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Abstract 
This paper investigates the structural properties of fuzzy super subdivided graphs and their role in ecosystem stability and 
resilience analysis. We introduce edge connectivity concepts, vertex and edge degree classifications, and subgraph structures 
in fuzzy super subdivided graphs. The study examines the interrelations between these properties and presents theoretical 
insights through formal definitions, theorems, and illustrations. Using a fuzzy super subdivision model, we analyze the 
stability and resilience of the ecosystem by modeling complex ecological interactions. The results demonstrate that fuzzy 
super subdivision graph provides a mathematical framework to assess ecosystem responses to disturbances and maintain 
ecological balance. 
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1. Introduction 

To play a crucial role in modeling and analyzing systems and to address uncertainty, Rosenfeld [1] proposed 
fuzzy graph theory, inspired by the work of L.A. Zadeh on fuzzy sets and fuzzy relations in 1965 [7]. Bhutani 
and Rosenfeld [6] defined strong edges in fuzzy graphs, where an edge is strong if its membership value equals 
the strength of connectedness between its vertices. In [5], the authors have also demonstrated the existence of 
a strong path between any two vertices in a fuzzy graph. Moderson and Peng [3] discussed the concept of 
strong fuzzy subgraphs and the operations of fuzzy graphs. Fuzzy graph theory and its extensions have found 
applications particularly significant in domains such as network analysis, decision- making, and many other 
fields to handle uncertainty or vagueness [2,11,12,14]. 

 
The study of fuzzy super subdivision graphs (FSSG) involves super subdividing each edge of the fuzzy graph in the 
context of fuzzy graph theory with a membership value between 0 and 1 [9]. This methodology represents flexibility and 
accuracy in relationships through connectivity. The comprehensive analysis of (FSSG) presented in this paper is 
motivated by the need to extend the theoretical framework and practical applications of (FSSG). This paper aims to 
explicitly discuss various aspects of fuzzy super subdivided graphs, which include the nature of edges connectivity, and 
subgraphs along with their degrees. Through detailed theorems and illustrations, we investigate vertices and edges, 
strength, strongness, connectedness, subgraphs and degrees of vertices and edges. One of the key theoretical findings is 
that the strength of the fuzzy super subdivided path between any two vertices of (FSSG) is found to be identical. 
Additionally, the relation between strength and strongness of paths and edges is explored. A strong fuzzy super 
subdivided path is the strongest 𝑈 − 𝑉 fuzzy super subdivided path if it contains 𝛼- strong and 𝛽- strong edges. The 
insight of the comparison between fuzzy super subdivided subgraphs is that every fuzzy super subdivided induced 
subgraph is a fuzzy super subdivided subgraph but the converse does not hold. 

 
In addition, the novelty of this paper lies in the application of FSSG to the analysis of the stability and resilience of 
the ecosystem. This model enables a deeper understanding of the interactions, strength, and influential factors of 
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species within ecosystems. By capturing the complexity, variability, and connectivity of ecological networks, this 
model offers valuable insights that can be applied to ecosystem management and conservation efforts. To determine 
the degree of connectivity and interaction with factors, the stability index is calculated based on the weighted degree 
centrality method. 

 
The basic definitions are outlined in Section 2 as preliminaries, followed by discussions on the edge’s connectivity of 
Section 3. Section 4 includes classifications of FSSG subgraphs and Section 5 includes the relationship between the 
vertex and edge degrees of FSSG, with definitions and theorems. Section 6 provides the detailed application on species 
interaction along with their factors. 

 
2. Preliminaries 
Definition 2.1 [8] A fuzzy graph 𝐺 = (𝑉, 𝐸, 𝜎, 𝜇) corresponding to the crisp graph 𝐺 is a non-empty set 𝑉 together with 
a pair of functions 𝜎: 𝑉 → [0,1] and 𝜇: 𝐸 → [0,1] such that for all 𝑢, 𝑣 ∈ 𝑉, 𝜇(𝑢, 𝑣) ≤ min{𝜎(𝑢), 𝜎(𝑣)} , where 
𝜎(𝑢), 𝜎(𝑣) and 𝜇(𝑢, 𝑣) represent the membership values of the vertex 𝑢 and 𝑣 and (𝑢, 𝑣) is the corresponding 
adjacent edge respectively. 

Definition 2.2 [10] Let 𝐺 = (𝑉, 𝐸, 𝜎, 𝜇) be a fuzzy graph. An edge (𝑢, 𝑣) is called strong in 𝐺 if 𝜇(𝑢, 𝑣) > 0 and 
𝜇(𝑢, 𝑣) ≥ 𝐶𝑂𝑁𝑁𝐺−(𝑢,𝑣)(𝑢, 𝑣). 

Definition 2.3 [9] Let 𝐺 = (𝑉, 𝐸, 𝜎, 𝜇) be a fuzzy graph with 𝑝 vertices and 𝑞 edges. The fuzzy super subdivision 
graph is defined as 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆) by replacing each edge 𝑣𝑖𝑣j ∈ 𝐸 such that 𝑖 G j and 1 ≤ 𝑖, j ≤ 𝑝, by a 

complete bipartite graph 𝑘2,𝑚 for 𝑚 > 1 in such a way that the ends of 𝑣𝑖𝑣j are merged with the 2- vertices part 

of 𝑘2,𝑚. Here 𝑉𝑆𝑆 = 𝑉 ∪ 𝑉∗, where 𝑉∗contains super subdivided vertices w(𝑝−1)𝑡 with 1 ≤ (𝑝 − 1) ≤ 𝑞 and 1 ≤ 𝑡 ≤ 

𝑚 and 𝐸𝑆𝑆 is the collection of super subdivided edges 𝑒𝑟𝑠 with 1 ≤ 𝑟 ≤ 𝑞 and 1 ≤ 𝑠 ≤ 2𝑚 satisfying the following 
conditions 

i. 𝜎𝑆𝑆(𝑣𝑖) < 𝜎𝑆𝑆(w(𝑝−1)𝑡) > 𝜎𝑆𝑆(𝑣j) , 

ii. 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜎𝑆𝑆(𝑣𝑖) 𝖠 𝜎𝑆𝑆(w(𝑝−1)𝑡) where 𝑣𝑖, 𝑣j ∈ 𝑉 and w(𝑝−1)𝑡 ∈ 𝑉𝑠𝑠 . 
 

Definition 2.4 [9] Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆) be the fuzzy super subdivided graph. The degree of a vertex 𝑣 

is defined by the sum of the membership value of super subdivided edges incident with 𝑣 and it is denoted by 𝑑𝑆𝑆(𝑣) = 
∑ 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ). The minimum and the maximum degree is defined by ð𝑆𝑆(𝐺) = ⋀{𝑑𝑆𝑆(w(𝑝−1)𝑡 )|w(𝑝−1)𝑡 ∈ 

𝑢G𝑣 

𝑉𝑆𝑆} and Δ𝑆𝑆 (𝐺) = V{𝑑𝑆𝑆(w(𝑝−1)𝑡 )|w(𝑝−1)𝑡 ∈ 𝑉𝑆𝑆} respectively. 
 

