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Abstract — This paper examines the impact of Apache Kafka parameter tuning on the performance and scalability of a 
microservices-based supply chain management system. The study evaluates the influence of key parameters including batch 
size, compression type, partition count, and replication factor on critical performance metrics such as throughput, latency, and 
fault tolerance. Experimental results demonstrate that fine-tuning Kafka configurations significantly reduces processing delays, 
improves throughput, and enhances system resilience under varying workloads. Notably, the trade-off between replication 
overhead and performance efficiency becomes evident at high message volumes, where lower replication factors yield better 
processing efficiency. The findings provide actionable insights and practical guidelines for optimizing Kafka performance in 
large-scale, event-driven supply chain systems. 
 
INTRODUCTION 
Supply Chain Management (SCM) is a critical component of modern business operations, ensuring the seamless 
flow of goods from manufacturers to consumers. Traditionally, SCM systems relied on monolithic 
architectures, where all core functionalities such as order processing, inventory management, logistics, and 
tracking were tightly coupled into a single application. While effective in earlier systems, this architecture is 
increasingly inefficient in handling the complexities and scale of modern supply chains. Monolithic SCM systems 
suffer from performance bottlenecks when processing large transaction volumes, often resulting in degraded 
efficiency [1]. They are also prone to system-wide failures, where a single fault can disrupt the entire supply chain 
workflow [2]. Furthermore, they lack scalability, as the entire application must be scaled even if only one module 
experiences high demand, leading to inefficient resource utilization [3]. Additionally, they are inflexible to 
business changes, making it difficult to introduce new features or integrate third-party services without significant 
rework and redeployment. 
To overcome these limitations, modern SCM systems are shifting towards microservices architecture, deployed 
using Docker containers. The approach presented in this paper consists of five independent, loosely coupled 
services - Manufacturer, Hospital, Transport, Monitor, and Notification. These services operate independently 
but communicate through Apache Kafka, a real-time distributed event streaming platform that facilitates fast, 
reliable, and scalable message exchange between microservices [4]. Docker containerization ensures consistent 
deployment environments across different infrastructure setups, simplifies service orchestration, and enhances 
portability. By running each service in an isolated container, the architecture achieves improved fault isolation, 
independent scaling, and simplified maintenance [5]. While Kafka significantly enhances microservices efficiency, 
its performance heavily depends on parameter optimization. Improper configurations can lead to processing 
delays, inefficient resource usage, and lower fault tolerance. This paper investigates the impact of tuning key Kafka 
parameters, including partition count, batch size, and replication factor, on throughput, latency, and overall 
system performance. Partitioning enhances scalability by enabling parallel processing across multiple brokers. 
Replication improves fault tolerance by maintaining redundant copies of messages across brokers, ensuring data 
durability in case of node failures. Batch size optimizations improve throughput by reducing the overhead of 
individual message transmission [6]. By fine-tuning these Kafka parameters and deploying services using Docker, 
the proposed system achieves faster event processing, improved reliability, and better scalability. The results 
demonstrate how parameter optimization and containerized deployment significantly enhance the resilience and 
performance of microservices-based supply chain systems [7]. 
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LITERATURE SURVEY 
Several studies have explored Apache Kafka’s role in real- time messaging, data processing, and system 
optimization. In [8], Kafka’s application in microservices architecture is examined, highlighting its asynchronous 
messaging capabilities and advantages over traditional RESTful APIs in terms of scalability and fault tolerance. 
Similarly, [9] investigates Kafka’s integration into inventory management systems, demonstrating how real-time data 
streaming enhances inventory tracking, demand forecasting, and overall supply chain efficiency.   
Expanding on Kafka’s role in microservices, [10] evaluates the scalability of five modern stream processing 
frameworks on Kubernetes clusters. The benchmarking reveals that all frameworks exhibit near-linear scalability 
with sufficient resources but differ in efficiency, concluding that no single framework is universally superior, as 
performance varies by use case. 
Focusing on Kafka in supply chains, [11] proposes an integrated Kafka-Akka architecture for concurrent and real- 
time processing in supply chain management. The study demonstrates how this architecture enhances inventory 
optimization, order fulfillment, and operational agility. Meanwhile, [12] covers best practices for building and 
optimizing scalable Kafka clusters, including architecture design, data partitioning, replication strategies, and 
configuration tuning. The authors emphasize that efficient cluster architecture and fault tolerance mechanisms 
are essential for achieving high availability, scalability, and low-latency data streaming at large scales. 
Partitioning strategies for performance optimization are analyzed in [13]. The study explains how Kafka partitions 
enable parallelism and higher throughput but introduces trade-offs. It provides guidelines for determining the 
optimal number of partitions based on throughput requirements, considering factors such as producer and 
consumer performance, file handle limits, and memory usage. In a comparative study, [14] evaluates Kafka against 
other messaging frameworks, such as RabbitMQ and ActiveMQ, concluding that Kafka offers superior 
performance for high-throughput, low-latency applications. Further refining Kafka’s scalability, [15] explores 
heuristic algorithms for optimizing topic partitioning, improving load balancing, fault tolerance, and replication 
efficiency. 
Kafka’s real-world applications across industries are presented in [16], where the authors highlight its 
adaptability in finance, healthcare, IoT, and fraud detection. The study showcases Kafka’s role in predictive 
analytics and event-driven architectures. Similarly, [17] evaluates Kafka as a distributed messaging system based 
on the publish-subscribe model, emphasizing its high throughput, fault tolerance, and widespread adoption by 
Fortune 500 companies. Through multiple test scenarios, the system’s efficiency is assessed based on QoS 
parameters. 
Performance benchmarking studies further emphasize the importance of configuration tuning. [18] presents a 
performance analysis of message brokers, including Kafka, under various data ingestion scenarios. The 
benchmarking demonstrates Kafka’s peak ingestion rate of approximately 420,000 messages per second, 
reinforcing the need for thorough testing and tuning of Kafka configurations for optimal performance. Similarly, 
[19] addresses Kafka’s latency-sensitive processing, identifying high CPU consumption in KafkaProducer as a 
bottleneck. The study proposes buffering techniques and API modifications, reducing KafkaProducer’s CPU load 
by 75% while maintaining low latency. Additionally, [20] offers a comprehensive performance tuning guide, 
covering partitioning strategies, broker configurations, garbage collection, and ZooKeeper optimization, ensuring 
high-throughput and low-latency Kafka deployments. 
 
