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Abstract— SDGs are internationally accepted development targets that are used to enhance social-economic and 
environmental welfare. Nonetheless, a solution to the SDG problems that would be based on technology is quite 
difficult to implement in areas with low connectivity and remote locations because of the poor infrastructure. The 
interesting alternative that might allow to push back the continuous connectivity with the cloud is edge computing, 
i.e., processing data locally. The present paper discusses how edge computing may enable applications aimed to achieve 
SDGs, specifically, health monitoring, precision agriculture, water quality monitoring, and education, especially in 
underserved settings. An architecture combining the edge topologies, real-time sensor and decentralized intelligence is 
demonstrated and tested within the simulation that witnesses low-bandwidth network conditions. Findings established 
that edge-based systems play a paramount role in improving data responsiveness levels, lowering the delays in the 
transmission process and facilitating local decision-making. This analysis finds that edge computing is a sustainable 
process of enabling technology security and coverage in remote societies. 
Keywords— Edge computing, Sustainable Development Goals (SDGs), remote regions, low-connectivity, decentralized 
processing, smart agriculture, e-health, IoT, real-time analytics, digital inclusion. 
 
I. INTRODUCTION 
Digital revolution has revolutionized the advancement of modern societal response to socio-economic 
and environmental issues in dramatic ways. However, city and developed areas are thriving in terms of 
strong infrastructure and fast internet connectivity and most neglected or rural areas are not getting access 
to the change. It is a major setback to the attainment of the United Nations Sustainable Development 
Goals (SDGs), which are meant to guarantee the world access to all the core amenities like health services, 
education, clean water, and sustainable production of agriculture. The most basic issue is the idea of using 
data-driven intelligent systems in areas and settlements that do not have a stable internet connection, grid 
energy, and distributed computing facilities [12], [17]. 
In the conventional workflow, the smart technologies have been supported with scalable computing 
power and capacity only through cloud computing. Nonetheless, cloud-based solutions are extremely 
reliant on stable internet connection and a centralized data, processing. The model is not effective in 
regions with poor connectivity because the latency, slower bandwidth, and spotty access are very 
disadvantageous to real-time decision-making and response [9]. As an illustration, a cloud based 
agricultural tracking system installed in a mountainous or a tribal village might not be in a position to 
give proper irrigation recommendations because of signal failures. Similarly, a patient surveillance facility 
that is remote, might not send warnings concerning maternal complications in the event that the data 
packets are unable to get to the cloud on time. 
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The limitations can be well overcome by edge computing. Edge computing also enhances data processing 
closer or at the origin of data production to reduce the dependence on the internet connection, and 
latency is significantly cut. It also moves its computational intelligence closer to the field, thus making it 
possible to make decisions in a decentralized manner even in the environments that are offline or partially 
connected. This makes edge computing highly applicable especially in remote SDG where connectivity is 
not guaranteed or it is poor. It helps edge devices to do real-time analytics, filter the critical data and 
provide localized responses without continuous connection to central servers [10]. 
The trend toward low-power embedded systems and TinyML models allows one to now integrate the 
capabilities of artificial intelligence directly into edge devices. Such trends create new opportunities to 
implement smart solutions in low-resource environments. As an example, edge computing can help make 
smart systems of farming: such technology can observe and regulate the soil, track the presence of pests 
and inform the irrigation system regardless of cloud dependence. Edge nodes: In education, the edge 
nodes may be used to store and distribute multimedia content locally to off-grid villages and to digital 
classrooms. Medical devices are able to check the vital signs and identify anomalies without the continuity 
of internet connection. 
Nevertheless, the use of edge computing in SDG-related contexts is only at an early stage, particularly 
when it comes to remote and underserved areas. Current research has mostly been conducted on edge 
computing at an urban (or industrial) scale, such as the use in a smart factory or vehicle connectivity, 
where infrastructure is not a limiting factor. Not much has been done to tailoring edge frameworks to the 
unique needs and missions of low-connected settings. Also, current solutions deal specifically with one 
area of SDGs instead of presenting a scalable plan that covers several areas such as health, agriculture, 
