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Abstract 
This study presents mathematical modelling and bifurcation analysis of vector-borne crop diseases by incorporating non-linear 
saturation rate of Holling type II. A mathematical model is developed by taking into account the logistic crop growth and vector 
dynamics. Before showing the existence of two equilibrium points (the disease-free and the endemic), the basic properties of the 
model are discussed and then the expression for basic reproduction number is obtained by using the next generation matrix method. 
Furthermore, bifurcation analysis is done by using the centre manifold theory. Sensitivity analysis is performed for the basic 
reproduction number which is shown with the help of a bar chart. Model parameters with positive sensitivity indices significantly 
impact the spread of crop diseases, while those with negative indices have a lesser effect. Numerical simulations are done and the 
results are displayed graphically to justify the analytical findings. This model aids in developing strategies to control vector-borne 
diseases in crops, enhancing productivity and food security. 

Keywords: Holling type II; Logistic growth; Insect vectors; Sensitivity Analysis. 

1. INTRODUCTION 
Since the beginning of agriculture, humans have acquired and developed their knowledge to produce agricultural 
crops (i.e. food) more efficiently and to enhance the crop yields, while promoting the development of the human 
society. With an increasing world population, humans need the increased amount of food along with other eatables 
and usable in which crop production plays an important role in providing sufficient food security. Diseases of 
agricultural crops cause substantial economic losses and reduce food security at household, national and global 
levels, if not managed [1–3]. Diseases of crops pose a worldwide challenge to optimal food production and food 
security. To reduce the impacts of diseases in crop production, chemical sprays are mostly use to eliminate disease-
causing pathogens found in the soil and different parts of crops [4-7]. For a number of years, pesticides/insecticides 
were developed as a solution to combat the spread of pests and diseases. Unfortunately, we now know that most of 
these pesticides have caused a lot of damage to the crops. Consequently, there is need to develop sustainable 
approaches to maintain yields and reduce the use of chemical products as much as possible in order to protect the 
biodiversity, decrease the risk of cancer or other diseases and also to protect our Earth for the future generations 
[8]. Vector-borne diseases have co-evolved with crops for millennia, making them an essential component of agro-
ecosystems. There is a complicated web of mutual relationships between the pests and diseases that affect cultivated 
crops. There are two primary categories of procedures that can be employed to deal with these systems; these 
categories correspond to the scientific fields where modelling has evolved in a wide range of ways. The first group 
deals with the dynamics of pathogen populations and includes Pests and Disease Models (PDM), which allow crops 
to grow both temporally and spatially. The second group deals with the agricultural losses and concentrates on how 
host-pathogen interactions affect crop biomass/yield productivity and physiological processes. Physical, biological, 
social, and economic factors all have a significant impact on these two major categories of processes, while growing 
the crops biomass/yield. The estimation of the effects of pests and diseases on agricultural production is a crucial 
aspect in the formulation and evaluation of scenarios that influence farmers income and food security. There has 
been a transition in the type of models required for making quantitative assessments of yield loss, necessitating 
models with wider applicability. This shift is driven by the need to consider the effects of climate change and the 
desire to enhance the capability of providing global estimates. To fulfil these dual requirements, investigators 
encounter challenges such as the scarcity of reference data and the necessity to enhance the robustness and 
applicability of simulation models under varying conditions. Historically, barriers such as the intricacy of PDM and 
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the absence of standardized protocols for data collection, model development, and evaluation have hindered the 
creation of comprehensive modelling tools and a unified community focused on pest and disease modelling. Despite 
the extensive knowledge available regarding pest and disease modelling, as well as crop modelling within scientific 
circles, the exchange of this knowledge remains relatively limited [1].  
To understand the complexity of crop diseases, multidisciplinary approach integrating biological and mathematical 
expertise must be taken. The study of eco-epidemiological models allows us to evaluate the effectiveness of different 
methods of disease and vector control. 
It is well known that mathematics is incredibly important for understanding the whole world. It helps us in assessing 
the effects of different events and make wise decisions for policies. Using mathematical models (more specifically, 
epidemiological models), scientists can learn about how diseases spread and suggest good ways to control them.  
Epidemiological modelling is an important tool to study diseases in crops and exhaustive research has been designed 
in this area [9,10]. Epidemiological models can identify knowledge or data gap and hence prioritize further research 
efforts [9]. In this connection, Tang et al. [11] have proposed a mathematical model for crop population with aims 
to eradicate infected crops or maintain the number of infected crops below the economic threshold. Gao et al. [12] 
have developed a mathematical model for crop disease due to virus with periodic environment and pulse rouging 
and have reported that when the infection rate is high, it may be impossible to eradicate the disease by simply 
rouging the infectious crops. Jackson et al. [13] have presented a model, in which they have considered the 
interaction between crops, virus and the insect vector that transfers the virus from one crop to another crop. There 
are many ways that crop viruses interact with the insect vectors and make crops infected with viruses. These 
infections may be harmful not only to the crops themselves but also to the ecosystem that depends on them. Such 
infections can have a negative impact on crop production and can create a challenge for human survival and the 
complete ecosystem. Viruses need a method of transportation to spread from one crop to another crops. Typically, 
an insect vector is the mode of crop virus transmission. An insect during movement must come in contact with the 
infected crops, usually by feeding on it, obtain the virus and transmit the virus to another disease resistant crops.  
In view of the above, we propose to study a compartmental model to investigate the interaction between crops, virus 
and insect vectors. We shall take non-linear saturation constant rate of the Holling type II and logistic growth of 
crop biomass [14]. Non-linear saturation constant function represents saturation in the interaction of vectors with 
disease resistant crops due to application of various control strategies like fungicides, implementing cultural 
practices to inhibits fungal growth, etc [15]. We create the compartmental model by considering four compartments 
which are put into two groups, crop biomass/yield and vectors. The description of the proposed mathematical 
model is summarised below: 