SYSTEM PERFORMANCE AND DESIGN CONSIDERATIONS 
Optimizing Kafka for a microservices-based supply chain management system requires careful consideration of 
scalability, fault tolerance, and latency. While Kafka provides an event-driven architecture, its default 
configurations may not always be optimal for large-scale, real-time supply chains. Factors such as inefficient 
partitioning, improper replication strategies, and inadequate broker scaling can lead to bottlenecks that impact 
message throughput and system reliability. To address these challenges, this study explores different Kafka 
configurations to analyze their effects on system performance. 
A key design consideration is partitioning strategy, which directly influences message distribution and processing 
efficiency. Default round-robin partitioning spreads messages evenly but does not account for data locality, 
potentially increasing retrieval times. In contrast, key-based partitioning groups related events together, 
improving access efficiency at the cost of potential load imbalance. Similarly, replication enhances fault 
tolerance by maintaining redundant copies of data, but higher replication factors introduce additional 
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overhead, affecting overall performance. The trade-off between these factors necessitates a thorough evaluation 
to determine the most effective configuration for supply chain applications. 
This section establishes the foundation for the methodology by outlining the rationale behind the Kafka 
parameter optimizations explored in this study. The following section presents an empirical evaluation of these 
configurations, detailing their impact on system performance through experimental analysis and benchmarking. 
 
METHODOLOGY 
A. System Architecture and Experimental Setup 
The Kafka-based drug supply chain system follows a microservices architecture, as illustrated in Fig. 1. It consists 
of five loosely coupled services - Hospital, Manufacturer, Transport, Monitor, and Notification - communicating 
through Kafka topics for real-time event streaming. This architecture enables independent scaling, fault isolation, 
and efficient parallel processing, making the system highly resilient and adaptable to fluctuating workloads. To 
evaluate the system’s performance, a Dockerized Kafka cluster was deployed as the core messaging backbone. The 
cluster was configured with varying broker counts across three configurations to simulate different levels of 
scalability and fault tolerance. A single Zookeeper instance was used to manage broker metadata, track broker 
health, and coordinate leader election. All components were containerized using Docker, running within an 
isolated bridge network to enable efficient and secure inter-service communication.