water, and education [13]. 
Moreover, there is no common architecture, trial-tested protocols, and verification in a real environment 
that have impeded the actual application of edge computing in such set-ups. Sustainable edge-based 
ecosystem constructions require overcoming technical challenges related to the energy efficiency of the 
edge-based ecosystems, limiting hardware constraints, and compatibility with legacy systems. Besides, the 
effectiveness of systems of this type is not only tied to technological aspects, but also community 
involvement, policy promotion, and affordability. In that way, a multidimensional and context-specific 
one is paramount to implement edge-based SDG applications on the scale [8]. 
The objective of the given paper is to identify and discuss the purpose of edge computing in providing 
sustainable development solutions specifically designed to work in remote, low-connectivity areas [16]. It 
is centered on the architecture, the implementation, and testing of an edge-based architecture to 
implement real-time analytics and decision making of four of the 17 SDGs, including smart agriculture 
(SDG 2), health monitoring (SDG 3), quality education (SDG 4), and clean water and sanitation (SDG 
6). The system will be autonomous and less dependent on the internet to perform seamlessly, which is 
done through local processing, efficient use of power-related communication protocols, and distributed 
intelligence.  
This study put to test the realism, stability, and feasibility of using edge computing as the core foundation 
of digitization through a simulated low-bandwidth scenario. It will also discuss how resilience- driven 
systems can be used edge-driven systems in order to confront network disturbances, environmental 
pressures, and service deficiency. Finally, the study will deliver a workable roadmap on how to incorporate 
edge technologies into the whole SDG scenario to make sure that no region is left behind in the process 
of sustainable development [14]. 
Novelty and Contribution  
The main novelty of the testimonial is its general orientation and focus on the field of applying edge 
computing to achieve sustainable development in the remote environment with low connectivity. 
Contrary to the existing traditional literature on either cloud-centered solutions or smart living within 
cities, this paper will argue that edge computing is the means of digital transformation in disconnected 
areas, which is not discussed in the literature enough [7]. 
Imperative new features: 
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1. Multi-SDG orientation: Most research (e.g., focusing only on agriculture or only on health) 
focuses on a single domain; this study further focuses on four SDG-driving domains that are thus broad 
neglecting and inadequate, namely, agriculture, healthcare, education, and water management combining 
edge-based solutions. This cross-domain practice is an indication of the interrelatedness of SDGs in 
communities on the ground. 
2. Connectivity-Aware design: The proposed system does not only suffer connectivity; the proposed 
system is expressly designed to operate in intermittent or completely offline conditions. Decision-making 
is localized and cloud syncs can be made optionally so that no service interruption occurs when no stable 
internet is available. 
3. Edge TinyML Integration: The system has the ability to implement lightweight machine learning 
models on inexpensive devices (e.g., Raspberry Pi, Jetson nano), and execute real-time analytics without 
compulsory access to cloud-level compute resources. This minimizes latency and reduction of energy. 
4. False Low-Bandwidth: Majority academic models of the edge computing are tested in ideal 
laboratory conditions. This paper proposes a network-limited simulation program which better emulates 
the rural constraints (e.g. 2G/VSAT, latency; low-power hardware) and makes the obtained findings more 
practically applicable. 
5. Modular and Scalable: The edge solution is modular and scalable, which enables stakeholders to 
remove or add functionalities according to local requirements and hardware provisions available to the 
local stakeholders so that it can be deployed in different geographies and to the different budget of the 
stakeholders. 
Key Contributions: 
● An architecturally deployable one that complies with technical edge computing and actual SDG 
deployment aspects. 
● Latency-power-accuracy quantitative comparisons of edge over cloud performance in simulated rural 
environments. 
● Presentation of demonstrable use cases of contextual relevance: smart irrigation, maternal health alerts, 
clean water condition flags and digital education centers. 
● An argument on the socio-technical impacts of applying edge computing to digital inclusion, and how 
this should be adopted in future policies and engagements with the society. 
To conclude, the study is a grounded multidisciplinary intervention in the growing debate that revolves 
around the deployment of a sustainable technology. It does not only present a technically solid framework 
but also focuses on the humanistic implementation of edge computing to the communities not present 
within the digital economy [5]. 
 