DESCRIPTION OF MATHEMATICAL MODEL 
Four compartments are taken into consideration in two disjoint classes of crop biomass/yield and vectors. The crop 
biomass 𝑁𝑐(𝑡) is divided into two sub-classes; first the disease resistant crop biomass/yield 𝑅𝑐(𝑡) and second the 
infected crop biomass/yield 𝐼𝑐(𝑡). Thus, the crop biomass  𝑁𝑐(𝑡) at any time 𝑡 is given by 𝑁𝑐(𝑡) = 𝑅𝑐(𝑡) + 𝐼𝑐(𝑡). 
Again, the vector population 𝑀𝑣(𝑡) is divided into two sub-classes: namely susceptible vectors 𝑆𝑣(𝑡) and infected 
vectors 𝐼𝑣(𝑡). Thus, the  vector population 𝑀𝑣(𝑡) at any time 𝑡 is given by 𝑀𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡). The recovered 
vector class is not included in this model, since infected vectors do not get damaged or spoiled due to the infection. 
Disease resistant crops do not have the disease but could acquire the disease if infected with the virus. The infected 
crops have the virus but can not directly transmit to the disease resistant crops. Additionally, since the infected 
crops could damage from the viral infection, their damage rate is higher than that of crops that do not have the 
virus. We also assume that as soon as a crop damages either from the infection or from a natural death, it is 
immediately replaced with a new crop by beneficiaries. Thus, it is reasonable to assume that the crop biomass/yield 
remains fixed, say 𝐾𝑐 which is the carrying capacity for the crops growing on specific land. The insects do not have 
the virus but can obtain the virus if they come in contact with an infected crops. Infected insect vector can transmit 
the virus to disease resistant crops through contact. We assume no vertical transmission of the virus with neither 
crops nor vectors. Moreover, we assume that the virus does not harm the vector and thus the vector does not defend 
against the virus and it retains the virus for the rest of its life [3,10,16].  
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The compartmental diagram of the model is shown in Figure 1. In the flow diagram, the solid lines represent an 
individual moving from one class to the next, whereas the dashed lines indicate contact between the two classes. A 
list of model parameters with description is summarized in Table 1. 

The proposed compartmental model is developed on the basis of following assumptions: 

(i) The disease resistant crops are assumed to be generated by the logistic growth rate 𝑟(𝑅𝑐 + 𝐼𝑐) (1 −
𝑅𝑐+𝐼𝑐

𝐾𝑐
). 

It is further assumed that the disease resistant crops decrease due to infection transmission rate with 

infected vectors at a rate  
𝛼𝐼𝑣𝑅𝑐

1+𝛽𝐼𝑣
. The growth of disease resistant crops is further reduced by 𝑑𝑅𝑐 . Due to 

death of infected crops due to disease, it is also assumed that the of disease resistant crops is increased by 
𝜃𝐼𝑐 . 

(ii) The infected crops are assumed to be generated by the infection of the disease resistant crops at a rate 
𝛼𝐼𝑣𝑅𝑐

1+𝛽𝐼𝑣
. 

It is also assumed that the population of infected crops is further decreased by 𝑑𝐼𝑐 and upon infection and 
display of symptoms, the crops spoiled from infection by 𝜃𝐼𝑐 .  

(iii) It is further assumed that the population of susceptible vectors is generated by the recruitment of vectors 

by a recruitment rate 𝐴 and it is decreased after the effective contact with the infected crops at a rate 
𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
. 

(iv) It also is assumed that the population of infected vectors is generated at a rate  
𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
, and this population 

is further decreased by 𝜇𝐼𝑣 , due to the natural death of vectors.  
 

 
Figure 1: Schematic Diagram of the Proposed Model. 
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On the basis of above assumptions, the model is developed as follows: 

                                 

𝑑𝑅𝑐

𝑑𝑡
= 𝑟(𝑅𝑐 + 𝐼𝑐) (1 −

𝑅𝑐+𝐼𝑐

𝐾𝑐
) − 𝑑𝑅𝑐 −

𝛼𝐼𝑣𝑅𝑐

1+𝛽𝐼𝑣
+ 𝜃𝐼𝑐

𝑑𝐼𝑐

𝑑𝑡
=

𝛼𝐼𝑣𝑅𝑐

1+𝛽𝐼𝑣
− 𝑑𝐼𝑐 − 𝜃𝐼𝑐

𝑑𝑆𝑣

𝑑𝑡
= 𝐴 −

𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
− 𝜇𝑆𝑣

𝑑𝐼𝑣

𝑑𝑡
=

𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
− 𝜇𝐼𝑣 }

  
 

  
 

                                                    (1) 

with initial conditions:  
                 𝑅𝑐(0) > 0,  𝐼𝑐(0) ≥ 0,  𝑆𝑣(0) > 0,  𝐼𝑣(0) ≥ 0. 

Table 1: List of Model Parameters with Description with Corresponding Values 

Parameter Description Value Source 
𝑟 Intrinsic growth rate of crop biomass/yield 0.1 Assumed 
𝐾𝑐 Carrying capacity of crop biomass/yield 1000 [14] 

𝛼 Transmission rate of crop biomass/yield due to vectors 0.0021 Assumed 

𝛼1 Transmission rate of vectors due to crop biomass/yield 0.0003 Assumed 

𝛽 Saturation rate of crop biomass/yield due to vectors 0.007 Assumed 
𝛽1 Saturation rate of vectors due to crop biomass 0.01 [3] 
𝑑 Natural damage rate of crops 0.01 [18,19] 
𝜃 Damage rate of infected crops 0.01 [19] 
𝐴 Recruitment rate of vectors 0.0002 Assumed 
𝜇 Natural death rate of vectors 0.002 Assumed 

2.  BASIC PROPERTIES OF THE MODEL 
It is important to note that the solutions of the model within the region defined by 𝛺 are to be shown positively 
invariant for all 𝑡 ≥  0 so that the system (1) be mathematically and epidemiologically meaningful and well-posed. 

2.1  Non-negativity and Boundedness of Solution 
To determine whether solutions are non-negative and constrained, we have the following theorem: 

 
Theorem 2.1 Every solution of the system (1) with initial conditions is non-negative for all 𝑡 ≥  0. 
    Proof:  From the system of equations (1), we obtain 
 

                             
𝑑𝑅𝑐

𝑑𝑡
|𝑅𝑐=0 =

𝑟𝐼𝑐

𝐾𝑐
(𝐾𝑐 − 𝐼𝑐) + θ𝐼𝑐 ≥ 0 ,         

𝑑𝐼𝑐

𝑑𝑡
|𝐼𝑐=0 =

α𝐼𝑣𝑅𝑐

1+β𝐼𝑣
≥ 0, 

                             
𝑑𝑆𝑣

𝑑𝑡
|𝑆𝑣=0 = 𝐴 ≥ 0,                                       

𝑑𝐼𝑣

𝑑𝑡
|𝐼𝑣=0 =

𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
≥ 0.  