 
 
Fig. 1.  Kafka architecture diagram 
 
The experiments were conducted on a host machine equipped with a MacBook Pro powered by an M1 chip, 
16 GB of RAM, and 256 GB of storage. This setup provided sufficient processing power and memory capacity 
to simulate large-scale workloads without hardware-induced performance bottlenecks. 
B. Kafka-Based Microservices Architecture and Communication Flow 
The system comprises five microservices, each handling distinct operations within the drug supply chain, as 
illustrated in Fig. 1. This event-driven architecture enables seamless communication through Kafka topics, 
ensuring efficient order processing, inventory management, and delivery tracking. The Hospital Service initiates 
the workflow by publishing messages to the order-placed topic when drug orders are created. It also 
consumes messages from the order-confirmation topic to track the status of placed orders, ensuring 
hospitals receive real-time updates. The Manufacturer Service consumes messages from the order-placed topic 
to initiate drug production. After verifying inventory availability, it produces updates to the drug-
manufactured, inventory-updated, and order-confirmation topics to reflect production progress, ensuring real-
time manufacturing and inventory- tracking. 
The Transport Service handles delivery operations by consuming messages from the drug-manufactured topic and 
producing updates to the shipment-status topic, reflecting the shipment’s progress. This ensures real-time order 
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tracking and improves transparency. The Monitor Service tracks system performance and Kafka metrics, such 
as throughput, latency, and broker health. It publishes anomaly alerts to the monitor-alerts topic when 
irregularities are detected, enhancing observability and fault detection. The Notification Service consumes 
messages from multiple topics, such as order-confirmation and shipment-status, broadcasting real-time updates 
to connected clients to improve supply chain visibility. 
Kafka topics serve as communication channels be- tween the microservices, enabling asynchronous, event- 
driven processing. The order-placed topic triggers drug production, while the drug-manufactured topic initiates 
the delivery workflow. The shipment-status topic ensures real-time shipment tracking, and the order-confirmation 
topic keeps hospitals informed of order status. The monitor-alerts topic enhances system reliability by broadcasting 
anomalies. This structured topic- based communication ensures reliable event propagation and consistent data 
flow across the microservices. 
C. Test Workload 
To simulate real-world usage patterns, the system was subjected to varying message loads, categorized into three 
distinct levels: light, medium, and heavy. These load levels were designed to assess Kafka’s performance under 
different traffic conditions, evaluating metrics such as throughput, latency, and fault tolerance. 
A Python-based simulation script was used to generate the workload, dynamically producing Kafka messages to 
the order-placed topic. Each message represented a drug order, encapsulated in a JSON payload containing details 
such as drug names, quantities, and timestamps. The times- tamps were appended at the time of message 
production, serving as the basis for calculating end-to-end latency as the message traversed through the 
microservices. As the system workflow progressed, the subscriber services consumed these messages, triggering 
subsequent events, including inventory updates, shipment initiation, and notifications. 
The workload was classified into the following categories: 
• Light Load: This level includes message volumes ranging from 100 to 5,000 messages, simulating low- demand 
scenarios with minimal strain on the system. 
• Medium Load: This level encompasses message volumes between 7,500 and 20,000 messages, representing 
stable and consistent order traffic. 
• Heavy Load: This level simulated peak demand conditions with message volumes ranging from 25,000 to 
50,000 messages. It evaluates the system’s performance under high-stress scenarios, testing Kafka’s capacity to 
handle large-scale message loads efficiently. 
D. Parameter Configuration Strategy 
To evaluate Kafka’s performance under varying conditions, three distinct configurations were designed, differing 
in broker count, replication factor, number of partitions, and partitioning strategy. The selection of these 
configurations aims to capture the impact of scaling Kafka’s architecture on message distribution, fault tolerance, 
and processing efficiency. 
• Configuration 1 (C1) represents a minimal setup with a single broker, a replication factor of one, and a single 
partition. This configuration was chosen to establish a performance baseline, reflecting how Kafka behaves in a 
basic, non-redundant environment. It highlights the raw throughput and latency characteristics without the 
overhead of replication or multi-broker coordination. 
• Configuration 2 (C2) introduces an additional broker, increases the replication factor to two, and expands the 
number of partitions to three. This setup was selected to observe the effect of moderate scaling, specifically how 
Kafka handles fault tolerance and parallel processing. The replication factor improves reliability, while multiple 
partitions enable better message distribution and concurrency. 
• Configuration 3 (C3) employs three brokers, a replication factor of three, and six partitions, using key- based 
partitioning. This configuration was designed to simulate a larger-scale, production-like environment. The higher 
replication factor ensures message availability during broker failures, while key-based partitioning using order-id 
as the key optimizes data locality and preserves message ordering, which is critical for consistent supply chain 
operations. 