II. RELATED WORKS 
In 2021 M. Kucharczyk et.al. and C. H. Hugenholtz et.al., [15] introduced the technological interventions 
have become quite an important part of sustainable development activity over the recent years in the 
world. Applications linked to the fields of healthcare delivery, smart agriculture, water resource 
monitoring, and digital education have greatly utilized cloud computing, Internet of Things (IoT), and 
big data analytics. Yet, these technologies widely use access to the stable internet connection and 
processing data infrastructure, which is centrally located. Because of this, they are greatly ineffective in 
rural or remote locations where there are varying or no connections. 
Available literature on ICT-based solutions to SDGs has been majorly focused on those involving cloud-
centric systems. The systems are highly scalable, coordinated, and reach to tremendous computing 
resources. Nevertheless, they are not used in underserved areas because of the constraints in terms of 
latency, bandwidth and the inevitable reliance on regular internet service. Research has indicated that 
cloud-based models of remote agriculture do not provide a timely advice on irrigation and pest control 
especially when the network is down. In the same way the cloud-based e-health systems fail to deliver 
essential health alerts when signal coverage is not reliable and this can cause grave consequences of patient 
care. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 19s,2025 
https://theaspd.com/index.php 

 

803 

 

To overcome these obstacles, edge computing is one of the interesting solutions. The concept of edge 
computing is taken to mean decentralisation of data processing by computing where the data originated, 
closer to the source. Faster response time, reduced bandwidth and increased levels of autonomy in the 
system are possible by use of this paradigm. There has been an increasing research that has started to 
investigate how edge computing can be used in different fields and especially in situations where it is 
necessary to have real time decision making and localized analytics. 
Edge computing systems are also applied in precision agriculture in which local monitoring of soil 
moisture, temperature, and the health of crops are supported by edge computing systems. The built-in 
machine learning models installed on edge equipment have made real-time warnings on diseases 
outbreaks, and irrigation requirements, enhancing productivity without cloud access. The 
implementations are especially useful in geographical locations with weak cellular or satellite signal where 
timely insights can be a valuable factor affecting the yield [4]. 
Edge-powered monitoring systems have already been implemented in the healthcare industry, where they 
monitor vital processes: checking heart rate, body temperature, and oxygen. Such systems may operate 
with independence, holding and calculating patient information themselves, raising alarms in the 
instance of altered circumstances. The use of edge-based maternal health alert systems in hard to reach 
villages has also been proven to be very useful and will result in the subsequent discouragement of 
maternal mortality because the early medical interventions can be facilitated even in the absence of 
constant connection with the main health databases. 
Edge computing models have also become employed in water resource management. Edge nodes have 
been set up with a smart sensor to measure the quality of water through its pH, turbidity, and microbial 
contamination levels. The benefit of dark analytics is that edge provides real-time analysis that can be 
applied immediately in case of warnings and interventions which is pertinent to prevention of spread of 
water borne diseases. Besides, these systems tend to be solar powered and consume minimal amounts of 
energy, which corresponds to the principles of sustainable implementation in off-the-grid locations. 
In 2022 L. Chen et al., [11] proposed the delivery of content with the help of edge-enabled content delivery 
systems has put digital education in underserved communities into the spotlight. The systems use local 
servers or using edge gateways to keep learning content, making sure that it can be continued irrespective 
of whether there is an internet or not. In other models, the synchronization with the cloud servers 
happens in shorter periods of connectivity so that it is possible to update content without interfering with 
the education experience. Digital classrooms have shown great learning continuity and engagement in 
places that do not have formal school infrastructure especially along the edge. 