This implies that every solution of the system (1) is non-negative for all 𝑡 ≥  0. 

2.2   Invariant Region 

Theorem 2.2 The feasible region of the solution of the system (1) is uniformly bounded. The region 𝛺 of the system (1) is defined 
by 𝛺 = 𝛺𝑐 × 𝛺𝑣, where 
 
             𝛺𝑐 = {(𝑅𝑐 , 𝐼𝑐) ∈ 𝑅+

2 : 0 ≤ 𝑁𝑐 ≤ 𝐾𝑐},     (2) 

               𝛺𝑣 = {(𝑆𝑣 , 𝐼𝑣) ∈ 𝑅+
2 : 0 ≤ 𝑀𝑣 ≤

𝐴

𝜇
}     (3) 
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Proof: Since 𝑁𝑐(𝑡) = 𝑅𝑐(𝑡) + 𝐼𝑐(𝑡), therefore, differentiating 𝑁𝑐(𝑡) w.r.t. ′𝑡’ and using the first two equations of 
system (1), we get  

                                                                    
𝑑𝑁𝑐

𝑑𝑡
≤ 𝑟𝑁𝑐 −

𝑟𝑁𝑐
2

𝐾
                     (4) 

Now, integrating (4) by the method of separation of variables, we get 

                                                              𝑁𝑐(𝑡) ≤
𝑁𝑐(0)𝐾𝑐𝑒

𝑟𝑡

𝐾𝑐+𝑁𝑐(0)(𝑒
𝑟𝑡−1)

                              (5) 

Hence, if 0 ≤ 𝑁𝑐(0) ≤ 𝐾𝑐 , then we get        lim 𝑠 𝑢𝑝𝑡→∞𝑁𝑐(𝑡) ≤ 𝐾𝑐 . 
Thus, the feasible region of the solution of the system (1) for the crop population is given by                 
     𝛺𝑐 = {(𝑅𝑐 , 𝐼𝑐) ∈ 𝑅+

2 : 0 ≤ 𝑁𝑐 ≤ 𝐾𝑐}                     (6) 
Also, since  𝑀𝑣(𝑡) = 𝑆𝑣(𝑡) + 𝐼𝑣(𝑡), therefore, differentiating 𝑀𝑣(𝑡) w.r.t. 𝑡 and using the last two equations of the 
system (1), we get 
  

         
𝑑𝑀𝑣

𝑑𝑡
= 𝐴 − 𝜇𝑀𝑣      (7) 

Solving equation (7), we get 

𝑀𝑣(𝑡) = 𝑀𝑣(0)𝑒
−𝜇𝑡 +

𝐴

𝜇
(1 − 𝑒−𝜇𝑡)                                       (8) 

Hence, if  0 ≤ 𝑀𝑣(0) ≤
𝐴

𝜇
, then we get         li m 𝑠 𝑢𝑝𝑡→∞𝑀𝑣(𝑡) ≤

𝐴

𝜇
. 

Thus, the feasible region of the solution of the system (1) for the vector population is given by 

                                    𝛺𝑣 = {(𝑆𝑣 , 𝐼𝑣) ∈ 𝑅+
2 : 0 ≤ 𝑀𝑣 ≤

𝐴

𝜇
}      (9) 

Consequently, the feasible region of the system (1) is given by 𝛺 = 𝛺𝑐 × 𝛺𝑣  and is positively invariant. Hence, the 
solutions of the system (1) are bounded.  
Therefore, the model is mathematically and epidemiologically suitable to conduct the study.  

3. EQUILIBRIUM POINTS AND BASIC REPRODUCTION NUMBER (𝑹𝟎) 
The system (1) has two equilibrium points, namely a disease-free equilibrium point 𝐸0 and an endemic equilibrium 
point 𝐸∗. 

3.1  Existence of Disease-free Equilibrium (DFE)  
Disease-free equilibrium 𝐸0 exists, when there are no infections in the crops under consideration and this is possible 
only when 𝐼𝑐 = 0 and 𝐼𝑣 = 0. To find the disease-free equilibrium (𝐸0), we equate the right-hand side of the system 
(1) to zero and then solving for the non-infected state variables, we obtain 

      𝑅𝑐 =
𝐾𝑐(𝑟−𝑑)

𝑟
   and    𝑆𝑣 =

𝐴

𝜇
                 (10) 

Hence, there exists a disease-free equilibrium 𝐸0 (
𝐾𝑐(𝑟−𝑑)

𝑟
, 0,

𝐴

𝜇
, 0). It is noteworthy that the disease-free equilibrium 

point is biologically feasible when 𝑟 > 𝑑. 

3.2  Existence of Endemic Equilibrium (EE)  
Endemic equilibrium 𝐸∗(𝑅𝑐

∗,  𝐼𝑐
∗,  𝑆𝑣

∗,  𝐼𝑣
∗) with endemic state variables 𝑅𝑐

∗,  𝐼𝑐
∗,  𝑆𝑣

∗  and 𝐼𝑣
∗ exists, when disease persists 

in the crops. To obtain endemic equilibrium, we equate the right-hand side of system (1) to zero and then, we solve 
them for endemic state variables 𝐸∗(𝑅𝑐

∗, 𝐼𝑐
∗, 𝑆𝑣

∗, 𝐼𝑣
∗) as follows: 

                                        𝑟(𝑅𝑐
∗ + 𝐼𝑐

∗) (1 −
(𝑅𝑐

∗+𝐼𝑐
∗)

𝐾𝑐
) − 𝑑𝑅𝑐

∗ −
α𝐼𝑣
∗𝑅𝑐

∗

1+β𝐼𝑣
∗ + θ𝐼𝑐

∗ = 0    (11) 

                  
𝛼𝐼𝑣

∗𝑅𝑐
∗

1+𝛽𝐼𝑣
∗ − 𝑑𝐼𝑐

∗ − 𝜃𝐼𝑐
∗ = 0                   (12) 
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                     𝐴 −
𝛼1𝐼𝑐

∗𝑆𝑣
∗

1+𝛽1𝐼𝑐
∗ − 𝜇𝑆𝑣

∗ = 0                   (13) 

                                          
𝛼1𝐼𝑐

∗𝑆𝑣
∗

1+𝛽1𝐼𝑐
∗ − 𝜇𝐼𝑣

∗ = 0                     (14) 

