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Abstract — This paper examines the impact of Apache Kafka parameter tuning on the performance and scalability of a
microservices-based supply chain management system. The study evaluates the influence of key parameters including batch
size, compression type, partition count, and replication factor on critical performance metrics such as throughput, latency, and
fault tolerance. Experimental results demonstrate that finetuning Kafka configurations significantly reduces processing delays,
improves throughput, and enhances system resilience under varying workloads. Notably, the trade-off between replication
overhead and performance efficiency becomes evident at high message volumes, where lower replication factors yield better
processing efficiency. The findings provide actionable insights and practical guidelines for optimizing Kafka performance in
largescale, event-driven supply chain systems.

INTRODUCTION

Supply Chain Management (SCM) is a critical component of modern business operations, ensuring the seamless
flow of goods from manufacturers to consumers. Traditionally, SCM systems relied on monolithic
architectures, where all core functionalities such as order processing, inventory management, logistics, and
tracking were tightly coupled into a single application. While effective in earlier systems, this architecture is
increasingly inefficient in handling the complexities and scale of modern supply chains. Monolithic SCM systems
suffer from performance bottlenecks when processing large transaction volumes, often resulting in degraded
efficiency [1]. They are also prone to system-wide failures, where a single fault can disrupt the entire supply chain
workflow [2]. Furthermore, they lack scalability, as the entire application must be scaled even if only one module
experiences high demand, leading to inefficient resource utilization [3]. Additionally, they are inflexible to
business changes, making it difficult to introduce new features or integrate third-party services without significant
rework and redeployment.

To overcome these limitations, modern SCM systems are shifting towards microservices architecture, deployed
using Docker containers. The approach presented in this paper consists of five independent, loosely coupled
services - Manufacturer, Hospital, Transport, Monitor, and Notification. These services operate independently
but communicate through Apache Kafka, a real-time distributed event streaming platform that facilitates fast,
reliable, and scalable message exchange between microservices [4]. Docker containerization ensures consistent
deployment environments across different infrastructure setups, simplifies service orchestration, and enhances
portability. By running each service in an isolated container, the architecture achieves improved fault isolation,
independent scaling, and simplified maintenance [5]. While Kafka significantly enhances microservices efficiency,
its performance heavily depends on parameter optimization. Improper configurations can lead to processing
delays, inefficient resource usage, and lower fault tolerance. This paper investigates the impact of tuning key Kafka
parameters, including partition count, batch size, and replication factor, on throughput, latency, and overall
system performance. Partitioning enhances scalability by enabling parallel processing across multiple brokers.
Replication improves fault tolerance by maintaining redundant copies of messages across brokers, ensuring data
durability in case of node failures. Batch size optimizations improve throughput by reducing the overhead of
individual message transmission [6]. By fine-tuning these Kafka parameters and deploying services using Docker,
the proposed system achieves faster event processing, improved reliability, and better scalability. The results
demonstrate how parameter optimization and containerized deployment significantly enhance the resilience and
performance of microservices-based supply chain systems [7].
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LITERATURE SURVEY

Several studies have explored Apache Kafka’s role in real- time messaging, data processing, and system
optimization. In [8], Kafka’s application in microservices architecture is examined, highlighting its asynchronous
messaging capabilities and advantages over traditional RESTful APIs in terms of scalability and fault tolerance.
Similarly, [9] investigates Kafka’s integration into inventory management systems, demonstrating how real-time data
streaming enhances inventory tracking, demand forecasting, and overall supply chain efficiency.

Expanding on Kafka’s role in microservices, [10] evaluates the scalability of five modern stream processing
frameworks on Kubernetes clusters. The benchmarking reveals that all frameworks exhibit near-linear scalability
with sufficient resources but differ in efficiency, concluding that no single framework is universally superior, as
performance varies by use case.