Definition 2.5 [8] The fuzzy super subdivided graph 𝑆𝑆𝑓(𝐺) is said to be a complete fuzzy super subdivided graph 

𝐶𝑓(𝐺) if 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝑚𝑖𝑛{𝜎𝑆𝑆(𝑣𝑖), 𝜎𝑆𝑆(w(𝑝−1)𝑡 )} where 𝑣𝑖 ∈ 𝑉 and w(𝑝−1)𝑡 ∈ 𝑉𝑠𝑠 for 1 ≤ 𝑖 ≤ 𝑝 , 1 ≤ 𝑝 ≤ 𝑞 

and 1 ≤ 𝑡 ≤ 𝑚. 
 

3. Edge Connectivity 
Definition 3.1. The edge (𝑣𝑖, w(𝑝−1)𝑡 ) in FSSG is a strong edge if 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) > 0 and 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) ≥ 

𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖 , w(𝑝−1)𝑡 ). 
 

Definition 3.2. The edge (𝑣𝑖, w(𝑝−1)𝑡 ) in FSSG is an effective edge if 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜎𝑆𝑆(𝑣𝑖) 𝖠 𝜎𝑆𝑆(w(𝑝−1)𝑡 ). The 
vertices 𝑣𝑖 and w(𝑝−1)𝑡 are called effective neighbors. The set of all effective neighbors of 𝑣𝑖 is called effective 
neighborhood of 𝑣𝑖. 

Definition 3.3. [13] Depending on the 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)(𝑣𝑖, w(𝑝−1)𝑡 ) of an edge (𝑣𝑖, w(𝑝−1)𝑡 ) in 𝑆𝑆𝑓(𝐺), the edges are 
classified as follows: 

i. If an edge (𝑣𝑖, w(𝑝−1)𝑡 ) is 𝛼- strong then, 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) > 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 
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ii. If an edge (𝑣𝑖, w(𝑝−1)𝑡 ) is 𝛽- strong then, 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 

iii. If an edge (𝑣𝑖, w(𝑝−1)𝑡 ) is ð- arc then, 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) < 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ). 

Example 3.4. Consider fuzzy super subdivided square graph 𝑆𝑆𝑓(𝑆4) in Figure 1. 
 

 
Figure 1. Fuzzy super subdivided square graph 𝑆𝑆𝑓(𝑆4) for 𝑘2,2 

From the above Figure 1, every (𝑣𝑖, w(𝑝−1)𝑡 ) edge in 𝑆𝑆𝑓(𝑆4) has more than two paths. The strength of connectedness for 
all the edges are given below: 

For 𝑣1 and w11, 

𝜇𝑆𝑆(𝑣1, w11 ) = 0.2 and 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝑆4)−(𝑣1,w11 )(𝑣1, w11) = 0.2 

 
Therefore, 

𝜇𝑆𝑆 (𝑣1, w11 ) = 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝑆4)−(𝑣1 ,w11)(𝑣1, w11) 

Similarly for the vertex 𝑣1 and w12. Therefore, the 𝛽- strong edges are: (𝑣1, w11 ), (𝑣1, w12 ), (𝑣2, w21 ), (𝑣2, w22 ), (𝑣3, w31 ), 
(𝑣3, w32 ), (𝑣1, w41 ), (𝑣1, w22 ). 

For 𝑣2 and w11, 
 

 
Therefore, 

𝜇𝑆𝑆(𝑣2, w11 ) = 0.3 and 𝐶𝑂𝑁𝑁𝑆𝑆
𝑓(𝑆4)−(𝑣2,w11 )(𝑣2, w11) = 0.2 

 

 
𝜇𝑆𝑆(𝑣2, w11 ) > 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝑆4)−(𝑣2 ,w11)(𝑣2, w11) 
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Similarly for the vertex 𝑣2 and w12 . Therefore, the 𝛼 – strong edges are: 
(𝑣2, w11 ), (𝑣1, w12 ), (𝑣3, w21 ), (𝑣3, w22 z, (𝑣4, w31 ), (𝑣4, w32 ), (𝑣4, w41 ), (𝑣4, w22 ). 

Lemma 3.5. All the 𝐸𝑆𝑆 edges of fuzzy super subdivided graphs are effective edges. 

Proof. Let us consider an arbitrary edge 𝑒 = (𝑣𝑖, w(𝑝−1)𝑡 ) in fuzzy super subdivision graph 𝑆𝑆𝑓(𝐺) which connects 
vertices 𝑣𝑖 and w(𝑝−1)𝑡 . According to the Definition 2.3, the membership value of an arbitrary edge 𝑒 is given by 

𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜎𝑆𝑆(𝑣𝑖) 𝖠 𝜎𝑆𝑆(w(𝑝−1)𝑡), 
 

where 𝑣𝑖 ∈ 𝑉 and w(𝑝−1)𝑡 ∈ 𝑉𝑠𝑠 . Given that every FSSG is a complete FSSG, every edge satisfies this condition. 
Therefore, the arbitrary edge 𝑒 in FSSG forms an effective edge. This holds true for all FSSG, providing every edge in 
the graph is effective. 

Lemma 3.6. All the 𝐸𝑆𝑆 edges of fuzzy super subdivided graphs are strong edges. 

Proof. Given an arbitrary edge 𝑒 = (𝑣𝑖, w(𝑝−1)𝑡 ) in fuzzy super subdivision graph 𝑆𝑆𝑓(𝐺) where 𝑣𝑖 ∈ 

𝑉 and w(𝑝−1)𝑡 ∈ 𝑉𝑠𝑠. By Definition 2.3, the membership value of an arbitrary edge 𝑒 and the corresponding vertices 
are given by 

𝜎𝑆𝑆 (𝑣𝑖) < 𝜎𝑆𝑆 (w(𝑝−1)𝑡) > 𝜎𝑆𝑆 (𝑣j ) and 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜎𝑆𝑆(𝑣𝑖) 𝖠 𝜎𝑆𝑆(w(𝑝−1)𝑡) 
 

On satisfying these conditions, 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) must be greater than zero. Referring to Example 3.4, 

𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) is either less than or equal to 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), satisfying the condition of strong edge. 

Thus, the arbitrary edge 𝑒 in FSSG satisfies for strong edge, concluding that all edges are strong edges. 

Theorem 3.7. A fuzzy super subdivided path has both 𝛼- strong and 𝛽 − strong edges if it is a strong fuzzy super 
subdivided path. 

Proof. Consider a fuzzy super subdivided path from 𝑈 to 𝑉 with a sequence of (𝑣𝑖, w(𝑝−1)𝑡 ) edges, 1 ≤ 𝑖, j ≤ 𝑝, 1 ≤ (𝑝 − 
1) ≤ 𝑞 and 1 ≤ 𝑡 ≤ 𝑚. To prove by contradiction, assume there exist a path that contains both 𝛼- strong and 
𝛽 − strong edges but is not a strong fuzzy super subdivided path. This implies that there exists at least one edge in 

the path that is not strong. However, By Lemma 3.6, every edge 𝑒𝑟𝑠 in the fuzzy super subdivided path with both α- 
strong and 𝛽 − strong edges are strong. This contradicts our assumption, follows that any path containing both α- 
strong and 𝛽 − strong edges must be strong. 