Parameter C1 C2 C3 
Brokers 1 2 3 
Replication 
Factor 

1 2 3 
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Partitions 1 3 6 
Partitioning 
Strategy 

Round-
Robin 

Round-
Robin 

Key-Based 

TABLE I 
KAFKA CLUSTER CONFIGURATIONS 
Table I summarizes the three Kafka configurations used in the experiment, highlighting the key parameters. By 
comparing these configurations, the experiment aims to analyze how scaling Kafka’s architecture impacts key 
performance metrics, providing insights into its efficiency under varying workloads. 
E. Kafka Parameters 
The Kafka cluster’s performance was evaluated based on four key parameters, each influencing the system’s 
efficiency, scalability, and fault tolerance. 
1) Brokers: Kafka brokers are responsible for storing and managing message data, facilitating communication 
between producers and consumers. Deploying multiple brokers enhances fault tolerance, prevents bottlenecks, 
and ensures high availability, which is critical in large- scale supply chain systems. 
2) Replication Factor: This parameter determines how many copies of a message exist across brokers, pre- venting 
data loss in case of failures. A higher replication factor improves resilience but increases storage overhead and 
synchronization complexity. The optimal configuration of three ensures redundancy and minimizes downtime. 
3) Partitions: Partitions divide Kafka topics into smaller segments, enabling parallelism. More partitions allow 
multiple consumers to process messages concurrently, enhancing throughput. However, excessive partitions can 
lead to synchronization overhead. The experiment balances partition count to optimize performance. 
4) Partitioning Strategy: This defines how messages are distributed across partitions. Two strategies were used: 
• Round-Robin (RR): Distributes messages evenly across partitions, optimizing load balancing but sacrificing 
message order consistency. 
• Key-Based (KB): Ensures messages with the same key are routed to the same partition, preserving ordering 
and improving data locality, which is beneficial for event-driven workflows. 
F. Performance Metrics 
The system’s performance was evaluated using four key metrics, measuring Kafka’s efficiency under different 
configurations and workloads. 
1) Average Latency (ms): Latency measures the time taken for a message to be produced, transmitted, and 
consumed by Kafka clients. It reflects the overall responsiveness of the system. In supply chain applications, low 
latency ensures faster event stream processing (e.g., order placements, inventory updates), enabling real-time 
decision-making. Higher latency indicates delays in data availability, which can impact operational efficiency. 
Monitoring latency helps optimize Kafka configurations to maintain efficient message processing under varying 
loads. 
2) Kafka Request Time (ms): Kafka request time represents the end-to-end processing time of a Kafka request, 
including network overhead, broker processing, and replication delays. It offers insights into the efficiency of 
Kafka’s internal operations, such as message routing and acknowledgment. Lower request times indicate faster  

Fig. 2. Latency under Low Load 
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3) Fig. 3.  Latency under Medium Load 