Focusing on Kafka in supply chains, [11] proposes an integrated Kafka-Akka architecture for concurrent and real-
time processing in supply chain management. The study demonstrates how this architecture enhances inventory
optimization, order fulfillment, and operational agility. Meanwhile, [12] covers best practices for building and
optimizing scalable Kafka clusters, including architecture design, data partitioning, replication strategies, and
configuration tuning. The authors emphasize that efficient cluster architecture and fault tolerance mechanisms
are essential for achieving high availability, scalability, and low-latency data streaming at large scales.
Partitioning strategies for performance optimization are analyzed in [13]. The study explains how Kafka partitions
enable parallelism and higher throughput but introduces trade-offs. It provides guidelines for determining the
optimal number of partitions based on throughput requirements, considering factors such as producer and
consumer performance, file handle limits, and memory usage. In a comparative study, [14] evaluates Kafka against
other messaging frameworks, such as RabbitMQ and ActiveMQ, concluding that Kafka offers superior
performance for high-throughput, low-latency applications. Further refining Kafka’s scalability, [15] explores
heuristic algorithms for optimizing topic partitioning, improving load balancing, fault tolerance, and replication
efficiency.

Kafka’s real-world applications across industries are presented in [16], where the authors highlight its
adaptability in finance, healthcare, IoT, and fraud detection. The study showcases Kafka’s role in predictive
analytics and event-driven architectures. Similarly, [17] evaluates Kafka as a distributed messaging system based
on the publish-subscribe model, emphasizing its high throughput, fault tolerance, and widespread adoption by
Fortune 500 companies. Through multiple test scenarios, the system’s efficiency is assessed based on QoS
parameters.

Performance benchmarking studies further emphasize the importance of configuration tuning. [18] presents a
performance analysis of message brokers, including Kafka, under various data ingestion scenarios. The
benchmarking demonstrates Kafka’s peak ingestion rate of approximately 420,000 messages per second,
reinforcing the need for thorough testing and tuning of Kafka configurations for optimal performance. Similarly,
[19] addresses Kafka’s latency-sensitive processing, identifying high CPU consumption in KafkaProducer as a
bottleneck. The study proposes buffering techniques and API modifications, reducing KatkaProducer’s CPU load
by 75% while maintaining low latency. Additionally, [20] offers a comprehensive performance tuning guide,
covering partitioning strategies, broker configurations, garbage collection, and ZooKeeper optimization, ensuring
high-throughput and low-latency Kafka deployments.

SYSTEM PERFORMANCE AND DESIGN CONSIDERATIONS

Optimizing Kafka for a microservices-based supply chain management system requires careful consideration of
scalability, fault tolerance, and latency. While Kafka provides an eventdriven architecture, its default
configurations may not always be optimal for large-scale, real-time supply chains. Factors such as inefficient
partitioning, improper replication strategies, and inadequate broker scaling can lead to bottlenecks that impact
message throughput and system reliability. To address these challenges, this study explores different Kafka
configurations to analyze their effects on system performance.

A key design consideration is partitioning strategy, which directly influences message distribution and processing
efficiency. Default round-robin partitioning spreads messages evenly but does not account for data locality,
potentially increasing retrieval times. In contrast, key-based partitioning groups related events together,
improving access efficiency at the cost of potential load imbalance. Similarly, replication enhances fault
tolerance by maintaining redundant copies of data, but higher replication factors introduce additional
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overhead, affecting overall performance. The trade-off between these factors necessitates a thorough evaluation
to determine the most effective configuration for supply chain applications.

This section establishes the foundation for the methodology by outlining the rationale behind the Kafka
parameter optimizations explored in this study. The following section presents an empirical evaluation of these
configurations, detailing their impact on system performance through experimental analysis and benchmarking.

METHODOLOGY

A. System Architecture and Experimental Setup

The Kafka-based drug supply chain system follows a microservices architecture, as illustrated in Fig. 1. It consists
of five loosely coupled services - Hospital, Manufacturer, Transport, Monitor, and Notification - communicating
through Kafka topics for real-time event streaming. This architecture enables independent scaling, fault isolation,
and efficient parallel processing, making the system highly resilient and adaptable to fluctuating workloads. To
evaluate the system’s performance, a Dockerized Kafka cluster was deployed as the core messaging backbone. The
cluster was configured with varying broker counts across three configurations to simulate different levels of
scalability and fault tolerance. A single Zookeeper instance was used to manage broker metadata, track broker
health, and coordinate leader election. All components were containerized using Docker, running within an
isolated  bridge network to  enable efficient and secure interservice = communication.