 
Conversely, assume there exists a strong fuzzy super subdivided path from 𝑈 to 𝑉 in 𝑆𝑆𝑓(𝐺) does not contain both 𝛼- 
strong and 𝛽 − strong edges. 

Case (i): Suppose there are no 𝛼- strong edges in a strong fuzzy super subdivided path, then the membership value for 
each edge 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), must be less than the strength of connectedness 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)(𝑣𝑖, w(𝑝−1)𝑡 ). However, this 
contradicts the definition of a strong fuzzy super subdivided path, which requires all edges to be strong. 

Case (ii): If there are no 𝛽- strong edges in a strong fuzzy super subdivided path, then the membership value for each 
edge 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), must be less than or greater than the strength of connectedness 𝐶𝑂𝑁𝑁𝑆𝑆

𝑓(𝐺)(𝑣𝑖, w(𝑝−1)𝑡 ). Again, 

this contradicts the definition of a strong fuzzy super subdivided path. Since both cases leads to contradictions, the 
assumption that the strong fuzzy super subdivided path does not contain both 𝛼- strong and 𝛽 − strong edges do not 
hold true. 

Proposition 3.8. A strong fuzzy super subdivided path from 𝑈 to 𝑉 is the strongest 𝑈-𝑉 fuzzy super subdivided path if 
it contains 𝛼- strong and 𝛽 − strong edges. 

Proof. Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆 ) be the fuzzy super subdivided graph. Let 𝐴 be a strong fuzzy super subdivided 
𝑈 − 𝑉 path in 𝑆𝑆𝑓(𝐺), consist of both 𝛼- strong and 𝛽 − strong edges. Assume by contradiction that 𝐴 is not the 
strongest 𝑈-𝑉 FSSG path. Now consider another strongest path 𝐵 in 𝑆𝑆𝑓(𝐺). Then, the union of path 𝐴 ∪ 𝐵 will 
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𝑓 

contain at least one cycle 𝐶. Since 𝐴 contains both 𝛼- strong and 𝛽 − strong edges, every edge of 𝐶 − 𝐴 path will have a 
strength equal to the strength of 𝐴. Let (𝑢, 𝑣) be the weakest edge of path 𝐶 which is also an edge of path 𝐴. Let 𝐶′ be 
the 𝑢 − 𝑣 path in 𝐶, not containing the edge (𝑢, 𝑣). Then, 

𝜇(𝑢, 𝑣) ≤ Strength of 𝐶′ ≤ 𝐶𝑂𝑁𝑁𝑆𝑆 (𝐺)−(𝑢,𝑣)(𝑢, 𝑣) 

This contradicts our assumption that (𝑢, 𝑣) is not 𝛼- strong and 𝛽 − strong edge to be the strongest path. Therefore, 
𝐴 is the strongest 𝑈-𝑉 fuzzy super subdivided path containing both 𝛼- strong and 𝛽 − strong edges. 

Theorem 3.9. (𝑣𝑖, w(𝑝−1)𝑡 ) is 𝛽 − strong, provided (𝑣𝑖, w(𝑝−1)𝑡 ) is the weakest edge of all the strongest paths. 

Proof. Let 𝐴 be the strongest path in FSSG, 𝑆𝑆𝑓(𝐺). Consider (𝑣𝑖, w(𝑝−1)𝑡 ) be the weakest edge in the strongest path 

𝐴. By contrary, assume that (𝑣𝑖, w(𝑝−1)𝑡 ) is not 𝛽 − strong edge in the strongest path. Now, removing the weakest 
edge (𝑣𝑖, w(𝑝−1)𝑡 ) from the strongest path. Then the strength of connectedness of 𝑆𝑆𝑓(𝐺) − (𝑣𝑖, w(𝑝−1)𝑡 ) is given by 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) ≤ 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 

 

Suppose (𝑣𝑖, w(𝑝−1)𝑡 ) is not 𝛽 − strong, then 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) G 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 

This implies, 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) < 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 

However, the removal of the weakest edge does not decrease the strength of connectedness and remains the strongest 
path. Then we have, 

 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖 , w(𝑝−1)𝑡 ), 
 

which is a contradiction. Therefore, (𝑣𝑖, w(𝑝−1)𝑡 ) must be 𝛽 − strong, provided it is the weakest edge in the strongest 
path. 
Corollary 3.10. ð − arc does not exist for 𝑚 ≥ 2, where 𝑚 is number of copies of super subdivision. 

Proof. By Definition 2.5, FSSG graph is a complete FSSG graph. Complete fuzzy super subdivided graph does not 
contain ð − arc edges. This proves this corollary. 

Theorem 3.11. Let 𝑆𝑆𝑓(𝐺) be the fuzzy super subdivided graph, then the number of 𝛼- strong and 𝛽 − strong edges are 
as follows 

i. 𝑚(𝑛 − 1) for any fuzzy super subdivided path graph 
ii. 𝑚𝑛 for any fuzzy super subdivided cycle graph 

iii. 𝑚(𝑛 − 1) for any fuzzy super subdivided tree graph, where 𝑛 is the number of vertices of the given fuzzy 
graph and 𝑚 copies of super subdivision. 

Proof. Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆 ) be the fuzzy super subdivided graph with 𝑚 copies of super subdivision. The 

number of 𝛼- strong and 𝛽 − strong edges in fuzzy super subdivided graph are proved as follows: 

Case (i). Each vertex 𝑣𝑖 in the path contributes (𝑚 − 1) 𝛼- strong edges towards each of the 𝑚 vertices in the 
corresponding subdivision. Similarly, each vertex contributes (𝑚 − 1) β-strong edges towards each of the 𝑚 vertices in 
the corresponding super subdivision. Therefore, the total number of 𝛼-strong and 𝛽-strong edges contributed by 
each vertex in the fuzzy super subdivided path is (𝑚 − 1)𝑚. Since there are 𝑛 vertices in the given fuzzy path, the 
total number of 𝛼 −strong and 𝛽 −strong edges in the fuzzy super subdivided path graph are 𝑛 × 𝑚(𝑚 − 1). Thus, 
for 𝑚 subdivisions per edge and 𝑛 vertices in the path, the total number of 𝛼-strong and 𝛽-strong edges in the fuzzy 
super subdivided path graph are 𝑚(𝑛 − 1). 
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Case (ii). In a fuzzy super subdivided cycle graph, each vertex contributes the same number of 𝛼 −strong and 
𝛽 −strong edges as in the fuzzy super subdivided path graph. However, since there are no end vertices in a cycle 
graph, all vertices contribute equally. Therefore, for a given fuzzy cycle with 𝑛 vertices, each vertex contributes 𝑚 𝛼- 
strong and 𝛽-strong edges in 𝑆𝑆𝑓(𝐺). Since there are 𝑛 vertices in the cycle, the total number of 𝛼-strong and 𝛽-strong 
edges in the fuzzy super subdivided cycle graph are 𝑛 × 𝑚. Thus, for 𝑚 subdivisions per edge and 𝑛 vertices in the 
cycle, the total number of 𝛼-strong and 𝛽-strong edges in the fuzzy super subdivided cycle graph are 𝑛𝑚. 