Solving equation (13) in terms of 𝐼𝑐
∗, we get 

                              𝑆𝑣
∗ =

𝐴

(1+
𝛼1𝐼𝑐

∗𝑆𝑣
∗

1+𝛽1𝐼𝑐
∗)

                   (15) 

Using this value of 𝑆𝑣
∗ in (14) and then solving for 𝐼𝑣

∗, we get 

                      𝐼𝑣
∗ =

𝐴𝛼1𝐼𝑐
∗

𝜇[𝜇(1+𝛽1𝐼𝑐
∗)+𝛼1𝐼𝑐

∗]
        (16) 

Using this value of  𝐼𝑣
∗ in (12) and then solving for 𝑅𝑐

∗, we get 

                    𝑅𝑐
∗ =

[𝜇{𝜇(1+𝛽1𝐼𝑐
∗)+𝛼1𝐼𝑐

∗}+𝐴𝛼1𝐼𝑐
∗𝛽](𝑑+𝜃)

𝐴𝛼1𝛼
                 (17) 

Using the above endemic state variables in (11) and then solving for 𝐼𝑐
∗, we get 

                                       𝐼𝑐
∗ =

𝐴𝛼 𝛼1 𝐾𝑐 (𝑟−𝑑)−𝜇
2𝑟(𝑑+𝜃)

(𝜇2𝑟𝛽1+𝑟𝛼1𝜇+𝑟𝐴𝛽𝛼1)(𝑑+𝜃)+𝐴𝛼𝛼1𝑟
                 (18) 

Thus, there exists an endemic equilibrium 𝐸∗(𝑅𝑐
∗, 𝐼𝑐

∗, 𝑆𝑣
∗, 𝐼𝑣

∗), where 

                               𝑅𝑐
∗ =

[μ{μ(1+β1𝐼𝑐
∗)+α1𝐼𝑐

∗}+𝐴α1𝛽𝐼𝑐
∗](𝑑+θ)

𝐴α1α
,          𝑆𝑣

∗ =
𝐴

(1+
𝛼1𝐼𝑐

∗𝑆𝑣
∗

1+𝛽1𝐼𝑐
∗)

 

                    𝐼𝑐
∗ =

𝐴𝛼𝛼1𝐾𝑐(𝑟−𝑑)−𝜇
2𝑟(𝑑+𝜃)

(𝜇2𝑟𝛽1+𝑟𝛼1𝜇+𝑟𝐴𝛽𝛼1)(𝑑+𝜃)+𝐴𝛼𝛼1𝑟
,         𝐼𝑣

∗ =
𝐴𝛼1𝐼𝑐

∗

𝜇[𝜇(1+𝛽1𝐼𝑐
∗)+𝛼1𝐼𝑐

∗]
  

 

3.3  Basic Reproduction Number (𝑹𝟎) 
The expression for the basic reproduction number 𝑅0 for the system (1) can be obtained by using the next generation 
matrix method as follows [17]: 
To employ next generation matrix method, we take only the infected compartment from the system (1) and thus, 
we have the following infective class sub-systems:   

𝑑𝐼𝑐

𝑑𝑡
=

α𝐼𝑣𝑅𝑐

1+β𝐼𝑣
− 𝑑𝐼𝑐 − θ𝐼𝑐                                (19) 

                     
𝑑𝐼𝑣

𝑑𝑡
=

α1𝐼𝑐𝑆𝑣

1+β1𝐼𝑐
− μ𝐼𝑣                                                      (20) 

The RHS of the above infective class sub system can be written as matrix 𝑓 and 𝑔, where 

                                        𝑓 = [

𝛼𝐼𝑣𝑅𝑐

1+𝛽𝐼𝑣
𝛼1𝐼𝑐𝑆𝑣

1+𝛽𝐼𝑐

]     and    𝑔 = [
(𝑑 + 𝜃)𝐼𝑐
𝜇𝐼𝑣

]                                          (21) 

The associated transmission matrix (F) of 𝑓 and the transition matrix (G) of 𝑔 at 𝐸0 (
𝐾𝑐(𝑟−𝑑)

𝑟
, 0,

𝐴

μ
, 0) are 

respectively given by 

                          𝐹 = [
0

𝛼𝐾𝑐(𝑟−𝑑)

𝑟
𝛼1𝐴

𝜇
0

]       and      𝐺 = [
𝑑 + 𝜃 0
0  𝜇

]                            (22) 

Now, the next generation matrix of the model is given by 𝐹𝐺−1 and the basic reproduction number 𝑅0 is 
determined by the spectral radius ρ of 𝐹𝐺−1 which is the largest eigenvalue of the matrix 𝐹𝐺−1. Now, we find 

                       𝐺−1 = [

1

(𝑑+𝜃)
0

0
1

𝜇

]   and so  𝐹𝐺−1 = [
0

𝛼𝐾𝑐(𝑟−𝑑)

𝜇𝑟

𝛼1𝐴

𝜇(𝑑+𝜃)
0

]              (23) 

The eigenvalues of the product matrix 𝐹𝐺−1 are given by  
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|
−𝜆

𝛼𝐾𝑐(𝑟−𝑑)

𝜇𝑟

𝛼1𝐴

𝜇(𝑑+𝜃)
 −𝜆

|=0 

   

 or         λ2 −
αα1𝐴𝐾𝑐(𝑟−𝑑)

μ2𝑟(𝑑+θ)
= 0       (24) 

Solving the above equation (24), we get 

       λ = ±√
αα1𝐴𝐾𝑐(𝑟−𝑑)

μ2𝑟(𝑑+θ)
  

 Thus, we have               ρ(𝐹𝐺−1) = √
αα1𝐴𝐾𝑐(𝑟−𝑑)

μ2𝑟(𝑑+θ)
  

Therefore, the expression for the basic reproduction number 𝑅0 is given by 

                                                 𝑅0 = √
αα1𝐴𝐾𝑐(𝑟−𝑑)

μ2𝑟(𝑑+θ)
 

 
4. STABILITY ANALYSIS 

Let 𝑓1, 𝑓2, 𝑓3 and 𝑓4 denote the left-hand side of the equations of the system (1) i.e. 