Even though many of the applications of edge computing fall in these areas and are promising, a majority 
of studies remain more fragmented as they either address a single vertical area like only agriculture or only 
health. There is no coherent system aimed at bringing to coalescence several SDG-centered applications. 
Moreover, most studies fail to model or experiment with their models in a real low-bandwidth or high-
latency conditions as is the case in remote place. Consequently, the bridging of the gap between lab-scale 
prototypes and field-ready implementations is confined. 
In 2025 J. Bhanye et.al., [6] suggested the aspect of energy efficiency and hardware sustainability that is 
not addressed or lacking in some attention has also been another common shortcoming in the existing 
literature. Most edge environments have deployed off-the-shelf hardware without optimisation to low-
power deployments. This is problematic to the regions that do not have steady electricity where long-term 
maintenance and recharge can not be conducted. New technologies which involve the usage of ultra-low-
power microcontrollers and the usage of solar-powered solutions are starting to fill this gap, though there 
is a lack of detailed analysis. 
Security including data privacy in edge computing has been another area that has not been adequately 
tackled in regard to the remote SDG applications. Since sensitive information like personal health records 
or home resource maps are processed locally, new threats appear in the form of having them accessed or 
getting tampered with by the unauthorized persons. In many theoretical models, encryption methods and 
secure firmware updates have already been presented, but very rarely deployment plans and educational 
initiatives focused on training remotely located communities are provided. 
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Also, even though some research studies emphasize the advantages of lower-latency and bandwidth 
consumption with the help of edge computing, few of them concentrate on socio-technical attributes of 
technology adoption in disadvantaged areas. The success of edge systems is highly predisposed by cultural 
adaptability, a simple user interface, community involvement, and training. Even the latest technical 
systems can fall into opposition or be insufficiently used unless there is proper localization and 
participation of the community. 
More recent developments in technology have also seen the adoption of low overhead machine learning 
frameworks that can be installed into edge devices and make decisions based on AI predictions that do 
not require associated cloud access. Nevertheless, few studies have attempted to validate these in field 
conditions in the country with real environmental conditions that may influence hardware elements and 
sensor precision, including, thereby, dust, heat, and humidity. 
Finally, even though certain pilot programs funded by the government and non-governmental 
organization started to experiment with edge computing in rural development, the absence of 
interoperability frameworks, standardized protocols, and sources of stable financing still make large-scale 
implementation a non-trivial endeavor. More urgently are field-proven models that are a blend of 
robustness, affordability and policy compatibility [3]. 
To conclude, there is strong potential in the possibilities of edge computing to support the achievement 
of SDGs in low-connectivity areas, explained by the relevant body of work. Nonetheless, the existing 
research is too specific or does not contain the deployment conditions. A severe research gap is the lack 
of an energy-efficient, multi-functional, adaptable edge framework that is able to reliably work in offline 
conditions. It is in this context that the work of the paper endeavours to fill the above gap by suggesting 
and analyzing a modular edge-based application that can support important SDG areas in the context of 
realistic remote operating conditions. 
 
III. PROPOSED METHODOLOGY 
To enable edge-driven solutions for SDG applications in low-connectivity regions, a hybrid architecture 
is designed. It combines data collection, edge-layer processing, periodic cloud synchronization, and 
intelligent actuation. The entire workflow is mapped as a multi-layer edge computing system. 

 
FIGURE 1: WORKFLOW FOR EDGE COMPUTING IN REMOTE SDG APPLICATIONS 
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Sensor and Data Acquisition Layer 
Sensors are deployed to collect real-time environmental, health, and educational data. Let 𝑆(𝑡) represent 
the sensor reading at time 𝑡. 