 
broker responsiveness, while higher values reveal potential bottlenecks. Reducing Kafka request time is essential 
for maintaining consistent performance in distributed systems under fluctuating workloads. 
4) Average Jitter (ms): Jitter quantifies the variation in message delivery time between subsequent messages, 
caused by network congestion, broker load, or processing delays. In event-driven systems like supply chains, high 
jitter can lead to out-of-order message delivery, impacting data consistency. Lower jitter ensures stable and 
predictable message delivery, which is critical for maintaining data integrity. Monitoring jitter helps fine-tune 
Kafka configurations, reducing fluctuations, especially under high-load conditions. 
5) Throughput (msgs/sec): Throughput measures the rate at which Kafka processes messages, represented in 
messages per second (msgs/sec). Higher throughput indicates better system efficiency and the ability to handle 
larger message volumes. In supply chain systems, maintaining high throughput ensures continuous event stream 
processing, even during load spikes. Throughput is directly influenced by broker count, partitioning, and 
replication factor, making it a vital metric for assessing Kafka’s scalability and overall performance. 
I. INFERENCES 
A detailed analysis of the experimental results is obtained from evaluating Kafka’s performance under varying 
message loads and architectural configurations and presented in Table II. 
The inferences are drawn based on key performance metrics such as jitter, Kafka request time, latency, and 
throughput. Each metric is analyzed across three distinct Kafka setups to assess their scalability and efficiency. 
The following subsections provide graphical representations and corresponding observations based on the values 
shown in Table II, highlighting how Kafka’s behavior evolves with increasing message volume. These insights 
offer a comprehensive understanding of Kafka’s performance characteristics and help identify potential 
bottlenecks under different load conditions. 
A. Latency 
In this study, we evaluated the average latency under three configurations across three load scenarios: Low, 
Medium and High Load. 
1) Low Load 
Fig. 2 shows the latency trend under low message volumes reveals that all configurations handle the work- load 
efficiently, but C3 consistently outperforms the others, exhibiting the lowest latency. This is attributed to its 
higher broker count, increased partitioning, and key-based partitioning strategy, which collectively enhance 
parallelism and reduce processing time. At 100 messages, C3 achieves a latency of 13.2ms, which is 16.5% 
lower than C2 (15.8ms) and 38.3% lower than C1 (21.4ms). This trend persists at 250 messages, where C3 
maintains a latency of 24.8ms, compared to 28.4ms for C2 and 38.7ms for C1, highlighting a 35.9% 
improvement over the default configuration. The superior low-load performance of C3 stems from its efficient 
partition parallelism and key-based partitioning, which ensures that related messages are routed to the same 
partition. This improves data locality and reduces retrieval time. Additionally, lower batch sizes and reduced 
linger time in C3 minimize broker-to-broker synchronization delays, enhancing responsiveness. The improved 
load distribution across multiple brokers reduces context switching and disk I/O overhead, resulting in faster 
message retrieval. Furthermore, optimized network round-trip times and reduced Garbage Collection (GC) 
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pauses in C3 further enhance its efficiency. As a result, C3 proves highly effective for low-load, real-time streaming 
scenarios, delivering faster message processing and lower latencies, making it ideal for lightweight supply chain 
event processing. 
2) Medium Load 
Based on Fig. 3, we can derive that as the message volume increases, latency grows for all configurations due to 
higher processing demands. C3 maintains the lowest latency across most of the medium load range showcasing 
its superior parallelism and distribution efficiency. However, towards the upper end of the range (near 20,000 
messages), C2 starts to overlap with C3. The overlapping performance between C2 and C3 at higher message counts 
can be attributed to replication overhead in C3. While C3’s higher replication factor offers better fault tolerance, 
it introduces replication- related delays under increased load. Thus, C2 demonstrates more stable latency 
performance at medium loads due to fewer replication operations. 
3) High Load 
 

 
Fig. 4.  Latency under High Load 
At high message volumes, as depicted in Fig. 4, the latency difference between C2 and C3 becomes more 
noticeable. Although C3 still offers better latency initially, the performance gap narrows and eventually reverses 
as the message load increases. C2 achieves lower latency at the highest message volumes (≥ 35,000 messages), while 
C3’s performance deteriorates slightly due to the replication overhead. Under high load, the benefits of increased 
replication in C3 diminish due to replication-induced latency overhead. The lower replication factor in C2 makes 
it more efficient for handling large-scale message loads, resulting in lower latency. This highlights a trade-off 
between fault tolerance and performance C3 offers better fault tolerance but slightly higher latency at scale. 
B. Kafka Request Time 
The Kafka request time trend depicted in Fig. 5 reveals a consistent increase across all configurations as the 
message volume rises, but the magnitude of increase varies significantly across the three setups. 
At low message volumes, C3 exhibits the lowest request time due to its higher broker count, increased 
partitioning, and key-based partitioning strategy, which improve load distribution and reduce message processing 
overhead. For 100 messages, C3 achieves a request time of 4.1ms, which is 21.2% lower than C2 (5.2ms) and 
52.3% lower than C1 (8.6ms). This efficiency persists at 250 messages, where C3 records 3.7ms, compared to 
4.5ms in C2 and 6.1ms in C1, demonstrating a 39.3% improvement over the baseline configuration. 