                            𝑓1:
𝑑𝑅𝑐

𝑑𝑡
= 𝑟(𝑅𝑐 + 𝐼𝑐) (1 −

𝑅𝑐+𝐼𝑐

𝐾𝑐
) − 𝑑𝑅𝑐 −

α𝐼𝑣𝑅𝑐

1+β𝐼𝑣
+ θ𝐼𝑐  

                           𝑓2:
𝑑𝐼𝑐

𝑑𝑡
=

α𝐼𝑣𝑅𝑐

1+β𝐼𝑣
− 𝑑𝐼𝑐 − θ𝐼𝑐  

                                       𝑓3:
𝑑𝑆𝑣

𝑑𝑡
= 𝐴 −

𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
− 𝜇𝑆𝑣  

                           𝑓4:
𝑑𝐼𝑣

𝑑𝑡
=

𝛼1𝐼𝑐𝑆𝑣

1+𝛽1𝐼𝑐
− 𝜇𝐼𝑣  

 
Then, the Jacobian matrix of the system (1) is given by 

                        𝐽(𝐸) =

[
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑅𝑐

𝜕𝑓1

𝜕𝐼𝑐

𝜕𝑓1

𝜕𝑆𝑣

𝜕𝑓1

𝜕𝐼𝑣
𝜕𝑓2

𝜕𝑅𝑐

𝜕𝑓2

𝜕𝐼𝑐

𝜕𝑓2

𝜕𝑆𝑣

𝜕𝑓2

𝜕𝐼𝑣
𝜕𝑓3

𝜕𝑅𝑐

𝜕𝑓3

𝜕𝐼𝑐

𝜕𝑓3

𝜕𝑆𝑣

𝜕𝑓3

𝜕𝐼𝑣
𝜕𝑓4

𝜕𝑅𝑐

𝜕𝑓4

𝜕𝐼𝑐

𝜕𝑓4

𝜕𝑆𝑣

𝜕𝑓4

𝜕𝐼𝑣]
 
 
 
 
 
 

=

[
 
 
 
 
 
 𝐴11 𝐴12 0 

−𝛼𝑅𝑐
(1+𝛽𝐼𝑣)

2

𝛼𝐼𝑣

1+𝛽𝐼𝑣
−(𝑑 + 𝜃) 0

𝛼𝑅𝑐
(1+𝛽𝐼𝑣)

2

0
−𝛼1𝑆𝑣

(1+𝛽1𝐼𝑐)
2

−𝛼1𝐼𝑐

1+𝛽1𝐼𝑐
− 𝜇 0

0
𝛼1𝑆𝑣

(1+𝛽1𝐼𝑐)
2

𝛼1𝐼𝑐

1+𝛽1𝐼𝑐
−𝜇 ]

 
 
 
 
 
 

   (25) 

 
where 

                            𝐴11 = 𝑟 −
2𝑟(𝑅𝑐+𝐼𝑐)

𝐾𝑐
− 𝑑 −

α𝐼𝑣

1+β𝐼𝑣
,      𝐴12 = 𝑟 −

2𝑟(𝑅𝑐+𝐼𝑐)

𝐾𝑐
+ 𝜃 

The eigenvalues of the Jacobian matrix 𝐽 are given by | 𝐽 − λ𝐼| = 0. 

4.1 Local Stability of Disease-free Equilibrium Point 

To discuss local stability of disease-free equilibrium point 𝐸0 (
𝐾𝑐

𝑟
(𝑟 − 𝑑), 0,

𝐴

𝜇
, 0) based on basic 

reproduction number 𝑅0, we have the following theorem: 
 

Theorem 4.1 If 𝑅0 < 1, then the disease-free equilibrium point 𝐸0 is locally asymptotically stable. 

𝑷𝒓𝒐𝒐𝒇 The Jacobian matrix of the system (1) at the point 𝐸0 (
𝐾𝑐

𝑟
(𝑟 − 𝑑), 0,

𝐴

μ
, 0) is obtained by using 

(
𝐾𝑐

𝑟
(𝑟 − 𝑑), 0,

𝐴

𝜇
, 0) in (25) and is given by  
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                             𝐽(𝐸0) =

[
 
 
 
 
 
 −𝑟 + 𝑑 −𝑟 + 2𝑑 + 𝜃   0 −

𝛼𝐾𝑐(𝑟−𝑑)

𝑟

0 −(𝑑 + 𝜃) 0
𝛼𝐾𝑐(𝑟−𝑑)

𝑟

0
−𝛼1𝐴

𝜇
−𝜇 0

0
𝛼1𝐴

𝜇
0 −𝜇 ]

 
 
 
 
 
 

                 (26)   

The characteristic equation for the above Jacobian matrix is  
   [−(𝑟 − 𝑑) − λ][λ3 + 𝐵1λ

2 + 𝐵2λ + 𝐵3] = 0                           (27) 
where 

                                 
𝐵1 = {(𝑑 + θ) + 2μ} > 0

𝐵2 = {μ(𝑑 + θ)(2 − 𝑅0
2) + μ2} > 0, 𝑖𝑓  𝑅0 < 1

𝐵3 = {(𝑑 + θ)μ
2(1 − 𝑅0

2)} > 0, 𝑖𝑓 𝑅0 < 1

 }     (28) 

  
Clearly, one eigenvalue is −(𝑟 − 𝑑). The rest three eigenvalues are computed from the cubic equation λ3 + 𝐵1λ

2 +

𝐵2λ + 𝐵3 = 0 by using Routh-Hurwitz criterion. The roots of the above cubic equation will have negative real parts 
if 𝐵1 > 0, 𝐵3 > 0  and  𝐵1𝐵2 − 𝐵3 > 0. 
Thus, the disease-free equilibrium point 𝐸0 is locally asymptotically stable if 𝑅0 < 1. 

4.2 Sensitivity Analysis of Basic Reproduction Number 𝑹𝟎  
Based on each of the parameters from the expression of the basic reproduction number 𝑅0, sensitivity analysis is 
performed to check the sensitivity of the basic reproduction number [17]. In order to reduce the effect of virus, it 
is necessary to control the parameter values to make 𝑅0 < 1. Therefore,  
we compute the sensitivity indices (i.e. the rate of change) of 𝑅0 with respect to the main parameters. For example, 
the sensitivity indices of 𝑅0 with respect to the parameter 𝛼 is given by 

                                  𝑆α
𝑅0 =

∂𝑅0

∂α
.
α

𝑅0
,   where   𝑅0 = √

αα1𝐴𝐾𝑐(𝑟−𝑑)

μ2𝑟(𝑑+θ)
                                (29) 

The sensitivity indices of 𝑅0 with respect to various parameters are computed and the corresponding sensitivity 
indices are displayed in Table 2. 