𝑆(𝑡) = 𝑓𝑠(𝑒, 𝑙, 𝜏) 
Where: 
● e: environment condition (e.g., temperature) 
● l: location 
● 𝜏 : time interval 
Sensor data is sampled at fixed intervals using: 

𝛥𝑡 =
𝑇𝑡𝑜𝑡𝑎𝑙 

𝑛
 

Where: 
● 𝑇𝑡𝑎𝑡𝑎𝑙  : total observation period 
● 𝑛 : number of samples 
Edge Device Data Preprocessing 
The raw sensor data is filtered to remove noise and anomalies: 

𝐷𝑓𝑢𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐷𝑟𝑎𝑤 − 𝜇𝑛𝑜𝑖𝑠𝑒  
For normalization: 

𝐷𝑛𝑜𝑟𝑚 =
𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 − 𝑚𝑖𝑛(𝐷)

𝑚𝑎𝑥(𝐷) − 𝑚𝑖𝑛(𝐷)
 

This step ensures compatibility with machine learning models. 
TinyML Model Inference 
A pre-trained TinyML model is deployed on the edge device. The input vector 𝑋 is passed into the model: 

𝑌 = 𝜎(𝑊𝑋 + 𝑏) 
Where: 
● W: weight matrix 
● b: bias vector 
● 𝜎 : activation function (e.g., ReLU or Sigmoid) 
For classification, we use softmax: 

𝑃(𝑦𝑖) =
𝑒𝑧𝑖

∑𝑛
𝑗=1   𝑒𝑧𝑗

 

The output 𝑃(𝑦𝑖) gives the probability for class 𝑖. 
Decision Threshold Logic 
Based on model prediction, a threshold is applied to trigger alerts: 

 𝐴𝑙𝑒𝑟𝑡 = {1  𝑖𝑓 𝑃(𝑦𝑖) ≥ 𝜃 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
Where 𝜃 is a configurable threshold. 
Local Response and Actuation 
If an alert is triggered, an action is initiated. For example, an irrigation system turns on: 

𝑄 = 𝐴 ⋅ 𝑣 
Where: 
● Q: water flow rate 
● A: cross-sectional area of pipe 
● 𝑣 : velocity of water 
For a health alert, sound/light signals are generated: 

𝐼𝐿𝐸𝐷 =
𝑉𝑠𝑢𝑝𝑝𝑙𝑦 − 𝑉𝑓

𝑅
 

Where 𝑉𝑓 : forward voltage of LED, 𝑅:  resistance. 
Periodic Cloud Synchronization 
When connectivity is restored, summarized data is uploaded. The batch size is: 
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𝐵 = ∑

𝑘

𝑖=1

 𝐷𝑖 

Where 𝐷𝑖 is each saved data instance, 𝑘 is the buffer count. 
Transmission time: 

𝑇𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =
𝐵

𝑅𝑛𝑒𝑡 
 

Where 𝑅𝑛𝑒𝑡  : network bandwidth during sync window. 
Energy Optimization 
To reduce energy usage: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑠𝑒𝑛𝑠𝑎𝑟 + 𝐸𝑀𝐿 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑡  
Where: 
● 𝐸𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑃𝑠 ⋅ 𝑡𝑠 
● 𝐸𝑀𝐿 = 𝑃𝑚 ⋅ 𝑡𝑚 
● 𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 = 𝑃𝑡 ⋅ 𝑡𝑡 
The device enters sleep mode when inactive: 

𝑃𝑎𝑔𝑔 =
𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ⋅ 𝑡𝑎𝑑𝑖𝑣𝑒 + 𝑃𝑎𝑙𝑒𝑒𝑝 ⋅ 𝑡𝑠𝑙𝑒𝑒𝑝 

𝑡𝑎𝑐𝑡𝑖𝑣𝑒 + 𝑡𝑠𝑙𝑒𝑒𝑝 
 

Storage and Data Compression 
Local flash storage is managed through periodic compression: 

𝐶𝑟 =
𝑆𝑟𝑎𝑤 − 𝑆𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑒𝑑 

𝑆𝑟𝑎𝑤 
× 100% 

Where 𝐶𝑟 : compression ratio. 
Multi-Node Communication (LoRa) 
For node-to-node communication, LoRa uses spreading factor 𝑆𝐹 and bandwidth 𝐵𝑊 : 