Kafka Topics

»  drug-manufactured

Manufacturer

drug-received ‘ Manufacturer
Service .

Service

inventory-updated

order-confirmation

Hospital Hospital
Service Service
order-placed
shipment-initiated
Transporter 8 Transporter
Service shipment-tracked Service
Notification Monitor
Service service

Fig. 1. Kafka architecture diagram

The experiments were conducted on a host machine equipped with a MacBook Pro powered by an M1 chip,
16 GB of RAM, and 256 GB of storage. This setup provided sufficient processing power and memory capacity
to simulate large-scale workloads without hardware-induced performance bottlenecks.

B. Kafka-Based Microservices Architecture and Communication Flow

The system comprises five microservices, each handling distinct operations within the drug supply chain, as
illustrated in Fig. 1. This event-driven architecture enables seamless communication through Kafka topics,
ensuring efficient order processing, inventory management, and delivery tracking. The Hospital Service initiates
the workflow by publishing messages to the orderplaced topic when drug orders are created. It also
consumes messages from the order-confirmation topic to track the status of placed orders, ensuring
hospitals receive realtime updates. The Manufacturer Service consumes messages from the order-placed topic
to initiate drug production. After verifying inventory availability, it produces updates to the drug
manufactured, inventory-updated, and order-confirmation topics to reflect production progress, ensuring real-
time manufacturing and inventory- tracking.

The Transport Service handles delivery operations by consuming messages from the drug-manufactured topic and
producing updates to the shipmentstatus topic, reflecting the shipment’s progress. This ensures real-time order
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tracking and improves transparency. The Monitor Service tracks system performance and Kafka metrics, such
as throughput, latency, and broker health. It publishes anomaly alerts to the monitor-alerts topic when
irregularities are detected, enhancing observability and fault detection. The Notification Service consumes
messages from multiple topics, such as order-confirmation and shipment-status, broadcasting real-time updates
to connected clients to improve supply chain visibility.

Kafka topics serve as communication channels be- tween the microservices, enabling asynchronous, event-
driven processing. The order-placed topic triggers drug production, while the drug-manufactured topic initiates
the delivery workflow. The shipment-status topic ensures real-time shipment tracking, and the order-confirmation
topic keeps hospitals informed of order status. The monitor-alerts topic enhances system reliability by broadcasting
anomalies. This structured topic- based communication ensures reliable event propagation and consistent data
flow across the microservices.

C. Test Workload

To simulate real-world usage patterns, the system was subjected to varying message loads, categorized into three
distinct levels: light, medium, and heavy. These load levels were designed to assess Kafka’s performance under
different traffic conditions, evaluating metrics such as throughput, latency, and fault tolerance.

A Python-based simulation script was used to generate the workload, dynamically producing Kafka messages to
the order-placed topic. Each message represented a drug order, encapsulated in a JSON payload containing details
such as drug names, quantities, and timestamps. The times- tamps were appended at the time of message
production, serving as the basis for calculating end-to-end latency as the message traversed through the
microservices. As the system workflow progressed, the subscriber services consumed these messages, triggering
subsequent events, including inventory updates, shipment initiation, and notifications.

The workload was classified into the following categories:

- Light Load: This level includes message volumes ranging from 100 to 5,000 messages, simulating low- demand
scenarios with minimal strain on the system.

- Medium Load: This level encompasses message volumes between 7,500 and 20,000 messages, representing
stable and consistent order traffic.

- Heavy Load: This level simulated peak demand conditions with message volumes ranging from 25,000 to
50,000 messages. It evaluates the system’s performance under high-stress scenarios, testing Kafka’s capacity to
handle large-scale message loads efficiently.

D. Parameter Configuration Strategy

To evaluate Kafka’s performance under varying conditions, three distinct configurations were designed, differing
in broker count, replication factor, number of partitions, and partitioning strategy. The selection of these
configurations aims to capture the impact of scaling Kafka’s architecture on message distribution, fault tolerance,
and processing efficiency.

- Configuration 1 (C)) represents a minimal setup with a single broker, a replication factor of one, and a single
partition. This configuration was chosen to establish a performance baseline, reflecting how Kafka behaves in a
basic, non-redundant environment. It highlights the raw throughput and latency characteristics without the
overhead of replication or multi-broker coordination.