 Table 2: Sensitivity Indices of 𝑹𝟎 w. r. t. Various Model Parameters 

From the above table, it can be noted that the parameters α, α1, 𝐾𝑐 , 𝑟 and 𝐴 have positive sensitive indices showing 
that there is more impact on the spread of the disease in the crops. The parameters 𝑑, 𝜇 and 𝜃 have negative sensitive 
indices showing that there is less impact on spread of the crop disease. 
The bar chart of the sensitive indices of 𝑅0 is shown in Figure 2. It can also be noted from Figure 2, that the 
parameter α, α1, 𝐾𝑐 , 𝑟 and 𝐴  have the positive impact on the spread of the crop disease, whereas the parameters 
𝑑, 𝜇 and 𝜃 have negative impact on the spread of the crop diseases. 

Parameter 𝜃 α 𝑑 α1 𝜇 𝐾𝑐 𝑟 𝐴 

Sensitivity Index −0.25 0.5 −0.31 0.5 −1.0 0.5 0.06 0.5 
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Figure 2: Bar Chart of Sensitivity Indices of 𝑹𝟎 w. r. t. Model Parameters 

 
Figure 3: Contour Plot of 𝑹𝟎 with (a)  (𝛂, 𝑨)-plane and (b) (𝛂,𝑲𝒄)-plane 

The contour plot of 𝑅0 w. r. t. parameters (α, 𝐴) and (α, 𝐾𝑐) are shown in Figure 3, from which it is observed that 
only increasing the value of α can shift 𝑅0 < 1 to 𝑅0 > 1 . 

4.3  Local Stability of Endemic Equilibrium Point 
We describe the local stability of endemic equilibrium point in the following theorem: 

Theorem 4.2 The endemic equilibrium point 𝐸∗(𝑅𝑐
∗, 𝐼𝑐

∗, 𝑆𝑣
∗, 𝐼𝑣

∗) is locally asymptotically stable if 𝑅0 > 1. 
Proof. The Jacobian matrix of system (1) at endemic equilibrium point 𝐸∗ is given by 
 

     𝐽(𝐸∗) = [

a11 a12 0 a14
a21 a22 0 a24
0 a32 a33 0
0 a42 a43 a44

]                   (30) 

 
where the non-zero entities of the above matrix are given as follows:  

 

           𝑎11 = 𝑟 −
2𝑟(𝑅𝑐

∗+𝐼𝑐
∗)

𝐾𝑐
− 𝑑 −

𝛼𝐼𝑣
∗

1+𝛽𝐼𝑣
∗,  𝑎12 = 𝑟 −

2𝑟(𝑅𝑐
∗+𝐼𝑐

∗)

𝐾𝑐
+ 𝜃,   𝑎14 = −

𝛼𝑅𝑐
∗

(1+𝛽𝐼𝑣
∗)2
,  𝑎21 =

𝛼𝐼𝑣
∗

1+𝛽𝐼𝑣
∗,   

           𝑎22 = −(𝑑 + 𝜃), 𝑎24 =
𝛼𝑅𝑐

∗

(1+𝛽𝐼𝑣
∗)2
, 𝑎32 = −

𝛼1𝑆𝑣
∗

(1+𝛽1𝐼𝑐
∗)2
,   𝑎33 = −

𝛼1𝐼𝑐
∗

1+𝛽1𝐼𝑐
∗ − 𝜇,    𝑎42 =

𝛼1𝑆𝑣
∗

(1+𝛽1𝐼𝑐
∗)2
,         

             𝑎43 =
𝛼1𝐼𝑐

∗

(1+𝛽1𝐼𝑐
∗)
,   𝑎44 = −𝜇 
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The characteristic equation of the above matrix is given by 
 
    λ4 +𝑀1λ

3 +𝑀2λ
2 +𝑀3λ + 𝑀4 = 0                  (31) 

where 

 

 𝑀1 = −{𝑎22 + 𝑎33 + 𝑎44 + 𝑎11} 
 𝑀2 = {𝑎22𝑎11 + 𝑎33𝑎11 + 𝑎44𝑎11 + 𝑎33𝑎22 + 𝑎44𝑎22 + 𝑎33𝑎44 − 𝑎42𝑎24 − 𝑎12𝑎21}

 𝑀3 = {𝑎14𝑎42𝑎21 + 𝑎44𝑎12𝑎21 + 𝑎33𝑎12𝑎21 + 𝑎24𝑎42𝑎33 + 𝑎42𝑎24𝑎11 − 𝑎44𝑎22𝑎11
            −𝑎33𝑎22𝑎11  − 𝑎33𝑎44𝑎11 − 𝑎22𝑎33𝑎44 − 𝑎24𝑎32𝑎43}
 𝑀4 = {𝑎11𝑎22𝑎33𝑎44 + 𝑎24𝑎32𝑎43𝑎11 + 𝑎14𝑎32𝑎42𝑎21 − 𝑎24𝑎42𝑎33𝑎11
             −𝑎14𝑎42𝑎33𝑎21 − 𝑎21𝑎12𝑎33𝑎44}

 

}
 
 

 
 

      (32) 

                           
Using the Routh-Hurwitz criterion, the root of the equation (31) will have negative real parts if  

              𝑀1 > 0,𝑀2 > 0,𝑀3 > 0,𝑀4 > 0 and  𝑀3(𝑀1𝑀2 −𝑀3) > 𝑀1
2𝑀4                                (33) 

 
Hence, all the eigenvalues of the equation (33) at 𝐸∗ have negative real parts.  
Thus, the endemic equilibrium point 𝐸∗ is locally asymptotically stable, if 𝑅0 > 1. 