Case (iii). In a fuzzy super subdivided tree graph, each vertex contributes α-strong and β-strong edges differently 
based on whether it is an internal vertex or a pendent vertex. Each internal vertex contributes 𝑚 𝛼 −strong and 𝛽- 
strong edges as it is connected to 𝑚 super subdivisions. For each pendent vertex, it contributes only (𝑛 − 1) 𝛼-strong 
and 𝛽-strong edges towards its 𝑚 super subdivisions. Thus, the total number of 𝛼-strong and 𝛽-strong edges in the 
fuzzy super subdivided tree graph are 𝑚(𝑛 − 1). 

Remark 3.12. For any fuzzy super subdivided graph, the number of 𝛼- strong edges are equal to the number of 𝛽- 
strong edges. 

 
4. Subgraphs 
Definition   4.1.  Let  𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆 , 𝜎𝑆𝑆, 𝜇𝑆𝑆)  be  the   fuzzy  super   subdivided   graph. 

𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆 , 𝜏𝑆𝑆 , 𝜌𝑆𝑆) is said to be the fuzzy super subdivided subgraph of 𝑆𝑆𝑓(𝐺) if 𝑃𝑆𝑆 ⊆ 𝑉𝑆𝑆 and 𝑄𝑆𝑆 ⊆ 

𝐸𝑆𝑆 such that 𝜎𝑆𝑆(𝑣𝑖) = 𝜏𝑆𝑆 (𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Definition 4.2. 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆) is said to be spanned if it is induced by eliminating 𝐸𝑆𝑆 edge or edges in 𝑆𝑆𝑓(𝐺) 

is called FSSD spanning subgraph such that 𝑃𝑆𝑆 = 𝑉𝑆𝑆 , 𝑄𝑆𝑆 ⊆ 𝐸𝑆𝑆 where 𝜎𝑆𝑆(𝑣𝑖) = 𝜏𝑆𝑆 (𝑣𝑖) , ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖 , w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Definition 4.3. 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆) is said to be the fuzzy super subdivided bridge subgraph of 𝑆𝑆𝑓(𝐺), if the removal 
of 𝐸𝑆𝑆 edge or edges in 𝑆𝑆𝑓(𝐺) disconnects the graph, such that 𝑃𝑆𝑆 ⊆ 𝑉𝑆𝑆 , 𝑄𝑆𝑆 ⊆ 𝐸𝑆𝑆 where 𝜎𝑆𝑆(𝑣𝑖) = 
𝜏𝑆𝑆 (𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 

 

Definition 4.4. Let 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆, 𝜏𝑆𝑆, 𝜌𝑆𝑆) be the fuzzy super subdivided induced subgraph of 𝑆𝑆𝑓(𝐺), if it is 
induced by eliminating only super subdivided vertex or vertices (w(𝑝−1)𝑡 ) of 𝑉𝑆𝑆 in 𝑆𝑆𝑓(𝐺) with 𝜎𝑆𝑆(𝑣𝑖) = 𝜏𝑆𝑆(𝑣𝑖), 
∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆 . 

 

Definition 4.5. Let 𝑃𝑆𝑆 < 𝑉𝑆𝑆 be the vertex subset of 𝑆𝑆𝑓(𝐺). 𝑆𝑆𝑓[𝑃𝑆𝑆] is said to be the FSSD vertex induced subgraph of 
𝑆𝑆𝑓(𝐺) with the vertex having maximum degree and vertices adjacent to it such that 𝜎𝑆𝑆(𝑣𝑖) = 𝜏𝑆𝑆(𝑣𝑖), ∀ 𝑣𝑖 ∈ 
𝑉𝑆𝑆 and 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 

 

Definition 4.6. Let 𝑄𝑆𝑆 < 𝑉𝑆𝑆 be the edge subset of 𝑆𝑆𝑓(𝐺). 𝑆𝑆𝑓[𝑄𝑆𝑆] is said to be the FSSD edge induced subgraph of 
𝑆𝑆𝑓(𝐺) with the edge having maximum degree along with the edges incident to its end vertices such that 𝜎𝑆𝑆(𝑣𝑖) = 
𝜏𝑆𝑆 (𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 

 

Definition 4.7. 𝑆𝑆𝑓(𝐺) is said to be full fuzzy super subdivided subgraph if 𝜎𝑆𝑆(𝑣𝑖) > 0 ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) > 0 ∀ (𝑣𝑖 , w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Definition 4.8. 𝑆𝑆𝑓(𝐺) is said to be maximum spanning fuzzy super subdivided subgraph if the sum of the edge 
membership values of connected spanning subgraph is maximum. 

Example 4.9. Consider fuzzy super subdivision of tadpole graph 𝑆𝑆𝑓(𝑇4) in Figure 2. The fuzzy super subdivided 
spanning subgraph in Figure 3 is obtained by removing 𝐸𝑆𝑆 edges: 𝑒12, 𝑒13, 𝑒23, 𝑒32, 𝑒41 . The fuzzy super 
subdivided induced subgraph in Figure 4 is obtained by the removal of the super subdivided edges: 
𝑒12, 𝑒13, 𝑒22, 𝑒24, 𝑒42, 𝑒44, 𝑒34, 𝑒32. The fuzzy super subdivided induced subgraph in Figure 5 is obtained by the 
removal of the super subdivided vertices: w12 , w21 , w41 . The fuzzy super subdivided vertex induced subgraph in 
Figure 6 is obtained with the vertex 𝑣3 having maximum degree and its adjacent vertices with edges and fuzzy super 
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subdivided edge induced subgraph in Figure 7 is obtained with the edges 𝑒41 and 𝑒43 having maximum degree and 
vertices adjacent to its end vertices. 

 

 
Figure 2. Fuzzy super subdivision of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 

 
 
 

 
 

Figure 3. Fuzzy super subdivided spanning subgraph of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 

 

 
Figure 4. Fuzzy super subdivided bridge subgraph of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 
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Figure 5. Fuzzy super subdivided induced subgraph of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 

 
 

 

 

 
Figure 6. Fuzzy super subdivided vertex-induced subgraph of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 
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Figure 7. Fuzzy super subdivided edge-induced subgraph of tadpole graph 𝑆𝑆𝑓(𝑇4) for 𝑘2,2 

Theorem 4.10. Every fuzzy super subdivided induced subgraph is a fuzzy super subdivided subgraph but the converse is 
not true. 

Proof. Consider an induced subgraph 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆 , 𝑄𝑆𝑆 ) of 𝑆𝑆𝑓(𝐺) which includes 𝑃𝑆𝑆 ⊆ 𝑉𝑆𝑆 and 𝑄𝑆𝑆 ⊆ 𝐸𝑆𝑆. By 
Definition 4.4, 

𝜎𝑆𝑆(𝑣𝑖) = 𝜏𝑆𝑆(𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) = 𝜌𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ), ∀ (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Consider any of the super subdivided 𝑉𝑆𝑆 vertices { w11, w12, … , w1𝑡 , w21, … , w2𝑡, … , w(𝑝−1)1, … w(𝑝−1)𝑡} for the 
removal. Since 𝑆𝑆𝑓(𝐻) is obtained by eliminating only certain (w(𝑝−1)𝑡 ) vertices of 𝑉𝑆𝑆 in 𝑆𝑆𝑓(𝐺), it follows that 
𝑆𝑆𝑓(𝐻)  maintains the structural  properties of a FSSG, as one of the end points of  edges 
{(𝑣1, w11), … , (𝑣𝑝, w(𝑝−1)𝑡)} are included in 𝑃𝑆𝑆 of 𝑆𝑆𝑓(𝐻) . Therefore, every fuzzy super subdivided induced 
subgraph is a fuzzy super subdivided subgraph. 