- Configuration 2 (C,) introduces an additional broker, increases the replication factor to two, and expands the
number of partitions to three. This setup was selected to observe the effect of moderate scaling, specifically how
Kafka handles fault tolerance and parallel processing. The replication factor improves reliability, while multiple
partitions enable better message distribution and concurrency.

- Configuration 3 (C;) employs three brokers, a replication factor of three, and six partitions, using key- based
partitioning. This configuration was designed to simulate a larger-scale, production-like environment. The higher
replication factor ensures message availability during broker failures, while key-based partitioning using order-id
as the key optimizes data locality and preserves message ordering, which is critical for consistent supply chain
operations.

Parameter C G, (O
Brokers 1 2 3
Replication 1 2 3
Factor
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Partitions 1 3 6
Partitioning Round- Round- Key-Based
Strategy Robin Robin

TABLE I

KAFKA CLUSTER CONFIGURATIONS

Table I summarizes the three Kafka configurations used in the experiment, highlighting the key parameters. By
comparing these configurations, the experiment aims to analyze how scaling Kafka’s architecture impacts key
performance metrics, providing insights into its efficiency under varying workloads.

E. Kafka Parameters

The Kafka cluster’s performance was evaluated based on four key parameters, each influencing the system’s
efficiency, scalability, and fault tolerance.

1) Brokers: Kafka brokers are responsible for storing and managing message data, facilitating communication
between producers and consumers. Deploying multiple brokers enhances fault tolerance, prevents bottlenecks,
and ensures high availability, which is critical in large- scale supply chain systems.

2) Replication Factor: This parameter determines how many copies of a message exist across brokers, pre- venting
data loss in case of failures. A higher replication factor improves resilience but increases storage overhead and
synchronization complexity. The optimal configuration of three ensures redundancy and minimizes downtime.
3) Partitions: Partitions divide Kafka topics into smaller segments, enabling parallelism. More partitions allow
multiple consumers to process messages concurrently, enhancing throughput. However, excessive partitions can
lead to synchronization overhead. The experiment balances partition count to optimize performance.

4) Partitioning Strategy: This defines how messages are distributed across partitions. Two strategies were used:

- Round-Robin (RR): Distributes messages evenly across partitions, optimizing load balancing but sacrificing
message order consistency.

- Key-Based (KB): Ensures messages with the same key are routed to the same partition, preserving ordering
and improving data locality, which is beneficial for event-driven workflows.

F. Performance Metrics

The system’s performance was evaluated using four key metrics, measuring Kafka’s efficiency under different
configurations and workloads.

1) Average Latency (ms): Latency measures the time taken for a message to be produced, transmitted, and
consumed by Kafka clients. It reflects the overall responsiveness of the system. In supply chain applications, low
latency ensures faster event stream processing (e.g., order placements, inventory updates), enabling real-time
decision-making. Higher latency indicates delays in data availability, which can impact operational efficiency.
Monitoring latency helps optimize Kafka configurations to maintain efficient message processing under varying
loads.

2) Kafka Request Time (ms): Kafka request time represents the end-to-end processing time of a Kafka request,
including network overhead, broker processing, and replication delays. It offers insights into the efficiency of
Kafka’s internal operations, such as message routing and acknowledgment. Lower request times indicate faster

Latency Comparison Under Low Load (100 - 5000 Messages)
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broker responsiveness, while higher values reveal potential bottlenecks. Reducing Kafka request time is essential
for maintaining consistent performance in distributed systems under fluctuating workloads.

4) Average Jitter (ms): Jitter quantifies the variation in message delivery time between subsequent messages,
caused by network congestion, broker load, or processing delays. In event-driven systems like supply chains, high
jitter can lead to out-of-order message delivery, impacting data consistency. Lower jitter ensures stable and
predictable message delivery, which is critical for maintaining data integrity. Monitoring jitter helps fine-tune
Kafka configurations, reducing fluctuations, especially under high-load conditions.