  
Fig. 5.  Kafka Request Time vs Messages 
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As the message volume increases, the gap between the configurations widens, highlighting C3’s superior handling 
of higher loads. At 10,000 messages, C3 maintains a request time of 10.1ms, while C2 records 10.8ms and C1 
reaches 
14.5ms, resulting in a 30.3% improvement over the default configuration. 
At low to moderate loads, C3 consistently achieves the lowest request times, making it highly efficient for low- 
latency real-time operations. However, at extremely high volumes (≥ 40,000 messages), its performance slightly 
deteriorates relative to C2 due to increased overhead from key-based partitioning, which introduces routing 
complexity. For instance, at 40,000 messages, C3 records 27.1ms, slightly higher than C2 at 25.8ms. In contrast, 
C2 benefits from its simpler round-robin strategy, which efficiently distributes large-scale workloads with lower 
partitioning overhead, making it more suitable for massive-scale batch processing. 
C. Jitter 

Fig. 6.  Jitter vs Messages 
The jitter trend shown in Fig. 6 presents a steady increase across all configurations as message volume rises, but 
with significant performance differences between the setups. Jitter measures the variability in message delivery 
times, and lower jitter indicates more consistent and predictable message propagation. 

Messages Latency (ms) Kafka Request Time (ms) Jitter (ms) Throughput (msgs/sec) 
C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 

100 21.4 15.8 13.2 8.6 5.2 4.1 6.0 4.1 3.5 93.5 125.7 140.8 
250 38.7 28.4 24.8 6.1 4.5 3.7 4.8 3.8 3.2 108.7 140.3 158.3 
500 45.3 34.7 30.5 5.8 4.0 3.4 4.2 3.2 2.8 113.2 162.8 182.6 
750 51.2 39.9 34.2 6.7 4.3 3.6 4.9 3.5 3.0 145.3 185.4 210.4 
1000 57.1 42.1 36.9 7.4 4.7 4.0 5.1 3.6 3.1 180.4 235.1 260.4 
1500 64.8 48.9 43.7 8.2 5.5 4.7 6.3 4.1 3.8 182.5 247.3 275.8 
2500 72.3 56.2 50.1 9.5 6.1 5.4 7.1 4.9 4.3 206.6 280.6 310.9 
3000 75.6 59.4 54.3 10.1 6.8 6.1 7.8 5.3 4.7 210.2 295.4 328.5 
5000 84.2 67.1 62.8 11.4 7.9 7.2 8.3 6.1 5.5 212.7 312.9 345.1 
7500 92.8 75.6 70.2 12.7 9.4 8.8 9.1 7.3 6.7 213.9 317.4 355.7 
10000 101.5 82.3 78.5 14.5 10.8 10.1 10.6 8.2 7.5 214.3 320.1 360.8 
12500 109.2 89.4 85.7 15.8 12.1 11.4 11.9 9.5 8.9 215.7 325.7 366.4 
15000 115.7 95.1 93.6 17.3 13.7 12.9 13.2 10.9 10.2 215.2 324.9 365.1 
17500 122.6 102.8 101.4 19.1 15.4 14.6 14.7 12.4 11.7 214.5 322.7 363.2 
20000 130.8 110.3 109.8 20.8 16.8 16.3 15.9 13.6 13.1 213.1 320.4 360.9 
22500 140.2 118.6 118.1 22.4 18.2 18.0 17.5 14.9 14.6 210.8 318.1 358.5 
25000 150.5 127.5 127.4 24.3 19.6 19.3 18.7 15.7 15.4 208.3 316.4 355.2 
30000 165.4 139.3 139.9 27.6 22.1 21.7 20.1 18.4 18.1 205.9 312.8 350.6 
35000 180.9 152.6 152.5 30.2 24.3 24.2 22.5 20.9 20.6 200.7 308.7 345.3 
40000 190.2 160.9 165.8 34.1 25.8 27.1 25.3 22.7 23.4 195.4 298.1 340.1 
45000 205.7 174.3 178.3 37.5 28.9 29.5 28.1 25.4 25.8 180.2 282.6 325.4 
50000 218.9 185.7 192.7 40.9 31.4 32.4 30.4 28.6 28.5 165.8 265.2 310.2 

