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Abstract: Accurate prediction of scour depth around bridge abutments is critical for ensuring the safety and longevity
of hydraulic structures, especially under clearwater conditions. This study investigated the predictive performance of
two ensemble machine learning models including Extreme Gradient Boosting (XGBoost) and Random Forests (RF)
to estimate scour depth for three distinct abutment geometries: Vertical Wall, 45° Wing Wall, and Semicircular
Abutments. A laboratory-generated experimental dataset was employed with a 70:30 split for training and testing
respectively. The results demonstrated that XGBoost consistently outperformed RF across all abutment types achieving
higher determination coefficients (R2) and lower error metrics (Root Mean Square Error and Mean Absolute Error).
It was observed that XGBoost achieved an R? of 0.9707 for Vertical Wall abutments, compared to 0.8721 by RF.
The superior performance of XGBoost is attributed to its gradient-boosting framework and regularization capabilities,
which enhance its generalization ability on complex, nonlinear datasets. This study confirms the effectiveness of
XGBoost as a reliable and accurate tool for predicting scour depth, outperforming traditional ensemble methods. The
findings highlight the potential of advanced machine learning approaches in improving hydraulic design and risk
assessment practices.
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INTRODUCTION:

Scouring is the process of removal of sediments from around a hydraulic structure. This process is a
concern for hydraulic engineers, especially around bridge piers, abutments, or embankments, because it
compromises structural stability. The scour is mainly of three types: General scour, contraction scour,
and local scour. The general scour occurs due to changes in river bed over a length of river, thus
independent of the presence of structure across the river, whereas, on the other hand, the contraction
and local scour are dependent on the presence of hydraulic structure across the river. The contraction
scour occurs when the flow area is reduced, leading to increased flow velocity causing erosion. The local
scour occurs around specific structures like piers and abutments due to the formation of vortices. Among
all three, local scour is the most critical and thus is studied widely.

The mechanism of scour is a complex process caused due to flow obstructed by the pier or abutment on
the upstream side causing downflow. This downflow hits the sediment bed with force, causing removal
of sediment leading to formation of vortex. The vortex formed has a characteristic shape of a horseshoe,
thus named horseshow vortex. This horseshoe vortex wraps around the base of the pier or abutment and
transports the sediment away from the foundation. According to Melville and Coleman (2000), the
horseshoe vortex system is the most significant factor contributing to development of local scour at the
front of the pier exerting high shear stress on the bed material. In addition to the horseshoe vortex,
secondary vortex called wake vortex is form around the pier. This wake vortex acts like a vacuum pump
that carries the sediment from around the pier or abutment to downstream side, further eroding the
sediment bed. These vortices fluctuate in time and space, thus, increasing the turbulence intensity and
contributing to sediment entrainment behind the pier (Ettema et al.,1998). The mechanism of scour is
influenced by various factors like flow velocity, pier shape, orientation of pier, size of sediment, gradation
of sediment, depth of flow, and composition of bed. Chiew and Melville (1987) showed through
laboratory studies that sharper pier shapes generate stronger vortices and deeper scour holes. The flow
separation points are more pronounced for non-cylindrical piers, causing enhanced turbulence and
erosion of sediment. Dey and Raikar (2007) also emphasized that equilibrium scour depth depend on the
sediment transport capacity and critical shear stress of the bed material. For cohesive sediments, time and
cohesion plays important role in resisting scour. Thus, the interaction of hydrodynamic forces and
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sediment resistance governs the scour depth and extent of scour highlighting the importance of predicting
scour depth.

Many studies have contributed to understand the local scour depth around bridge abutments through
experimental, analytical, and data-driven approaches. Laursen and Toch (1956) conducted foundational
laboratory experiments on local scour around abutments which was limited because of the absence of
flow visualization tools. Melville (1992) overcame this limitation by expanding the experimental dataset
by varying flow depth, abutment geometry, and sediment properties, while, Kwan and Melville (1994)
highlighted the significance of vortex formed in driving scour development. Dey and Barbhuiya (2004)
studied scour under clear water conditions for various abutment geometries and proposed empirical
relationships for equilibrium scour depth. Similarly, Fael et al. (2006) applied regression techniques to
describe scour morphology and Abou-Seida et al. (2012) developed predictive equations for scour depth
in cohesive sediment bed. Barbhuiya and Mazumder (2014) experimented behavior of scour for varying
sediment size and abutment geometries resulting in a refined empirical model for predicting scour depth.
A study conducted by Singh et al. (2020) introduced analytical expressions for time-dependent and
equilibrium scour depth under short contractions. The physical models have advanced understanding,
but they are inherently time consuming and resource intensive that lacks scalability to complex, real-world
conditions. Numerical models (Afzal, 2013; Ahmad et al., 2015; Gautam et al., 2021) have provided a
detailed understanding of sediment transport and scour process, but requires significant computational
demand. Due to these limitations, Machine Learning (ML) approaches have emerged as efficient data-
driven alternatives that have the capability of handling non-linearity and large datasets.