5) Throughput (msgs/sec): Throughput measures the rate at which Kafka processes messages, represented in
messages per second (msgs/sec). Higher throughput indicates better system efficiency and the ability to handle
larger message volumes. In supply chain systems, maintaining high throughput ensures continuous event stream
processing, even during load spikes. Throughput is directly influenced by broker count, partitioning, and
replication factor, making it a vital metric for assessing Kafka’s scalability and overall performance.

I. INFERENCES

A detailed analysis of the experimental results is obtained from evaluating Kafka’s performance under varying
message loads and architectural configurations and presented in Table II.

The inferences are drawn based on key performance metrics such as jitter, Kafka request time, latency, and
throughput. Each metric is analyzed across three distinct Kafka setups to assess their scalability and efficiency.
The following subsections provide graphical representations and corresponding observations based on the values
shown in Table II, highlighting how Kafka’s behavior evolves with increasing message volume. These insights
offer a comprehensive understanding of Kafka’s performance characteristics and help identify potential
bottlenecks under different load conditions.

A. Latency

In this study, we evaluated the average latency under three configurations across three load scenarios: Low,
Medium and High Load.

1) Low Load

Fig. 2 shows the latency trend under low message volumes reveals that all configurations handle the work- load
efficiently, but C; consistently outperforms the others, exhibiting the lowest latency. This is attributed to its
higher broker count, increased partitioning, and key-based partitioning strategy, which collectively enhance
parallelism and reduce processing time. At 100 messages, C; achieves a latency of 13.2ms, which is 16.5%
lower than C, (15.8ms) and 38.3% lower than C, (21.4ms). This trend persists at 250 messages, where C;
maintains a latency of 24.8ms, compared to 28.4ms for C, and 38.7ms for C;, highlighting a 35.9%
improvement over the default configuration. The superior low-load performance of C; stems from its efficient
partition parallelism and key-based partitioning, which ensures that related messages are routed to the same
partition. This improves data locality and reduces retrieval time. Additionally, lower batch sizes and reduced
linger time in C; minimize broker-to-broker synchronization delays, enhancing responsiveness. The improved
load distribution across multiple brokers reduces context switching and disk I/O overhead, resulting in faster
message retrieval. Furthermore, optimized network round-trip times and reduced Garbage Collection (GC)
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pauses in C; further enhance its efficiency. As a result, C3 proves highly effective for low-load, real-time streaming
scenarios, delivering faster message processing and lower latencies, making it ideal for lightweight supply chain
event processing.

2) Medium Load

Based on Fig. 3, we can derive that as the message volume increases, latency grows for all configurations due to
higher processing demands. C; maintains the lowest latency across most of the medium load range showcasing
its superior parallelism and distribution efficiency. However, towards the upper end of the range (near 20,000
messages), C, starts to overlap with C;. The overlapping performance between C, and C; at higher message counts
can be attributed to replication overhead in C;. While C;’s higher replication factor offers better fault tolerance,
it introduces replication- related delays under increased load. Thus, C, demonstrates more stable latency
performance at medium loads due to fewer replication operations.

3) High Load

Latency Comparison Under High Load (22500 - 50000 Messages)

Fig. 4. Latency under High Load

At high message volumes, as depicted in Fig. 4, the latency difference between C, and C; becomes more
noticeable. Although C; still offers better latency initially, the performance gap narrows and eventually reverses
as the message load increases. C, achieves lower latency at the highest message volumes (> 35,000 messages), while
Cy’s performance deteriorates slightly due to the replication overhead. Under high load, the benefits of increased
replication in C; diminish due to replication-induced latency overhead. The lower replication factor in C, makes
it more efficient for handling large-scale message loads, resulting in lower latency. This highlights a trade-off
between fault tolerance and performance C; offers better fault tolerance but slightly higher latency at scale.

B. Kafka Request Time

The Kafka request time trend depicted in Fig. 5 reveals a consistent increase across all configurations as the
message volume rises, but the magnitude of increase varies significantly across the three setups.

