimization of Operational Parameters 
Adsorbent Dosage Optimization: The study reveals that 2.5-3.0g per 100mL provides optimal 
performance for most metals. Higher doses show diminishing returns due to: 
• Aggregation of adsorbent particles reducing surface area 
• Interference between adsorbent particles 
• Economic considerations of material usage 
Contact Time Optimization: Most metals achieve >80% of maximum removal within 30 minutes, with 
equilibrium typically reached by 60 minutes. Extended contact time beyond 60 minutes showed minimal 
improvement. 
pH Considerations: While the study focused on a pH range of 4.5-8.0, iron removal required higher pH 
values (around 8.0) for optimal performance, indicating metal-specific pH optimization requirements 
5. Environmental and Economic Implications 
5.1 Environmental Benefits 
Waste Valorisation: Converting tea and coffee waste into valuable adsorbents addresses two 
environmental challenges simultaneously - waste management and water pollution control. 
Carbon Footprint Reduction: Utilizing agricultural waste reduces the need for energy-intensive 
manufacturing of synthetic adsorbents. 
Circular Economy: The approach supports circular economy principles by creating value from waste 
materials. 
5.2 Economic Advantages 
Cost Comparison: Tea and coffee waste adsorbents cost significantly less than commercial alternatives 
such as activated carbon or synthetic ion exchange resins. 
Availability: Abundant supply ensures consistent availability without supply chain constraints. 
Processing Simplicity: Minimal processing requirements reduce operational costs and energy 
consumption. 
5.3 Scalability and Implementation 
Industrial Application: The results suggest potential for industrial-scale implementation with appropriate 
engineering design. 
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Community-Level Treatment: Small-scale applications in rural or developing communities where 
conventional treatment is economically unfeasible. 
Integration Potential: Possibility of integration with existing treatment systems as pre-treatment or 
polishing step 
6. Challenges and Future Research Directions  
6.1 Current Limitations 
Regeneration and Reuse: Further research needed on adsorbent regeneration methods to enhance 
economic viability. 
Competitive Adsorption: Mixed metal solutions may show different removal patterns due to competitive 
effects. 
Long-term Stability: Assessment of adsorbent stability under various environmental conditions. 
6.2 Future Research Opportunities 
Chemical Modification: Surface modification techniques to enhance binding capacity and selectivity. 
Kinetic Modelling: Development of comprehensive kinetic and equilibrium models for design 
applications. 
Pilot-Scale Studies: Scale-up studies to validate laboratory findings under real-world conditions. 
Life Cycle Assessment: Comprehensive environmental impact assessment of the entire treatment process. 
7. Conclusions  
This comprehensive study demonstrates the significant potential of tea and coffee waste as effective, low-
cost adsorbents for heavy metal removal from wastewater. The research provides several important 
conclusions: 
 7.1 Technical Feasibility  
Tea and coffee waste successfully removed heavy metals with efficiency comparable to conventional 
adsorbents:  
• Lead removal up to 99.1%  
• Zinc removal up to 99.6% 
• Iron removal up to 91.6%  
• Copper removal up to 88.5%  
• Nickel removal up to 89.6%  
• Cadmium removal up to 83.4%  
7.2 Optimal Operating Conditions 
 The study established optimal operating parameters:  
• Adsorbent dosage: 2.5-3.0 g per 100 mL solution 
• Contact time: 60 minutes for maximum efficiency  
• pH range: 4.5-8.0 (metal-specific optimization required)  
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