 
Conversely, consider a fuzzy super subdivided subgraph 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆 ) of 𝑆𝑆𝑓(𝐺) that is obtained by selecting a 
subset of vertices 𝑃𝑆𝑆 ⊆ 𝑉𝑆𝑆 and edges 𝑄𝑆𝑆 ⊆ 𝐸𝑆𝑆 from 𝑆𝑆𝑓(𝐺). 𝑆𝑆𝑓(𝐻) may not maintain the property of being 
induced, as not all edges between the selected vertices in 𝑃𝑆𝑆 are necessarily included. If 𝑆𝑆𝑓(𝐻) contains only a subset of 
𝑉𝑆𝑆 − vertices and 𝑄𝑆𝑆 − edges, but not all edges between 𝑃𝑆𝑆 vertices, it would not be considered an induced 
subgraph. Therefore, 𝑆𝑆𝑓(𝐻) may be a fuzzy super subdivided subgraph, it may not necessarily be an induced 
subgraph. Every fuzzy super subdivided induced subgraph is a fuzzy super subdivided subgraph, but the converse is not 
true. 

Theorem 4.11 In any vertex-induced subgraph of a fuzzy super subdivided graph, a subgraph consists of one point 
union of 𝑚 pendent edges of 𝑆𝑆𝑓(𝐺). 

Proof. Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆) be the fuzzy super subdivided graph. Consider a vertex-induced subgraph 

𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆, 𝑄𝑆𝑆 , 𝜏𝑆𝑆 , 𝜌𝑆𝑆) of 𝑆𝑆𝑓(𝐺), obtained by selecting a subset of vertices 𝑃𝑆𝑆 ⊆ 𝑉𝑆𝑆, with the condition of 
vertex having maximum degree and the vertices adjacent to its end vertices including edges incident to those vertices. 
Since 𝑆𝑆𝑓(𝐻) is a vertex-induced subgraph, it contains all edges incident to the selected vertices in 𝑃𝑆𝑆 , but no 
additional edges. Each vertex in 𝑃𝑆𝑆 corresponds to a super subdivided vertex w(𝑝−1)𝑡 in 𝑆𝑆𝑓(𝐺). The edges incident to 
each vertex w(𝑝−1)𝑡 in 𝑆𝑆𝑓(𝐺) form a pendent edge structure, where each edge is connected to w(𝑝−1)𝑡 . Since 
𝑆𝑆𝑓(𝐻) includes all edges incident to the selected vertices in 𝑃𝑆𝑆, it consists of one point union of 𝑚 pendent edges 
associated with each selected vertex. Therefore, in any FSSD vertex-induced subgraph, the subgraph consists of one 
point union of 𝑚 pendent edges of 𝑆𝑆𝑓(𝐺). 

Proposition 4.12. Any edge in 𝑆𝑆𝑓(𝐺) is strong, if it is an edge of at least one maximum spanning subgraph. 

Proof. Consider 𝑆𝑆𝑓(𝐻) = (𝑃𝑆𝑆 , 𝑄𝑆𝑆) be the fuzzy super subdivided spanning subgraph with the connected 𝐻1, 𝐻2, 

𝐻3 components. Assume there exists an edge (𝑣𝑖, w(𝑝−1)𝑡 ) in 𝑆𝑆𝑓(𝐻) in maximum spanning subgraph but not a 
strong edge. This implies that 

 

𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) G 𝐶𝑂𝑁𝑁𝑆𝑆𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) 
 

Since this edge is not a strong edge, there exists at least one other strong edge (𝑣j, w𝑝𝑡 ) ∈ 𝐸𝑠𝑠 with the maximum 
membership value. Then (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑠𝑠 is replaced with (𝑣j, w𝑝𝑡 ) ∈ 𝐸𝑠𝑠 in the maximum spanning subgraph, 
implying 𝜇𝑆𝑆(𝑣j, w𝑝𝑡 ) > 𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ). Now, the sum of the edge membership value gets increased. Therefore, 
𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) is not a part of at least one maximum spanning subgraph, the sum of the edge membership values of 
the connected spanning subgraph that includes (𝑣j, w𝑝𝑡 ) is maximum. This contradicts our assumption that 
(𝑣𝑖, w(𝑝−1)𝑡 ) in 𝑆𝑆𝑓(𝐻) in maximum spanning subgraph. Hence, any edge in maximum fuzzy super subdivided 
spanning subgraph must be a strong edge. 

5. Degree of a vertex and an edge 
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Definition 5.1. Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆) be the fuzzy super subdivided graph. The effective degree of a vertex 

𝑣𝑖 is the sum of the membership value of the effective edges’ incident at 𝑣𝑖 and denoted by 𝑑𝐸(𝑆𝑆)(𝑣𝑖). The 

minimum and the maximum effective degree is defined by ð𝐸(𝑆𝑆)(𝐺) = ⋀{𝑑𝐸(𝑆𝑆)(𝑣𝑖) ∶ 𝑣𝑖 ∈ 𝑉𝑆𝑆} and Δ𝐸(𝑆𝑆) (𝐺) = 

V{𝑑𝐸(𝑆𝑆)(𝑣𝑖) ∶ 𝑣𝑖 ∈ 𝑉𝑆𝑆} respectively. The strong degree of a vertex, 𝑑𝑆(𝑆𝑆)(𝑣𝑖) is the sum of membership value of all 
the strong edges adjacent to the vertex 𝑣𝑖. 

Definition 5.2. The neighborhood degree of a vertex 𝑣𝑖 is the sum of membership value of all the vertices adjacent to 
the vertex 𝑣𝑖 and denoted by 𝑑𝑁(𝑆𝑆)(𝑣𝑖). The effective neighborhood degree of a vertex 𝑣𝑖 is the sum of membership 
value of all the vertices of the effective edges adjacent to the vertex 𝑣𝑖 and denoted by 𝑑𝐸𝑁(𝑆𝑆)(𝑣𝑖). The strong 
neighborhood degree of a vertex 𝑣𝑖 is the sum of membership value of all the vertices of the strong edges adjacent to the 
vertex 𝑣𝑖 and denoted by 𝑑𝑆𝑁(𝑆𝑆)(𝑣𝑖). 

Definition 5.3. The degree of an edge (𝑣𝑖, w(𝑝−1)𝑡) ∈ 𝐸𝑆𝑆 of 𝑆𝑆𝑓(𝐺) is defined as 𝐷𝑒(𝑆𝑆)(𝑣𝑖, w(𝑝−1)𝑡) = 𝑑𝑆𝑆(𝑣𝑖) + 

𝑑𝑆𝑆(w(𝑝−1)𝑡) − 2𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡) ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Definition 5.4. The total degree of an edge (𝑣𝑖, w(𝑝−1)𝑡) ∈ 𝐸𝑆𝑆 of 𝑆𝑆𝑓(𝐺) is defined as 𝑇𝐷𝑒(𝑆𝑆)(𝑣𝑖, w(𝑝−1)𝑡) = 

𝐷𝑒(𝑆𝑆)(𝑣𝑖, w(𝑝−1)𝑡) + 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡) ∀ 𝑣𝑖 ∈ 𝑉𝑆𝑆 and (𝑣𝑖, w(𝑝−1)𝑡 ) ∈ 𝐸𝑆𝑆. 
 