TABLE II 
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KAFKA PERFORMANCE METRICS ACROSS CONFIGURATIONS 
At low message volumes, C3 achieves the lowest jitter, highlighting its superior consistency due to its higher 
broker count, increased partitioning, and key-based strategy, which enhance data locality and reduce message 
queuing delays. For 100 messages, C3 records a jitter of 3.5ms, which is 14.6% lower than C2 (4.1ms) and 41.7% 
lower than C1 (6.0ms). Similarly, at 250 messages, C3 achieves 3.2ms, while C2 reaches 3.8ms and C1 shows 4.8ms, 
indicating a 33.3% improvement over the baseline. 
As the message volume increases, C3 continues to demonstrate more stable jitter compared to the other 
configurations. At 5,000 messages, C3 records 5.5ms, while C2 shows 6.1ms and C1 spikes to 8.3ms, resulting 
in a 33.7% improvement over the baseline. This is due to C3’s key-based partitioning, which ensures related 
messages are routed to the same partition, reducing rebalancing overhead and improving consistency. 
At higher loads (≥ 40,000 messages), the performance gap narrows, with C2 and C3 exhibiting almost identical 
jitter. For instance, at 50,000 messages, C3 records 28.5ms, just 0.1ms lower than C2 (28.6ms). This convergence 
is due to the network saturation and processing bottlenecks that arise at massive volumes, limiting the advantage 
of key-based routing in C3. Meanwhile, C2 benefits from its simpler round-robin distribution, which reduces 
complexity during large-scale parallel processing, resulting in almost equivalent jitter values. 
Overall, C3 consistently maintains the lowest jitter at low and moderate loads, making it ideal for time-
sensitive, real-time applications where consistent message delivery is essential. However, at extremely high 
volumes, C2 achieves near-parity with C3, making it equally viable for large-scale batch processing scenarios. 
D. Throughput 
Figs. 7, 8, & 9 illustrate the throughput performance of three Kafka configurations (C1, C2, C3) under Low, 
Medium and High conditions respectively. 
1) Low Load 
 

Fig. 7.  Throughput under Low Load 
At low message volumes, C3 consistently achieves the highest throughput, followed by C2, with C1 trailing behind, 
as depicted in Fig. 7. This performance trend underscores the effectiveness of C3’s increased parallelism, which is 
driven by a higher broker count, expanded partitioning, and efficient key-based message distribution. 
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These architectural optimizations enable parallel consumers to process messages concurrently, reducing 
contention and significantly enhancing overall throughput. For instance, at 100 messages, C3 achieves 
140.8msgs/sec, while C2 processes 125.7 msgs/sec, and C1 manages only 93.5 msgs/sec. As the message 
volume increases, the throughput gap widens. By the time the system reaches 5000 messages, C3’s throughput 
rises to 345.1 msgs/sec, whereas C2 achieves 312.9 msgs/sec, and C1 lags behind at 212.7 msgs/sec. This 
significant performance gap highlights how the enhanced partitioning and broker distribution in C3 allows it to 
handle larger message loads more efficiently. The throughput advantage of C3 at low loads under- scores the 
importance of parallelism and optimized resource allocation in Kafka. The use of multiple brokers and increased 
partitioning reduces the burden on individual nodes, enabling superior message distribution. Conversely, C1 
struggles due to its single broker bottleneck and limited partitioning capabilities, resulting in lower throughput, 
causing its performance to degrade quickly as the load increases, making it un- suitable for even moderately 
scaled Kafka operations. 
2) Medium Load 
 