At low message volumes, C; exhibits the lowest request time due to its higher broker count, increased
partitioning, and key-based partitioning strategy, which improve load distribution and reduce message processing
overhead. For 100 messages, C; achieves a request time of 4.1ms, which is 21.2% lower than C, (5.2ms) and
52.3% lower than C,; (8.6ms). This efficiency persists at 250 messages, where C; records 3.7ms, compared to

4.5ms in C, and 6.1ms in C;, demonstrating a 39.3% improvement over the baseline configuration.
Katka Request Time vs NMacsages (100 - 50,000%

Fig. 5. Kafka Request Time vs Messages
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As the message volume increases, the gap between the configurations widens, highlighting Ci’s superior handling
of higher loads. At 10,000 messages, C; maintains a request time of 10.1ms, while C, records 10.8ms and C;
reaches

14.5ms, resulting in a 30.3% improvement over the default configuration.

At low to moderate loads, C; consistently achieves the lowest request times, making it highly efficient for low-
latency real-time operations. However, at extremely high volumes (> 40,000 messages), its performance slightly
deteriorates relative to C, due to increased overhead from key-based partitioning, which introduces routing
complexity. For instance, at 40,000 messages, C; records 27.1ms, slightly higher than C, at 25.8ms. In contrast,
C, benefits from its simpler round-robin strategy, which efficiently distributes large-scale workloads with lower
partitioning overhead, making it more suitable for massive-scale batch processing.

C. Jitter

Kafka Jitter vs Measages (100 - 50,000)

Fig. 6. Jitter vs Messages

The jitter trend shown in Fig. 6 presents a steady increase across all configurations as message volume rises, but
with significant performance differences between the setups. Jitter measures the variability in message delivery
times, and lower jitter indicates more consistent and predictable message propagation.

Messages| Latency (ms) Kafka Request Time (ms) |Jitter (ms) Throughput (msgs/sec)
C, G, G C, G, G C, C, G C C, G
100 214 |15.8 13.2 |8.6 5.2 4.1 6.0 4.1 3.5 93.5 [125.7 |140.8
250 38.7 |284 248 |6.1 45 3.7 4.8 38 3.2 108.7 |140.3 |158.3
500 453 |34 30.5 |5.8 4.0 3.4 4.2 3.2 2.8 113.2 |162.8 |182.6
750 51.2 399 342 |6.7 43 3.6 4.9 3.5 3.0 145.3 |185.4 (210.4
1000 57.1 |42.1 369 |74 4.7 4.0 5.1 3.6 3.1 180.4 [235.1 |260.4
1500 64.8 |48.9 43.7 |8.2 5.5 4.7 6.3 4.1 3.8 182.5 |247.3 |275.8
2500 72.3  |56.2 50.1 [9.5 6.1 5.4 7.1 49 4.3 206.6 |280.6 |310.9
3000 75.6  |594 543 [10.1 6.8 6.1 7.8 53 4.7 210.2 |295.4 |328.5
5000 84.2 |67.1 62.8 |114 7.9 7.2 8.3 6.1 5.5 212.7 |312.9 |345.1
7500 92.8 |75.6 70.2  |12.7 94 8.8 9.1 73 6.7 2139 (3174 |355.7
10000 |101.5 |82.3 78.5 |14.5 108 |10.1 [10.6 |8.2 7.5 214.3 [320.1 [360.8
12500 |109.2 |89.4 85.7 |158 12.1 |114 [119 |95 8.9 215.7 |325.7 |366.4
15000 |115.7 |95.1 93.6 |17.3 13.7 129 |13.2 |109 |10.2 |215.2 |324.9 [365.1
17500 |122.6 |102.8 101.4 |19.1 154 146 |14.7 |124 |11.7 |214.5 |322.7 |363.2
20000 |130.8 |110.3 109.8 |20.8 168 (163 [159 |13.6 |13.1 |213.1 |320.4 |360.9
22500 |140.2 |118.6 118.1 |224 182 |18.0 |175 |149 |146 |210.8 |318.1 [358.5
25000 |150.5 |127.5 1274 |24.3 19.6 193 |18.7 |157 |154 |208.3 |316.4 |355.2
30000 |165.4 |139.3 139.9 |27.6 22.1 (217 |20.1 |184 |18.1 |205.9 [312.8 |350.6
35000 |180.9 |152.6 152.5 |30.2 243 (242 |225 209 |20.6 |200.7 |308.7 |345.3
40000 |190.2 |160.9 165.8 [34.1 25.8 |27.1 253 |22.7 |234 |1954 |298.1 [340.1
45000 |205.7 |174.3 178.3 |37.5 289 (295 (281 |254 |258 |180.2 |282.6 [325.4
50000 |218.9 |185.7 192.7 [40.9 314 |324 [304 |[28.6 |28.5 |165.8 |265.2 [310.2
TABLE II
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KAFKA PERFORMANCE METRICS ACROSS CONFIGURATIONS