Example 5.5. Consider fuzzy super subdivision of Butterfly graph 𝑆𝑆𝑓(𝐵2) in Figure 8. Degree of a vertex, Effective degree 
and strong degree of a vertex is given in Table 1. 

 

 
Figure 8. Fuzzy super subdivision of butterfly graph 𝑆𝑆𝑓(𝐵2) for 𝑘2,2 
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Vertices of 𝑆𝑆𝑓(𝐵2) 

𝑑𝑆𝑆(𝑣𝑖) 

= 𝑑𝐸(𝑆𝑆)(𝑣𝑖) 

= 𝑑𝑆(𝑆𝑆)(𝑣𝑖) 

𝑑𝑁(𝑆𝑆)(𝑣𝑖) 

= 𝑑𝐸𝑁(𝑆𝑆)(𝑣𝑖) 

= 𝑑𝑆𝑁(𝑆𝑆)(𝑣𝑖) 

𝑑𝑆𝑆(𝑣1) 1.6 4.8 

𝑑𝑆𝑆(w11) , 𝑑𝑆𝑆(w12) 0.5 0.5 

𝑑𝑆𝑆(𝑣2) 1.2 2.0 

𝑑𝑆𝑆(w21) , 𝑑𝑆𝑆(w22) 0.7 0.7 

𝑑𝑆𝑆(𝑣3) 1.6 2.2 

𝑑𝑆𝑆(w31) , 𝑑𝑆𝑆(w32) 0.6 0.6 

𝑑𝑆𝑆(𝑣4) 2 2.8 

𝑑𝑆𝑆(w41), 𝑑𝑆𝑆(w42) 0.7 0.7 

𝑑𝑆𝑆(w51), 𝑑𝑆𝑆(w52) 1.1 1.1 

𝑑𝑆𝑆(𝑣5) 2.4 3.0 

𝑑𝑆𝑆(w61), 𝑑𝑆𝑆(w62) 0.8 0.8 

 
Table 1. Degree, effective degree, strong degree, neighborhood degree, effective neighborhood and strong 
neighborhood degree of a vertex of fuzzy super subdivided Butterfly graph 𝑆𝑆𝑓(𝐵2) 

 

Edges of 𝑆𝑆𝑓(𝐵2) 𝐷𝑒(𝑆𝑆)(𝑣𝑖, w(𝑝−1)𝑡) 𝑇𝐷𝑒(𝑆𝑆)(𝑣𝑖, w(𝑝−1)𝑡) 

𝑑𝑆𝑆(𝑣1, w11), 𝑑𝑆𝑆(𝑣1, w12) 1.7 1.9 

𝑑𝑆𝑆(𝑣2, w11), 𝑑𝑆𝑆(𝑣2, w12) 1.1 1.4 

𝑑𝑆𝑆(𝑣2, w21), 𝑑𝑆𝑆(𝑣2, w22) 1.3 1.6 

𝑑𝑆𝑆(𝑣3, w21), 𝑑𝑆𝑆(𝑣3, w22) 1.5 1.9 

𝑑𝑆𝑆(𝑣3, w31), 𝑑𝑆𝑆(𝑣3, w32) 1.4 1.8 

𝑑𝑆𝑆(𝑣1, w31), 𝑑𝑆𝑆(𝑣1, w32) 1.8 2.0 

𝑑𝑆𝑆(𝑣1, w41), 𝑑𝑆𝑆(𝑣1, w42) 1.9 2.1 

𝑑𝑆𝑆(𝑣4, w41), 𝑑𝑆𝑆(𝑣4, w42) 1.7 2.2 

𝑑𝑆𝑆(𝑣4, w51), 𝑑𝑆𝑆(𝑣4, w52) 2.1 2.6 

𝑑𝑆𝑆(𝑣5, w51), 𝑑𝑆𝑆(𝑣5, w52) 2.3 2.9 

𝑑𝑆𝑆(𝑣5, w61), 𝑑𝑆𝑆(𝑣5, w62) 2.0 2.2 

𝑑𝑆𝑆(𝑣1, w61), 𝑑𝑆𝑆(𝑣1, w62) 2.0 2.2 

 
Table 2. Degree and Total degree of an edge of fuzzy super subdivided butterfly graph 𝑆𝑆𝑓(𝐵2) 

 
Theorem 5.6. As 𝑆𝑆𝑓(𝐺) is a complete fuzzy super subdivided graph, every vertex has the same effective degree as its 
strong degree. 
 
Proof Given that 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆) is a complete fuzzy super subdivided graph. Since 𝑆𝑆𝑓(𝐺) is a 
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complete FSSG (by Definition 2.5), every vertex is connected to all other vertices via effective edges. Then the 
effective degree of each vertex 𝑣𝑖 is given by 

𝑑𝐸(𝑆𝑆)(𝑣𝑖) = ∑∀𝑣𝑖 𝜇𝐸(𝑆𝑆) (𝑣𝑖, w(𝑝−1)𝑡 ) - (5.1) Also, 
every edge (𝑣𝑖, w(𝑝−1)𝑡 ) of FSSG is a strong edge. Then for each vertex 𝑣𝑖, 

𝑑𝑆(𝑆𝑆)(𝑣𝑖) = ∑∀𝑣𝑖 𝜇𝑆(𝑆𝑆) (𝑣𝑖, w(𝑝−1)𝑡 ) - (5.2) 
 

Since all the edges of FSSG are strong, effective degree includes all the membership values of strong edges. From 
(5.1) and (5.2), for each vertex 𝑣𝑖, 

∑ 𝜇𝐸(𝑆𝑆) (𝑣𝑖, w(𝑝−1)𝑡 ) = ∑ 𝜇𝑆(𝑆𝑆) (𝑣𝑖, w(𝑝−1)𝑡 ) 

 
Therefore, 

∀𝑣𝑖 ∀ 𝑣𝑖 
 
 

 

𝑑𝐸(𝑆𝑆)(𝑣𝑖) = 𝑑𝑆(𝑆𝑆)(𝑣𝑖). 

Corollary 5.7 Every vertex admits effective degree and strong degree that are equivalent to the degree of the vertex if 
𝑆𝑆𝑓(𝐺) is a complete fuzzy super subdivided graph. 

Proof. From Theorem 5.6, each vertex 𝑣𝑖 has effective degree and strong degree which is equivalent to the degree of a 
vertex in 𝑆𝑆𝑓(𝐺) (Refer table 1). 

Proposition 5.8 For any 𝑆𝑆𝑓(𝐺), effective degree of a vertex is less than the neighborhood degree of a vertex. 
 