Advancements in ML models in predicting scour depth have significant increase. Muzammil (2008)
applied artificial neural networks (ANN), which highlights the performance of ANN over traditional
empirical models. Muzzammil (2010) also depicted the same results using adaptive-network-based fuzzy
inference systems (ANFIS). Azamathulla et al (2010) employed gene expression programming (GEP) that
resulted in better efficiency than ANN and regression models. Najafzadeh et al. (2013a, 2013b)
introduced group method of data handling (GMDH) and found it effective in case of both clear-water
and live-bed scour conditions. Recent introduction of hybrid and optimized ML approaches have made
a significant breakthrough. Azimi et al. (2017,2019) developed a Pareto-evolutionary ANFIS model, while,
Parsaie et al. (2019) an Ebtehaj et al. (2018) showed a better performance of support vector machine
(SVM) and extreme learning machine (ELM) in terms of accuracy and computational efficiency.
Bonakdari et al. (2020) reported better performance of ELM in predicting clear-water scour. Genetic
algorithms (Pandey et al., 2020), firefly and grasshopper optimization (Kaveh et al., 2021; Kohansarbaz et
al., 2021) and hybrid models like RC-Kstar and WIHW.-Kstar (Khosravi et al., 2021) enhanced prediction
accuracy of scour depth around different abutment geometries.

This study employs ensembled ML models including Extreme Gradient Boosting (XGBoost) and Random
Forests (RF) for predicting scour depth around various abutment geometries under clear-water conditions
using MATLAB. These ML models were selected because of their advantage in handling non-linear
relationships, high dimensional data, and overfitting issues due to hydrodynamic properties of scouring.
To evaluate their predictive performance, statistical indices including coefficient of determination (R?),
root mean square error (RMSE), and mean absolute error (MAE) were used. The results provide a
comparative analysis of the models employed highlighting their strengths and limitations in predicting
scour depth.

METHODOLOGY:

In the present study, the data for scour depth prediction under unsteady flow conditions were collected
from published datasets from Dey and Barbhuiya (2005) (Table 1), for predicting scour depth using ML
models such as XGBoost and RF. The datasets were divided in 70/30 ratio, where 70 % is used as training
and 30 % for testing the models. The efficiency of the models developed was analysed using statistical
error indices such as Root Mean Square Error (RMSE), Coefficient of Determination (R*), and, Mean
Absolute Error (MAE) (Figure 2). The model with higher R” value and lower RMSE and MAPE values is
considered to be thebest (Kumar et al., 2023).
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Figure 1. Flowchart of Methodology

Data Used:

A total of 297 experimental dataset used in this study was obtained from Dey and Barbhuiya (2005) which
predicted scour depth under clear-water conditions for three different abutment geometry including
vertical wall, 45° wing wall, and semicircular abutment (Table 1). The dataset includes hydraulic and
geometric parameters like mean sediment size (dsg), flow depth (h), approach flow velocity (U), transverse
abutment length (L), width of abutment across the channel (b), Froude number (F,), and geometric
standard deviation (0,). They measured scour depth (d,) using Vernier point gauge with an accuracy of
£0.1mm.