4.4 Bifurcation Analysis 
To study the possibility of existence of the bifurcation of the system (1) at 𝑅0 = 1, we apply the centre manifold 
theory [17] to analyze the dynamics of the system. By this theory, the stability of the equilibria of the model can be 
completely characterized by the bifurcation coefficients 𝑚 and 𝑛 given by 

                    𝑚 = ∑ 𝑧𝑘
4
𝑖,𝑗,𝑘=1 𝑢𝑖𝑢𝑗

∂2ℎ𝑘

∂𝑥𝑖 ∂𝑥𝑗
(𝐸0),   𝑛 = ∑ 𝑧𝑘𝑢𝑖

∂2ℎ𝑘

∂𝑥𝑖 ∂α
∗
(𝐸0)

4
𝑖,𝑘=1   

where  𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)
𝑇and  𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) are the right and left eigenvectors respectively obtained from 

𝐽(𝐸0)𝑢 = 0 and 𝑧𝐽(𝐸0) = 0 and ℎ𝑘 is the right hand side of the system (1) with  the change of variables 𝑅𝑐 =
𝑥1,  𝐼𝑐 = 𝑥2, 𝑆𝑣 = 𝑥3, and  𝐼𝑣 = 𝑥4.  

Using the vector notation 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇 , the system (1) can be expressed in the form 

𝑑𝑋

𝑑𝑡
=

(ℎ1, ℎ2, ℎ3, ℎ4)
𝑇 as:  

                                   

𝑑𝑥1

𝑑𝑡
= 𝑟(𝑥1 + 𝑥2) (1 −

𝑥1+𝑥2

𝐾𝑐
) − 𝑑𝑥1 −

𝛼𝑥1𝑥4

1+𝛽𝑥4
+ 𝜃𝑥2

𝑑𝑥2

𝑑𝑡
=

𝛼𝑥1𝑥4

1+𝛽𝑥4
− 𝑑𝑥2 − 𝜃𝑥2

𝑑𝑥3

𝑑𝑡
= 𝐴 −

𝛼1𝑥2𝑥3

1+𝛽1𝑥2
− 𝜇𝑥3

𝑑𝑥4

𝑑𝑡
=

𝛼1𝑥2𝑥3

1+𝛽1𝑥2
− 𝜇𝑥4 }

  
 

  
 

                                              (34) 

Now, we have the following theorem: 
 

Theorem 4.3 The proposed system (1) shows the forward bifurcation at 𝑅0 = 1. 

𝑷𝒓𝒐𝒐𝒇: Let us assume α = α∗ as bifurcation parameter at 𝑅0 = 1 . 

 Putting 𝑅0 = 1 in the expression  𝑅0 =
αα1𝐾𝑐𝐴(𝑟−𝑑)

μ2𝑟(𝑑+θ)
 and simplifying, we have    

                                        α = α∗ =
μ2𝑟(𝑑+θ)

α1𝐾𝑐𝐴(𝑟−𝑑)
                                          (35) 

  Now, the Jacobian matrix of the system (35) at the disease-free equilibrium 𝐸0 is given by 
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              𝐽(𝐸0) =

[
 
 
 
 
 
 −𝑟 + 𝑑 −𝑟 + 2𝑑 + 𝜃 0 −𝛼∗𝐾𝑐 (1 −

𝑑

𝑟
)

𝑎21 −(𝑑 + 𝜃) 0 𝛼∗𝐾𝑐 (1 −
𝑑

𝑟
)

0 −
𝛼1𝐴

𝜇
−𝜇 0

0
𝛼1𝐴

𝜇
0 −𝜇 ]

 
 
 
 
 
 

                        (36) 

 
The right eigenvector 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)

𝑇 is determined from 𝐽(𝐸0)𝑢 = 0 so that, we have 
 

          

                      (−𝑟 + 𝑑)𝑢1 + (−𝑟 + 2𝑑 + θ)𝑢2 + (−α
∗𝐾𝑐 (1 −

𝑑

𝑟
)) 𝑢4 = 0                                      (37) 

                                                          −(𝑑 + θ)𝑢2 + (α
∗𝐾𝑐  (1 −

𝑑

𝑟
))𝑢4 = 0                                       (38) 

                            (−
𝛼1𝐴

𝜇
)𝑢2 − 𝜇𝑢3 = 0                             (39) 

                                                                            (
𝛢1𝐴

𝜇
)𝑢2 − 𝜇𝑢4 = 0                                       (40) 

Solving equation (40) in terms of 𝑢4, we get 

                                 𝑢2 =
𝜇2

𝛼1𝐴
𝑢4                   (41) 

Using this value of  𝑢2 in (39) and then solving for 𝑢3, we get 
                              𝑢3 = −𝑢4                   (42) 

Again, using the value of 𝑢2 in (37) and then solving for 𝑢1, we get                  

              𝑢1 = −
𝜇2

𝛼1𝐴
𝑢4,  where    𝑢4 > 0                    (43) 

The left eigenvector 𝑧 = (𝑧1, 𝑧2, 𝑧3, 𝑧4) is determined from 𝑧𝐽(𝐸0) = 0 so that, we have 
   

                    (−𝑟 + 𝑑)𝑧1 = 0                                                 (44) 

                     (−𝑟 + 2𝑑 + θ)𝑧1 − (𝑑 + θ)𝑧2 −
α1𝐴

μ
𝑧3 +

α1𝐴

μ
𝑧4 = 0                                      (45) 

                                                                               −μ𝑧3 = 0      (46) 

                            (−α∗𝐾𝑐 (1 −
𝑑

𝑟
)) 𝑧1 + α

∗𝐾𝑐 (1 −
𝑑

𝑟
) 𝑧2 − μ𝑧4 = 0                  (47) 

Solving equations (44) and (46), we get 
                      𝑧1 = 𝑧3 = 0     (48) 

 
Using the above values of 𝑧1 and 𝑧3 in (45) and then solving for 𝑧2, we get    

                             𝑧2 =
α1𝐴

(𝑑+θ)μ
𝑧4,   where  𝑧4 > 0                                          (49) 

The non-zero second order partial derivatives of ℎ𝑖, 𝑖 = 1,2,3,4 are given as follows: 

  
𝜕2ℎ2

𝜕𝑥4𝜕𝑥1
=

𝜕2ℎ2

𝜕𝑥1𝜕𝑥4
=

𝛼

(1+𝛽𝑥4)
2 𝛼,  

𝜕2ℎ2

𝜕𝑥4𝜕𝑥4
=

2𝛼𝑥1𝛽

(1+𝛽𝑥4)
3,   

𝜕2ℎ4

𝜕𝑥2𝜕𝑥2
=

2𝛼1𝑥3𝛽1
(1+𝛽1𝑥2)

3, 

  
𝜕2ℎ4

𝜕𝑥3𝜕𝑥2
=

𝜕2ℎ4

𝜕𝑥2𝜕𝑥3
=

𝛼1
(1+𝛽1𝑥2)

2,   
𝜕2ℎ2

𝜕𝑥1𝜕𝛼
∗ =

𝑥4
(1+𝛽𝑥4)

,   
𝜕2ℎ2

𝜕𝑥4𝜕𝛼
∗ =

𝑥1
(1+𝛽𝑥4)

2 

All the other second order partial derivatives of ℎ𝑖 , 𝑖 = 1,2,3,4 are found to be zero. 