Proof. Let 𝑆𝑆𝑓(𝐺) = (𝑉𝑆𝑆, 𝐸𝑆𝑆, 𝜎𝑆𝑆, 𝜇𝑆𝑆 ) be a fuzzy super subdivided graph. Consider an arbitrary vertex 𝑣𝑖 ∈ 𝑉𝑆𝑆 

in 𝑆𝑆𝑓(𝐺). Since 𝑆𝑆𝑓(𝐺) is a complete fuzzy super subdivided graph, every vertex is connected to all other vertices via 
effective edges/strong edges. Therefore, the sum of the membership values of the effective edges’ incident at 𝑣𝑖 is less 
than the sum of the membership values of all the vertices adjacent to 𝑣𝑖. The neighborhood degree includes all 
vertices adjacent to 𝑣𝑖 and not just the effective edges. However, since 𝑆𝑆𝑓(𝐺) is complete, the neighborhood degree of 
𝑣𝑖 includes the membership values of all vertices adjacent to 𝑣𝑖. Hence, the sum of the membership values of the 
effective edges’ incident at 𝑣𝑖 is strictly less than the sum of the membership values of all the vertices adjacent to 𝑣𝑖. 
Thus, the effective degree of a vertex is less than the neighborhood degree of the vertex in 𝑆𝑆𝑓(𝐺). 

Theorem 5.9. The effective, strong and neighborhood degrees of the super subdivided vertices w(𝑝−1)𝑡 admits 
uniformity. 

Proof. Let w(𝑝−1)𝑡 be a super subdivided vertex of FSSG. The following cases proves uniformity among each degree. 

Case (i). Uniformity of effective and strong degree: On considering the super subdivided vertices w(𝑝−1)𝑡, all edges 
connected to this vertex are strong. By Definition 3.1, each edge of the FSSG satisfies the strong edge condition i.e. 
𝜇𝑆𝑆(𝑣𝑖, w(𝑝−1)𝑡 ) > 0 and 𝜇𝑆𝑆 (𝑣𝑖, w(𝑝−1)𝑡 ) ≥ 𝐶𝑂𝑁𝑁𝑆𝑆

𝑓(𝐺)−(𝑣𝑖,w(𝑝−1)𝑡 )(𝑣𝑖, w(𝑝−1)𝑡 ) . Therefore, the sum of membership 

values of edges incident at w(𝑝−1)𝑡 will be equal to the sum of membership values of strong edges incident at w(𝑝−1)𝑡. 

Hence, 𝑑𝐸(𝑆𝑆)(w(𝑝−1)𝑡) = 𝑑𝑆(𝑆𝑆)(w(𝑝−1)𝑡). 
 
Case (ii). Uniformity of effective and strong degree: Since all the edges of FSSG are strong, effective degree includes all 
the membership values of strong edges. This equals to the sum of the membership value of adjacent vertices of 
w(𝑝−1)𝑡. Therefore, 𝑑𝐸(𝑆𝑆)(w(𝑝−1)𝑡) = 𝑑𝑁(𝑆𝑆)(w(𝑝−1)𝑡). 

Case  (iii).  Uniformity  of  strong  and  neighborhood  degree:  from  the  above  uniformity,  we  get 

𝑑𝐸(𝑆𝑆)(w(𝑝−1)𝑡) = 𝑑𝑆(𝑆𝑆)(w(𝑝−1)𝑡) = 𝑑𝑁(𝑆𝑆)(w(𝑝−1)𝑡). 
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Proposition 5.10. In a fuzzy super subdivided graph, 𝑑𝑁(𝑆𝑆)(𝑣𝑖) = 𝑑𝐸𝑁(𝑆𝑆)(𝑣𝑖) = 𝑑𝑆𝑁(𝑆𝑆)(𝑣𝑖). 

Proof Consider an arbitrary vertex 𝑣𝑖 ∈ 𝑉𝑆𝑆 of 𝑆𝑆𝑓(𝐺). Let w11, w12, … , w1𝑡 be the vertices adjacent to the vertex 𝑣𝑖, then 
by Definition 5.2, 𝑑𝑁(𝑆𝑆)(𝑣𝑖) = ∑ 𝜎𝑆𝑆(𝑣j) . Given that 𝑆𝑆𝑓(𝐺) is a complete fuzzy super 

∀ 𝑣j 𝑎𝑑j𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 

subdivided graph, every vertex is connected to all other vertices via effective and strong edges. Therefore, 
neighborhood degree of a vertex includes, effective and strong edges adjacent to the vertex 𝑣𝑖, i.e., 

 

𝑑𝑁(𝑆𝑆)(𝑣𝑖) = ∑ 𝜎𝑆𝑆 (𝑣j) 
∀ 𝑣j ∈ 𝐸(𝑆𝑆) 𝑎𝑑j𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 

 

𝑑𝑁(𝑆𝑆)(𝑣𝑖) = ∑ 𝜎𝑆𝑆(𝑣j) 
∀ 𝑣j ∈ 𝑆(𝑆𝑆) 𝑎𝑑j𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 

- (5.3) 
 

 
- (5.4) 

By Theorem 5.6, 𝑆𝑆𝑓(𝐺) is a complete fuzzy super subdivided graph, every vertex has the same effective degree as its 
strong degree. From (5.3) and (5.4), 

∑
∀ 𝑣j ∈ 𝐸(𝑆𝑆) 𝑎𝑑j𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 

𝜎𝑆𝑆(𝑣j) = ∑
∀ 𝑣j ∈ 𝑆(𝑆𝑆) 𝑎𝑑j𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑣𝑖 

𝜎𝑆𝑆 (𝑣j). 

Therefore, 

𝑑𝑁(𝑆𝑆)(𝑣𝑖) = 𝑑𝐸𝑁(𝑆𝑆)(𝑣𝑖) = 𝑑𝑆𝑁(𝑆𝑆)(𝑣𝑖) 
 

 
6. Application 

Ecosystems are dynamic networks in which species interact with each other and environmental factors. To maintain 
the complex network of biodiversity and the health of the environment, this interaction contributes to the stability and 
resilience of the ecosystem [4]. A fuzzy super subdivision graph is a specialized graph that can model gradual 
transitions and overlapping relations observed in the function of the ecosystem. In Figure 9, we have considered a 
basic food web model for this case study. 
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Figure 9. Food web representation of ecosystem 

In this model, the species of the food web are pictured as vertices of the fuzzy graph. The feeding interaction with 
various factors between each species is represented as the edges of the fuzzy graph. The interactions between the 
species, such as predation, competition, and symbiosis are modeled as fuzzy super subdivided vertices. The 
membership values of the vertices indicate the importance of the species in the food web. Based on the strength and 
priority of the interactions and the intensity of the factors between each species, the membership value of fuzzy super 
subdivided edges is given Figure 10. 

 

 
Figure 10. Fuzzy super subdivision model of food web 

Strength and type of interaction factors: Interactions such as predation, competition, symbiosis that influence the 
relationship between prey and the predator can be analysed and understood depending on 𝛼, 𝛽, and ð type of edges. 
Fuzzy super subdivision model represents different layers of interaction strength within the food web. Figure 11 
represents the factors influencing the strength of interactions in fuzzy super subdivision food web. 