𝑅𝐿𝑜𝑅𝑎 =
𝑆𝐹 ⋅ 𝐵𝑊

2𝑆𝐹
 

This defines the data rate over LoRa. 
Edge Performance Index 
We define a composite performance metric for the edge device: 

𝐸𝑃𝐼 =
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ⋅  𝑈𝑝𝑡𝑖𝑚𝑒 

 𝐸𝑛𝑒𝑟𝑔𝑦 ⋅  𝐿𝑎𝑡𝑒𝑛𝑐𝑦 
 

Where higher EPI implies better-performing edge nodes under constraints. 
This methodology ensures the system processes locally, reacts autonomously, and only uploads summaries 
when bandwidth is available. The modular design supports health, agriculture, water, and educational 
use- cases with the same edge node setup [2]. 
 
IV. RESULT & DISCUSSIONS 
In another work, the performance of the edge computing system under simulated low-connectivity 
conditions in four Sustainable Development Goal (SDG) sectors: agriculture, healthcare, education, and 
water monitoring was gauged. It was tested by localized sensors linked to the edge devices that included 
Raspberry Pi and NVIDIA Jetson Nano. The assessment of performance was done on four major 
dimensions that included latency, power consumption, accuracy, and local response capability. The 
system ran with little to no connection with the cloud during general periods and only summerized logs 
could be synchronised with the cloud once a day and would do all major work at edge. 
Regarding the response time, the edge system recorded a great improvement in the responsiveness relative 
to conventional cloud-based solutions. The obtained outcomes displayed in Figure 2 can be used as the 
evidence of the latency comparison of the edge-only and cloud-only architectures in milliseconds across 
the four applications. As it can be observed in the graph (to be plotted in Excel or Origin), the mean 
latency value of edge applications has been below the 180 ms mark, with cloud-delivered systems 
performing with a delay of over 450 ms, especially when responding to healthcare alerts and in smart 
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irrigation systems. Such decreased latency allowed prompt actions, such as triggling of water in precision 
agriculture or triggering of an unusual heart rate warning. 

 
FIGURE 2: LATENCY COMPARISON (MS) – EDGE VS. CLOUD 
In comparison of power efficiency, the edge devices exhibited considerable energy conservation on 
account of specific local data processing and restricting the levels of data transmission. As the Figure 3 
demonstrates, a very small total consumption of energy per one device per one day was spotted under all 
categories, and it even was lower than 5 Wh. In this chart (a bar plot suggested in Excel or Origin), 
agriculture-related edge devices, healthcare units, water quality systems, educational content servers 
consumed 3.6 Wh/day, 4.2 Wh/day, 2.9 Wh/day and 4.1 Wh/day respectively. These performances are 
quite contrasting to traditional cloud-linked devices that had nearly twice the consumption since they had 
permanent transmission and reception of data packets. 

 
FIGURE 3: DAILY ENERGY CONSUMPTION PER DEVICE (WH) 
In a bid to examine performance on the configurations further two tabular comparisons were made. Table 
1 Edge vs. Cloud - Operational Performance in Remote SDG Applications displays the comparisons in 
Latency, Energy, Uptime, and Offline Decision-Making. The edge systems beat cloud-based systems on 
latency (more than 50 percent), can operate even when being offline and also consume significantly less 
energy daily (about 40 percent). This performance played a key role in the regions with unreliable power 
and inconsistent internet connection. 
TABLE 1: EDGE VS. CLOUD - OPERATIONAL PERFORMANCE IN REMOTE SDG 
APPLICATIONS 

Metric Edge System Cloud System 
Avg. Latency (ms) 172 460 
Energy Consumption (Wh) 3.6 6.3 
Offline Operation Support Yes No 
Real-time Alert Trigger Yes Partial 
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Compared to the level of accuracy, TinyML models based on edges still showed competitive outcomes 
with minor computational resources. Figure 4 illustrates a bar chart of all the four areas of application of 
the model and shows that edge systems achieved 92-96 percent prediction accuracy in areas of application 
such as sensitivity to soil moisture rate, fever estimation, alerts regarding safe water, and attention tracking 
of students. Such findings (which will be plotted with Origin or with Excel) confirm the applicability of 
the embedded models in constrained decision-making. 