 Now, based on the centre manifold theory, the coefficients 𝑚 and 𝑛 are given by 

      𝑚 = ∑ 𝑧𝑘
4
𝑖,𝑗,𝑘=1 𝑢𝑖𝑢𝑗

∂2ℎ𝑘

∂𝑥𝑖 ∂𝑥𝑗
(𝐸0) = −

2𝛼𝜇

(𝑑+𝜃)
+
2𝛼𝐾𝑐(𝑟−𝑑)𝛽𝛼1𝐴

𝑟𝜇(𝑑+𝜃)
+
2𝜇3𝛽1

𝐴
+
2𝜇2

𝐴
𝑧4𝜇4

2 < 0 
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       𝑛 = ∑ 𝑧𝑘𝑢𝑖
∂2ℎ𝑘

∂𝑥𝑖 ∂α
∗
(𝐸0)

4
𝑖,𝑘=1 =

𝜇

𝛼
𝑧4𝑢4 > 0  

 
Figure 4: Diagram showing Forward Bifurcation 

Here, it is seen that 𝑚 is negative and 𝑛 is positive, therefore, the system (1) shows the forward bifurcation at 𝑅0 =
1 and if 𝑅0 > 1, then at least one stable endemic equilibrium exists. 
In the forward bifurcation diagram, the parameter values are taken from Table 1 except the value α = 0.0009. 

5. NUMERICAL SIMULATIONS 
In order to discuss the quantitative behaviour of the system (1), the numerical simulations were performed to 
support the analytical results. Some parameter values were assumed and some of them were taken from the various 
literature. Basic reproduction number 𝑅0 is computed by using parameter values given in Table 1, and by assuming 
the initial data as 𝑅𝑐(0) = 980,  𝐼𝑐(0) = 20, 𝑆𝑣(0) = 200, 𝐼𝑣(0) = 50 and is found to be 𝑅0 = 1.35. Now, for 
the value of 𝑅0 = 1.35 > 1, we discuss the numerical simulation for the existence of endemic equilibrium point.  
From Figure 5(a), we note that the disease resistant crop (biomass/ yield) decreases logistically while the infected 
crop (biomass/ yield) increases logistically and from Figure 5(b), it is noted that the susceptible vector population 
decreases logistically while infected vector population increases exponentially with 𝑅0 = 1.35 > 1. 
From Figure 6(a), we observe that due to implementation in the control strategies, if the infection transmission rate 
α  of the crop biomass/ yield decreases, then the infected crop biomass/ yield decreases and from Figure 6(b), we 
observe that if the number of infected vectors decreases, then the value of transmission rate α decreases, leading to 
the decrease of the basic reproduction number 𝑅0. 
From Figure 7(a), we note that if the value of infection transmission rate  α1 of vector decreases, then the number 
of infected crops decreases and from Figure 7(b), we observe that the number of infected vectors decreases as the 
value of 𝛼1 decreases. 
From Figure 8(a) and Figure 8(b), we observe that if the saturation rate 𝛽 of the crops increases, then the number 
of infected crop biomass/ yield and infected vectors decrease. 
From Figure 9(a) and Figure 9(b), we observe that if the saturation rate 𝛽1 of the vector increases, then the number 
of infected crop biomass/ yield and infected vectors decrease. 
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Figure 5: Variation of Crop biomass/ yield and Vector Population with time for 𝑅0 = 1.35

Figure 6: Variation of Infected Crop biomass/ yield and Infected Vector Population with Varying Effects of 
Parameters at Different Values of α. 
 

Figure 7: Variation of Infected Crop biomass/ yield and Infected Vector Population with Varying Effects of 
Parameters at Different Values of 𝛼1. 

https://theaspd.com/index.php/ijes


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 5, 2025 
https://theaspd.com/index.php/ijes   
 

1630 
 

 
Figure 8: Variation of Infected Crop biomass/ yield and Infected Vector Population with Varying Effects of 
Parameters at Different Values of 𝛽. 

 
Figure 9: Variation of Infected Crop biomass/yield and Infected Vector Population with Varying Effect of 
Parameters at Different Values of 𝛽1. 

6. DISCUSSION AND CONCLUSIONS 
Mathematical modelling and bifurcation analysis of vector-borne crop diseases are presented in this paper by 
incorporating non-linear saturation rate of Holling type II. First of all, a mathematical model is developed by taking 
into account the logistic crop growth and vector dynamics. In the present model, four distinct compartments have 
been considered and the model is described by using a system of ordinary differential equations. Then, the basic 
properties of the model such as the non-negativity, boundedness and existence of solution are discussed. Thereafter, 
two equilibrium points, namely disease-free equilibrium (𝐸0) and endemic equilibrium (𝐸∗) are computed. The 
basic reproduction number is calculated by using the next generation matrix method. The disease-free equilibrium 
point is found to be locally asymptotically stable and the endemic equilibrium point of the system is studied by 
using the Routh-Hurwitz criterion. Sensitivity analysis of the basic reproduction number is performed to identify 
the influential parameters in the spread of the crop diseases. It has been shown that the transmission rate (𝛼) of 

the crop biomass due to vectors, the transmission rate (𝛼1) of vectors due to crop biomass, the recruitment rate 
(𝐴) of vectors, carrying capacity (𝐾𝑐) of crop biomass and intrinsic growth rate (𝑟) crop biomass show positive 
impact on the spread of crop diseases. By using centre manifold theory, it has been shown that the model system 
exhibits the forward bifurcation at 𝑅0 = 1. The numerical simulations of the model indicate the need for 
implementing effective control interventions to manage the disease in the crops. It has been also shown that if the 
saturation rate (𝛽) of the crop biomass and the saturation rate (𝛽1) of the vectors increase, then the number of 
infected crops and number of infected vectors both decrease. This model will be useful in developing strategies to 
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control vector-borne diseases at both the vegetative and the reproductive systems of the crop biomass/yield that 
leads to higher production and productivity for food security. 
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