 
In a food chain involving: plants → grasshoppers → frogs → snakes → Eagle/Owl, each link can be super subdivided 
to reflect varying factors of interaction under different environmental conditions, seasons, or resource availability. 
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Figure 11. Factors influencing the strength of interactions in fuzzy super subdivision food web 

Case(i). Consider the interaction between the lion and the goat. When a minor disturbance (e.g., drought or fire) 
occurs, the lion can still rely on the goat for food source. The lion’s population may not be significantly affected as it 
can hunt goats in various conditions. Hence, the lion-goat interaction remains α-strong with high dependency than the 
disruptions. 

Case(ii). The interaction between the owl and snake is considered. For instance, in the case of disease outbreak which 
reduces the snake population, the owl needs to adjust its diet and prey on alternative species, possibly frogs or 
grasshoppers. The owl’s population may decline if the alternative prey is scarce, but the system remains adaptable. 
The interaction strength weakens depends on the adverse conditions is likely a 𝛽-strong interaction. This signifies that 
the owl-snake interaction is important but not critical to the ecosystem’s overall stability. 

Case(iii). The eagle and the frog interaction are considered. Eagles primarily hunt other animals like snakes, rabbits, or 
small birds. However, in rare instances, they may prey on frogs if there is an abundance of frogs and a lack of their 
usual prey. This is an indirect and opportunistic interaction, not crucial for either species survival. This reflects a very 
weak dependency and rare ð interaction strength, for the overall stability of the ecosystem. 

The range of the membership value of each species under the above-mentioned interaction types are given in Table 3. 
 

Interaction Type Strength of the 
Interaction 

Range of the vertex 
membership value 

𝛼- strong interaction Robust and stable despite 
disturbances. 

0.95 − 0.8 

𝛽- strong interaction Moderately sensitive to 
environmental shifts 

0.75 − 0.5 

ð- arc interaction Rare, indirect interaction 
in specific circumstances. 

0.45 − 0.1 

 
Table 3. Type of interactions with their range of membership value 

Degrees of species: The degrees of each species represent the ecological significance indicating their role as keystone 
species, dominant competitors and central connectors. 
(i) Keystone species: From the Figure 10, the lion is a keystone species as it regulates prey population (e.g., goats) to 

avoid overgrazing and to maintain ecosystem balance. In the fuzzy super subdivision model (Figure 11), the top 
predator lion highlights strong predation interaction which is crucial for ecosystem’s stability. 

(ii) Dominant competitors: Tigers compete with lions for similar prey which includes goats and other herbivores. In 
this model, the tiger represents the strong competitive interactions for resources, making it a dominant competitor. 
Tigers exhibit a high neighborhood degree due to their multiple interactions, though their centrality is moderate. 

(iii) Central connectors: In this context, goats are the central connectors as they connect autotrophs with herbivores. 
With multiple moderate membership connections, goats play a major role in energy flow, reflected in their high 
effective neighborhood degree. On comparing the degree values of keystone species, dominant competitor and central 
connector from the Table 4 below, we observe keystone species ¡ dominant competitor = central connector. The degree of 
each species interaction and their total degree can be formulated using: 

 
𝐷𝑒(𝑆𝑆)(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑑𝑠𝑠(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1) + 𝑑𝑆𝑆(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 2) − 2 (∑𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠) 

σ 
 

Species Strong Degree Neighborhood Degree Effective Neighborhood 

Degree 
Lion (Keystone) 2. 85 2.94 2.94 

Tiger (Dominant) 5.1 5.68 5.68 
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Goat (Connector) 6.3 8.72 8.72 

Table 4. Degrees of Keystone species, Dominant competitors and central connectors 
 

𝑇𝐷𝑒(𝑆𝑆)(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 𝐷𝑒(𝑆𝑆)(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) + ∑ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 
σ 

and the calculations are given in the Table 5. 
 

Species (Edge) Degree of species 
interaction 

Total degree of species 
interaction 

Lion → Goat 3.27 6.21 

Tiger → Goat 5.72 8.56 

Tiger → Rabbit 3.62 6.46 

Goat → Plant 7.62 10.56 

Rabbit → Plant 5.64 8.52 

Grasshopper → Plant 7.5 9.35 

Frog → Grasshopper 3.26 5.43 

Owl → Grasshopper 3.62 6.06 

Owl → Frog 7.19 9.67 

Snake → Frog 4.95 7.2 

Owl → Snake 5.49 7.92 

Eagle → Snake 2.63 5.44 

Table 5. Degree and total degree of species interaction of the food web 
 

Understanding Ecosystem Stability and Resilience: By analyzing the ecosystem responses to disturbances such as 
species loss or habitat fragmentation, we provide insights into the ecosystem’s stability and resilience. We find 
stability index based on weighted degree to determine the degree of connectivity and stability level of interconnections. 
The weighted degree of a species is calculated by summing up all the total degree of species interaction. 

W𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 = ∑(𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

The stability index of the model is formulated based on weighted degrees of species and the number of interactions in 
the particular system. The higher value of the index makes the system more stable as it implies on strongly 
interconnected species. Conversely, the lower index indicates weak connections. 

Calculating the stability index: 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 
∑(𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠) 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

Sum of the total degree of species interaction from the Table 5 is 

∑(𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠) = 99.48 

The maximum possible interactions between the given 10 species in the food web with 12 interactions is 10 × 12 = 
120. 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 
99.48 

= 0.829 
120 
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The maximum possible stability level of the fuzzy super subdivided model of ecosystem is 82.9% with the strong 
interconnections. The ability of the fuzzy graph model to reconfigure itself by maintaining or restoring strong 
connections, redundancy and restoration and reintroduction of species or interactions after perturbation holds 
resilience. 

 
Conclusion 
This paper is the comprehensive study about structural behavior of fuzzy super subdivision graphs. In this sequel, we 
have established key properties and findings about structural properties. We have demonstrated that all fuzzy super 
subdivided edges are effective and strong, highlighting the robust nature of the graphs. One of the significant findings is 
that the weakest edge of all the strongest paths provides the 𝛽 −strong edges, which determines the connectivity of edge 
strength. The study further establishes concepts on fuzzy super subdivision subgraphs including induced, spanning, 
vertex-induced, edge-induced, and maximum spanning subgraphs. By analyzing and comparing these subgraphs we 
gained valuable insights on the structural properties of FSSG. We found that every fuzzy super subdivided induced 
subgraph is a fuzzy super subdivided subgraph but the converse is not true. Additionally, any subgraph consists of 
one point union of 𝑚 pendent edges, in any vertex-induced subgraph of a fuzzy super subdivided graph. A significant part 
of this research involves comparing effective degrees, strong degrees, neighborhood degrees within FSSG. The 
comparisons between these degrees brings out the crucial understanding of the recurrence pertaining to connectivity. 
For instance, the effective degree, strong degree and neighborhood degree of the super subdivided vertices exhibits 
uniformity. Overall, the paper advances the field of fuzzy graph theory by introducing new definitions,  theoretical 
insights and illustrations of FSSG. This layer of intricate comparisons and analysis provides better understanding of 
complexity. This work lays groundwork for future research on these findings to explore further applications and 
extensions of fuzzy super subdivided graphs. 
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