At low message volumes, C; achieves the lowest jitter, highlighting its superior consistency due to its higher
broker count, increased partitioning, and key-based strategy, which enhance data locality and reduce message
queuing delays. For 100 messages, C; records a jitter of 3.5ms, which is 14.6% lower than C, (4.1ms) and 41.7%
lower than C; (6.0ms). Similarly, at 250 messages, C; achieves 3.2ms, while C, reaches 3.8ms and C; shows 4.8m:s,
indicating a 33.3% improvement over the baseline.

As the message volume increases, C; continues to demonstrate more stable jitter compared to the other
configurations. At 5,000 messages, C; records 5.5ms, while C, shows 6.1ms and C; spikes to 8.3ms, resulting
in a 33.7% improvement over the baseline. This is due to Cs’s key-based partitioning, which ensures related
messages are routed to the same partition, reducing rebalancing overhead and improving consistency.

At higher loads (> 40,000 messages), the performance gap narrows, with C, and C; exhibiting almost identical
jitter. For instance, at 50,000 messages, C; records 28.5ms, just 0.1ms lower than C, (28.6ms). This convergence
is due to the network saturation and processing bottlenecks that arise at massive volumes, limiting the advantage
of key-based routing in C;. Meanwhile, C, benefits from its simpler round-robin distribution, which reduces
complexity during large-scale parallel processing, resulting in almost equivalent jitter values.

Overall, C; consistently maintains the lowest jitter at low and moderate loads, making it ideal for time-
sensitive, real-time applications where consistent message delivery is essential. However, at extremely high
volumes, C, achieves near-parity with C;, making it equally viable for large-scale batch processing scenarios.

D. Throughput

Figs. 7, 8, & 9 illustrate the throughput performance of three Kafka configurations (C,;, C,, C;) under Low,
Medium and High conditions respectively.

1) Low Load

Theoughput Comparison Under Low Load (100 - 5000 Messages)

Fig. 7. Throughput under Low Load

At low message volumes, Cs consistently achieves the highest throughput, followed by C;, with C; trailing behind,
as depicted in Fig. 7. This performance trend underscores the effectiveness of Cs’s increased parallelism, which is
driven by a higher broker count, expanded partitioning, and efficient key-based message distribution.
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These architectural optimizations enable parallel consumers to process messages concurrently, reducing
contention and significantly enhancing overall throughput. For instance, at 100 messages, C; achieves
140.8msgs/sec, while C, processes 125.7 msgs/sec, and C, manages only 93.5 msgs/sec. As the message
volume increases, the throughput gap widens. By the time the system reaches 5000 messages, C;’s throughput
rises to 345.1 msgs/sec, whereas C, achieves 312.9 msgs/sec, and C; lags behind at 212.7 msgs/sec. This
significant performance gap highlights how the enhanced partitioning and broker distribution in C; allows it to
handle larger message loads more efficiently. The throughput advantage of C; at low loads under- scores the
importance of parallelism and optimized resource allocation in Kafka. The use of multiple brokers and increased
partitioning reduces the burden on individual nodes, enabling superior message distribution. Conversely, C;
struggles due to its single broker bottleneck and limited partitioning capabilities, resulting in lower throughput,
causing its performance to degrade quickly as the load increases, making it un- suitable for even moderately
scaled Kafka operations.