Table 1. Dataset obtained from Dey and Barbhuiya (2005):

Parameters Vertical Wall 45° Wing Wall Semicircular Abutment
Max Min Max Min Max Min

dso (mm) 3.1 0.26 3.1 0.26 3.1 0.26

h (m) 0.25 0.058 0.25 0.059 0.25 0.059

U (m/s) 0.67 0.219 0.67 0.22 0.67 0.22

L (cm) 12 4 12 4 13 4

b (cm) 24 8 36 12 26 8

F, 0.8327 0.1571 0.8327 0.1571 0.8327 0.1571

o, 1.38 1.17 1.38 1.17 1.38 1.17

d, (m) 0.293 0.068 0.278 0.053 0.28 0.055

Sensitivity Analysis:

For performing sensitivity analysis on the dataset, Principal Component Regression (PCR) was employed
to address the multicollinearity among the input variables to predict scour depth. The analysis retained
three principal components which altogether explains a substantial proportion of variance in the dataset.
The resulting PCR model highlights the strong predictive capability with a R* of 0.9539 and a low RMSE
of 0.1415, which shows high model accuracy. The first principal component (PC1) captured the largest
proportion of variance that was predominantly influenced by the excess abutment Froude number (F,)
and the relative sediment size (dso/L), both contributing significantly and positively. The geometric
standard deviation (0,) exhibited a strong negative loading on PC1 suggesting that greater sediment
heterogeneity tends to reduce scour depth. In contrast, the effect of relative flow depth (h/L) and
sedimentsize-to-depth ratio (dso/h) were relatively less. These findings reinforce the major effect of F, and
dso/L in scour processes (Khosravi et al., 2021; Kumar et al., 2023), thus validating PCR as a better
method for sensitivity analysis and prediction in hydrodynamics case where multicollinearity among
predictors is present.

Extreme Gradient Boosting (XGBoost):

Extreme Gradient Boosting (XGBoost) is an ensemble machine learning algorithm based on decision tree
boosting due to its scalability and efficiency in prediction. It operates by sequentially building an ensemble
regression trees where every new tree attempts to correct the errors from previous iterations using a
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gradient descent optimization algorithm. In the context of hydraulic and geotechnical engineering,
XGBoost has shown promising results in modeling complex nonlinear phenomena, such as scour depth
around bridge piers, due to its ability to handle multicollinearity, missing values, and noisy data (Chen
and Guestrin, 2016). Recent studies have demonstrated its superiority over traditional regression models
and basic machine learning techniques in predicting scour depth under varying flow conditions (Khosravi
et al.,, 2021; Wang et al., 2023). The algorithm's regularization mechanisms help prevent overfitting,
making it particularly suitable for datasets with limited observations but high dimensionality, such as
those derived from flume experiments or field measurements of pier scour.

Random Forests (RF):

Random Forest (RF) is a widely used ensemble learning method that builds multiple decision trees using
random samples of the data and a random selection of features. These trees then work together, with
their results combined either by averaging (for regression) or voting (for classification) to produce a more
accurate prediction. Originally proposed by Breiman in 2001, RF is particularly effective in tackling
complex, high-dimensional problems and is known for its strong resistance to overfitting. In hydraulic
modeling and scour depth prediction, RF has gained attention for its ability to manage noisy datasets,
handle multicollinearity, and capture nonlinear relationships between variables without the need for
extensive preprocessing. Its effectiveness has been demonstrated in various water resources applications,
such as modeling sediment transport, estimating flow discharge, and predicting scour depth around
bridge piers (Pal et al., 2013; Habib et al., 2024). Overall, compared to traditional models and single
decision trees, Random Forest consistently delivers higher accuracy and more reliable results, making it a
strong choice for data-driven scour prediction in both clear-water and live-bed scenarios.

RESULTS AND DISCUSSION:

In this study, the predictive capabilities of two ensemble machine learning models (Extreme Gradient
Boosting (XGBoost) and Random Forest (RF)), were evaluated for estimating clear-water scour depth
around three abutment geometries i.e. Vertical Wall, 45° Wing Wall, and Semicircular Abutments. A
70:30 split was adopted for training and testing the dataset, ensuring sufficient data for learning while
preserving a meaningful validation subset for assessing generalization performance. As presented in Table
2, XGBoost demonstrated superior performance across all abutment types when compared to RF. For the
Vertical Wall abutment, XGBoost achieved a high coefficient of determination (R2) of 0.9707, with low
error metrics (RMSE = 0.1821, MAE = 0.1362). In comparison, RF showed a significant drop in predictive
quality (Rz = 0.8721, RMSE = 0.3850, MAE = 0.2524). This large difference highlights the stronger
modeling capacity of XGBoost for cases with complex hydraulic behavior and more distinct scour
patterns.