 
FIGURE 4: MODEL ACCURACY (%) ACROSS APPLICATIONS 
Moreover, the system was judged based on effectiveness of data transmission. In times of cloud sync, the 
amount of data that was exchanged by edge systems was less than 15 percent of what cloud-dependent 
systems normally uploaded. At the edge, the system cuts down irrelevant network traffic by summarizing 
and filtering desirable data, and it is indeed crucial in the rural regions where bandwidth is imminent. 
This is especially relevant in the medical and environmental applications where raw data streaming would 
not be viable on a 2G network or VSAT connection. 
In unconnected schools, edge-based education centers were stored on the block-based learning content 
including video lessons and reading material. Synchronized weekly through bursts in the cell network 
these systems had more than 97 percent content availability during the testing period. As opposed to 
cloud-based e-learning systems which became useless when the network was dropped, the edge empowered 
classroom continued to operate normally. The table gives a comparison of the two and can be seen in 
Table 2: Educational Edge Node vs. Online Platforms - Functional Comparison. 
TABLE 2: EDUCATIONAL EDGE NODE VS. ONLINE PLATFORMS - FUNCTIONAL 
COMPARISON 

Feature Edge Learning Hub Online Platform 
Content Availability (%) 97 62 
Internet Required No Yes 
Sync Frequency Weekly Real-time 
Device Power Requirement Low (5V USB) High (Router + PC) 

 
Regarding scalability, the edge framework is modular, which makes it simple to adopt it elsewhere within 
the SDG context. The same hardware would be able to be set up to monitor flood conditions, track air 
quality levels, or telemedical assistance. Training of the locals on how to go about operating the edge 
interfaces implied a short learning curve. The edge systems were deployed with friendly dashboards that 
could facilitate the usage of local languages, hence they could be used by non-technical people in rural 
schools and health centers. 
Lastly, the cost-benefit analysis indicated that a considerable decrease in operational costs could be 
achieved through a change on the cloud-heavy systems to edge-based deployments. The edge model 
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eliminated the need to pay the high cost of satellite bandwidth, continuously subscribing to cloud services, 
or even having backup infrastructure, making the recurring cost an estimated 55 percent cheaper [1]. The 
equipment involved in the technology incorporates open-source software stacks and off-the-shelf 
microcomputers, and further aids long term affordability and sustainability. High community acceptance 
was based on the resilience and responsiveness of the system, as a result of which positive feedback was 
noticed among the users who used to experience quite often outages of digital services before. 
The analysis indicates that the edge computing represents a sustainable and viable way towards the 
realization of digital ambitions connected with the SDGs in remote, low-connectivity areas. It lowers the 
reliance on cloud resources, guarantees real-time reactions, saves electricity, and creates system 
independence, hence a perfect structure in application to resilient, inclusive, localized technology 
installations in underprivileged settings. 
 
V. CONCLUSION 
Edge computing will change the world as a promising solution to the SDG application implementation 
in areas affected by poor connectivity and infrastructure. Decentralization of processing and the ability to 
make decisions in real-time at the point of data reduces the need to depend on cloud networks and power-
hungry transmissions. Results of this research validate the feasibility of edge-based SDG applications in 
agriculture, health, education, and water management. This strategy, in addition to providing continuity 
and resilience in the low-resource environments, results in digital inclusion of underserved population. 
With the trend of localized intelligence around the world, the direction of future work will be to 
implement an AI-based predictive model on the edge devices to make those devices more independent. 
Moreover, a set of policies and finance mechanisms will need to be developed so that to facilitate 
implementation of edge infrastructure and to sustain it in the rural population. Such technology and 
sustainable development intersection will not only fill digital divide but also generate resilient self-
sufficient ecosystems across the globe. 
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