2) Medium Load

Theoughput Comparison Under Medium Load

Fig. 8. Throughput under Medium Load

At medium message volumes, the throughput performance across the configurations stabilizes and exhibits a
plateauing trend, highlighting the diminishing returns of scaling Kafka infrastructure. C; consistently out-
performs C,, although the gap between them narrows as the load increases. This convergence is driven by Kafka’s
internal overhead, including replication synchronization, disk 1/O, and inter-broker coordination, which cap the
performance gains from additional brokers and partitions. As the graph in Fig. 8 illustrates, both C; and C,
reach a nearsaturation point, where throughput improvements become marginal despite the rising message
volume. This plateauing behavior reveals that Kafka’s resource utilization becomes less efficient at medium loads,
as the added replication and coordination costs counteract the benefits of parallelism. C;, with its single-broker
architecture, falls significantly behind, reflecting its limited scalability and increased bottleneck effect under
moderate traffic conditions.

3) High Load

Throughput Comparison Under High Load

......

Fig. 9. Throughput under High Load
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At high message volumes, the throughput across all configurations begins to decline, indicating the onset of
resource saturation and Kafka’s diminishing processing efficiency. While C; continues to lead, the performance
gap between C; and C, narrows even further. Both configurations plateau and eventually exhibit a down- ward
trend as the system reaches its capacity limits. The throughput dip is caused by intensified replication overhead,
increased disk I/O contention, and inter-broker communication delays, which collectively reduce Kafka’s ability
to sustain higher message rates. The graph in Fig. 9 reveals that C; initially maintains the highest throughput,
but its performance deteriorates faster due to its higher replication factor, which amplifies coordination overhead
under heavy load. In contrast, C,, with its lower replication burden, sustains throughput more effectively, closing
the gap with C;. This convergence highlights how reducing replication overhead enhances throughput efficiency
during large-scale message processing. C;, which is already constrained by its single-broker architecture,
experiences a steeper throughput decline, as its limited capacity and lack of parallelism make it highly
susceptible to saturation. The bottlenecked architecture struggles to manage the growing message load, resulting
in a sharper drop in throughput.

CONCLUSION AND KEY FINDINGS

This study comprehensively evaluated the performance of a Kafka-based supply chain architecture under three
configurations (C;, C,, and C;) across varying load levels (low, medium, and high). The results highlight
significant performance differences in terms of latency, throughput, request time, and jitter, revealing key insights
into the efficiency and scalability of Kafka-based event streaming systems.

1) Superior Performance of C; at Low and Medium Loads

- Throughout the low and medium load scenarios, C; consistently achieved the lowest latency and jitter due to
its higher broker count, increased partitioning, and key-based message distribution.

- At low loads (1,000 to 10,000 messages), C;

exhibited:

— 35.3% lower latency and 41.7% lower jitter compared to C;.

— 17.0% higher throughput than C,, making it the most efficient configuration for real-time event streaming.

- The reduced request times and stable jitter values indicate superior consistency and reliability in C; at small-
to-medium message volumes.

2) Convergence of C, and C; at Higher Loads

- At higher message volumes (30,000 to 50,000), the performance gap between C, and C; narrows due to
replication-induced overhead in C;.

- G, outperforms C; slightly in terms of latency and jitter at extremely high loads, making it better suited for
batch processing scenarios.

- C,’s simpler round-robin distribution and lower replication factor reduce overhead, enhancing its efficiency
for large-scale workloads.

3) Kafka Saturation at Extremely High Loads

- As the message volume increases beyond 40,000, all configurations experience diminishing through- put and
rising latency due to Kafka’s disk I/O contention, inter-broker coordination, and replication overhead.

- The throughput decline highlights Kafka’s processing saturation point at massive loads, requiring further
optimizations such as broker scaling, dynamic partitioning, and consumer rebalancing to sustain efficiency.

4) Real-World Implications:

- For low-latency, real-time supply chain event processing, C; is the most effective configuration, offering
superior responsiveness and stability.

- For largescale, high-volume batch processing, C, offers better stability with lower replication over- head,
making it more suitable for throughput- centric workloads.

- C,, with its single-broker setup, is inefficient for all but the smallest workloads, making it unsuitable for
production-scale Kafka operations.

Overall, the study demonstrates that C; offers the most consistent and scalable performance for real-time
streaming at small-to-medium loads, while C, becomes more efficient
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for large-scale batch processing. These findings provide practical insights for designing and optimizing Kafka-

based supply chain architectures, enabling high throughput, low- latency, and fault-tolerant event streaming.
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