For the 45° Wing Wall, the trend remained consistent. XGBoost recorded an R? of 0.9293, while RF
achieved 0.9186. Although the difference in R? here was smaller, XGBoost still outperformed RF in terms
of both RMSE (0.1023 vs. 0.2491) and MAE (0.0815 vs. 0.2029), indicating more precise and reliable
predictions. The geometry of the 45° Wing Wall may introduce angled flow separation and vortex
interactions, which are more effectively captured by the sequential tree structure and boosting logic of
XGBoost.

In the case of Semicircular Abutments, XGBoost again led with Rz = 0.9307, outperforming RF's 0.8689.
While RF still showed reasonable performance, its higher RMSE (0.2029) and MAE (0.2381) compared
to XGBoost’s (RMSE = 0.1812, MAE = 0.1325) reinforce the notion that RF may struggle to model more
subtle, nonlinear interactions such as those induced by curvaturerelated flow patterns around
semicircular abutments. These findings align with several recent studies that have demonstrated
XGBoost’s advantages over other ensemble models in hydraulic and geotechnical applications. For
example, Chen and Guestrin (2016) emphasized the strength of XGBoost’s gradient boosting framework
with builtin regularization, which prevents overfitting and efficiently handles complex feature
interactions. Similarly, Habib et al. (2024) applied XGBoost for sediment transport and scour modeling,
achieving higher accuracy and generalizability compared to Support Vector Machines and Random
Forests.
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Random Forest, though slightly less accurate in this context, remains a valuable tool, particularly for its
robustness, low sensitivity to overfitting, and ease of interpretation. Introduced by Breiman (2001), RF is
widely used in hydrologic modeling and environmental engineering for tasks involving uncertainty and
noisy data. Studies such as Pal et al. (2013) have shown its effectiveness in land-use classification and
runoff estimation. However, RF’s ensemble averaging nature often causes it to miss finer, compound
interactions between input variables, an area where boosting algorithms like XGBoost excel. Furthermore,
XGBoost’s iterative learning approach prioritizes correcting errors from previous trees, which is
particularly useful in datasets like this one, where scour depth is influenced by multiple interrelated
hydraulic variables (velocity, flow depth, sediment size). RF, by contrast, builds all trees independently
and then averages their outputs, making it more resistant to noise but potentially less responsive to subtle
patterns in the data.

From a practical standpoint, the better performance of XGBoost suggests its greater potential in real-
world applications of scour prediction, especially where field data may be limited or exhibit nonlinear
behaviors. For engineers and decision-makers, such precision can translate into more reliable
infrastructure design and risk mitigation strategies in flood-prone or erosion-susceptible regions. In
summary, XGBoost not only provided more accurate predictions of scour depth but also displayed
stronger generalization across varying abutment geometries. Its ability to adaptively learn complex
relationships within the dataset makes it a more suitable and advanced tool for modeling clear-water scour
scenarios in hydraulic engineering applications.

Table 2. Summary of statistical indices of ML models:

ML models XGBoost RF
Vertical 45°  Wing Semicircular  Vertical 45°  Wing Semicircular
Wall Wall Abutments Wall Wall Abutments
R’ 0.9707 0.9293 0.9307 0.8721 0.9186 0.8689
RMSE 0.1821 0.1023 0.1812 0.3850 0.2491 0.2029
MAE 0.1362 0.0815 0.1325 0.2524 0.2029 0.2381
CONCLUSION:

This study set out to evaluate how well two powerful ensemble machine learning models could predict
scour depth under clear-water conditions around different bridge abutment shapes. The results showed
that XGBoost consistently delivered better predictions than Random Forest across all three abutment
types. It achieved higher R? scores and lower error values (RMSE and MAE), showing that it was better
at capturing the complex, nonlinear relationships between hydraulic parameters and scour depth. This
makes sense, given that XGBoost is designed to improve predictions step by step while also controlling
for overfitting. Random Forest also performed reasonably well but was less accurate, especially in the case
of vertical wall abutments. Its averaging approach across many decision trees works well for general
patterns, but it can sometimes miss the fine details that XGBoost is able to pick up. In short, XGBoost
proved to be a more reliable and precise tool for estimating scour depth under varying geometric
conditions. Its performance highlights the potential of modern machine learning techniques in solving
real-world hydraulic engineering problems. Going forward, incorporating more diverse datasets or trying
out hybrid or deep learning models could further improve accuracy and support better-informed design
decisions in bridge and river engineering.
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