 
Fig. 8.  Throughput under Medium Load 
 
At medium message volumes, the throughput performance across the configurations stabilizes and exhibits a 
plateauing trend, highlighting the diminishing returns of scaling Kafka infrastructure. C3 consistently out- 
performs C2, although the gap between them narrows as the load increases. This convergence is driven by Kafka’s 
internal overhead, including replication synchronization, disk I/O, and inter-broker coordination, which cap the 
performance gains from additional brokers and partitions. As the graph in Fig. 8 illustrates, both C3 and C2 
reach a near-saturation point, where throughput improvements become marginal despite the rising message 
volume. This plateauing behavior reveals that Kafka’s resource utilization becomes less efficient at medium loads, 
as the added replication and coordination costs counteract the benefits of parallelism. C1, with its single-broker 
architecture, falls significantly behind, reflecting its limited scalability and increased bottleneck effect under 
moderate traffic conditions. 
3) High Load 
 

 
Fig. 9.  Throughput under High Load 
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At high message volumes, the throughput across all configurations begins to decline, indicating the onset of 
resource saturation and Kafka’s diminishing processing efficiency. While C3 continues to lead, the performance 
gap between C3 and C2 narrows even further. Both configurations plateau and eventually exhibit a down- ward 
trend as the system reaches its capacity limits. The throughput dip is caused by intensified replication overhead, 
increased disk I/O contention, and inter-broker communication delays, which collectively reduce Kafka’s ability 
to sustain higher message rates. The graph in Fig. 9 reveals that C3 initially maintains the highest throughput, 
but its performance deteriorates faster due to its higher replication factor, which amplifies coordination overhead 
under heavy load. In contrast, C2, with its lower replication burden, sustains throughput more effectively, closing 
the gap with C3. This convergence highlights how reducing replication overhead enhances throughput efficiency 
during large-scale message processing. C1, which is already constrained by its single-broker architecture, 
experiences a steeper throughput decline, as its limited capacity and lack of parallelism make it highly 
susceptible to saturation. The bottlenecked architecture struggles to manage the growing message load, resulting 
in a sharper drop in throughput. 
 
CONCLUSION AND KEY FINDINGS 
This study comprehensively evaluated the performance of a Kafka-based supply chain architecture under three 
configurations (C1, C2, and C3) across varying load levels (low, medium, and high). The results highlight 
significant performance differences in terms of latency, throughput, request time, and jitter, revealing key insights 
into the efficiency and scalability of Kafka-based event streaming systems. 
1) Superior Performance of C3 at Low and Medium Loads 
• Throughout the low and medium load scenarios, C3 consistently achieved the lowest latency and jitter due to 
its higher broker count, increased partitioning, and key-based message distribution. 
• At low loads (1,000 to 10,000 messages), C3 
exhibited: 
– 35.3% lower latency and 41.7% lower jitter compared to C1. 
– 17.0% higher throughput than C2, making it the most efficient configuration for real-time event streaming. 
• The reduced request times and stable jitter values indicate superior consistency and reliability in C3 at small-
to-medium message volumes. 
2) Convergence of C2 and C3 at Higher Loads 
• At higher message volumes (30,000 to 50,000), the performance gap between C2 and C3 narrows due to 
replication-induced overhead in C3. 
• C2 outperforms C3 slightly in terms of latency and jitter at extremely high loads, making it better suited for 
batch processing scenarios. 
• C2’s simpler round-robin distribution and lower replication factor reduce overhead, enhancing its efficiency 
for large-scale workloads. 
3) Kafka Saturation at Extremely High Loads 
• As the message volume increases beyond 40,000, all configurations experience diminishing through- put and 
rising latency due to Kafka’s disk I/O contention, inter-broker coordination, and replication overhead. 
• The throughput decline highlights Kafka’s processing saturation point at massive loads, requiring further 
optimizations such as broker scaling, dynamic partitioning, and consumer rebalancing to sustain efficiency. 
4) Real-World Implications: 
• For low-latency, real-time supply chain event processing, C3 is the most effective configuration, offering 
superior responsiveness and stability. 
• For large-scale, high-volume batch processing, C2 offers better stability with lower replication over- head, 
making it more suitable for throughput- centric workloads. 
• C1, with its single-broker setup, is inefficient for all but the smallest workloads, making it unsuitable for 
production-scale Kafka operations. 
Overall, the study demonstrates that C3 offers the most consistent and scalable performance for real-time 
streaming at small-to-medium loads, while C2 becomes more efficient 
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for large-scale batch processing. These findings provide practical insights for designing and optimizing Kafka-
based supply chain architectures, enabling high throughput, low- latency, and fault-tolerant event streaming. 
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